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Abstract

The notion of the histogram of forces was introduced in a previous work with the aim of modeling spatial relations

between image objects. In this paper, we show that it can also be useful in pattern recognition. Drawings of cranial

orbits and sinuses are classified using force histograms. The results are consistent with human responses, and our

method compares favorably with classical methods based on geometric criteria and Fourier descriptors.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The database used in this study is composed of
several orbit and sinus drawings provided by a
French medicine team (University Paul Sabatier of
Toulouse France). These drawings were defined
from craniums (3rd century AD) found in a nec-
ropolis (Nubia Vila, 1994). Experts (Szilvassy,
1982) distinguish four models of sinuses (bean,
foliaceous, pyramidal, fan-shaped) and four mod-
els of orbits (rectangular, elliptical, trapezoid, cir-
cular). Each drawing is composed of two orbits and
two sinuses. The two orbits belong to the same
class whereas the two sinuses are independent. Our

aim is to classify each orbit and sinus of the data-
base using the notion of the histogram of forces
(Matsakis, 1998; Matsakis and Wendling, 1999).
For each drawing, three histograms are computed.
They represent the position (i) of the right orbit
relative to the left one, (ii) of the right sinus rela-
tive to itself, (iii) of the left sinus relative to itself.
The three histograms are then matched against
histograms computed from prototypes. To vali-
date our approach, we have conducted a blind test
with one hundred people. Each person was asked
to classify each sinus and each pair of orbits ac-
cording to the prototypes. Moreover, we have
conducted a comparative study with classical
methods based on geometric features and Fourier
descriptors.

The use of geometric features is discussed
in Section 2. The notion of the histogram of
forces is briefly reviewed in Section 3. The force
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histogram-based method of classifying orbit and
sinus drawings is described in Section 4. Experi-
mental results are presented in the same section.
Conclusion is given in Section 5.

2. Shape classification using geometric features

In first experiments (Matsakis and Wendling,
2000), two classical geometric features were used
to classify the orbit and sinus drawings: the degree
of compactness and the degree of ellipticity (the
axes being given by the moments of order 0–2
(Teag, 1980)). These features and their combina-
tion yielded poor results. For instance, since the
perimeter has a strong effect on the calculation
of the compactness, orbits and sinuses are often
misclassified when the drawings are not sharp.
Furthermore, it is a well-known fact that ap-
proaches based on feature descriptors are sensitive
to noise and occlusions (Belkasim et al., 1991;
Ghorbel, 1994; Lin and Shen, 1991; Zhan and
Roskies, 1972).

A polygonal approximation of the objects could
be a solution to this problem. However, it induces
loss of information, which may result in lower
recognition rates. The degree of ellipticity is
not suited either to the classification of this type
of object. Maes (1991), for example, presented a
string-matching technique for recognizing and
classifying polygons; but the strength of this
method is limited when the polygonal approxi-
mation of the object is inconsistent. Gerdes et al.
(1995) proposed another approach based on con-
tour-oriented 2D object recognition, which is less
sensitive to polygonal approximation inconsis-

tency. Its main drawback is its time complexity,
especially when many models have to be identified.
The generalized Hough transform Ballard, 1981 is
also a useful technique for shape recognition, but
its drawbacks––computation time and storage re-
quirements––are substantial. Even though im-
provements were proposed (Kassim et al., 1999)
the approach remains complex when many models
have to be characterized. The method presented in
this paper is invariant under rotation and scaling.
Furthermore, it is of low time complexity, and is
able to handle non polygonal objects as well as
polygonal objects.

3. The histogram of forces

The notion of the histogram of forces was in-
troduced by Matsakis (1998) and presented by
Matsakis and Wendling (1999). It generalizes and
supersedes the histogram of angles described by
Krishnapuram et al. (1993) and Miyajima and
Ralescu (1994). Consider two 2D objects A and B
(see Fig. 1). The histogram of forces associated
with these objects is a quantitative representation
of their relative position. Let r be any real number
and let ur be the function from R into Rþ, null on
R�, such that:

8d 2 R�
þ;urðdÞ ¼ 1=dr ð1Þ

urðdÞ corresponds to the elementary attraction
force exerted by one point of A on one point of B.
The symbol d denotes the distance between the two
points considered, and r characterizes the forces
involved. For instance, the forces are constant if
r is 0, and are of gravitational type if r is 2.

Fig. 1. Force histogram computation.
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In practice, to decrease the computation time,
attraction forces are computed between aligned
segments, not between points. Let I and J be two
segments of an oriented straight line that defines
with the X-axis an angle h. These segments are of
length jI j and jJ j, and their relative position on the
line is perfectly determined by a real number Dh

IJ .
The attraction force exerted by I on J is computed
as follows:

frðjI j;Dh
IJ ; jJ jÞ ¼

Z jI jþDh
IJþjJ j

Dh
IJþjJ j

Z jJ j

0

urðu� vÞdvdu

ð2Þ

For each direction h, there exists a pencil of par-
allel lines that describe entirely the objects A and
B. Let us consider one particular line, denoted by
Dh

g. Since A and B are not necessarily convex, Dh
g

generally defines two sets of segments: AhðgÞ ¼

[fIigi¼1;n and BhðgÞ ¼ [fJjgj¼1;m. The mutual at-
traction between these sets is:

Frðh;AhðgÞ;BhðgÞÞ ¼
X
i21...n

X
j21...m

frðjIij;Dh
IiJj
; jJjjÞ

ð3Þ
The sum of these forces when g describes the set of
real numbers, i.e., when Dh

g describes the consid-
ered pencil, is denoted by F AB

r ðhÞ. It is the scalar
resultant of elementary forces: these forces are
exerted by the points of A on those of B, and each
tends to move B in direction h. The values F AB

r ðhÞ
define the Fr-histogram F AB

r associated with the
objects A and B. If the two objects are identical,
the Fr-histogram is called the Fr-signature of the
object. In practice, of course, only a finite number
of evenly distributed directions are considered.
Force histograms have nice geometric properties,
which are exploited in Section 4. For instance:

Fig. 2. Prototypes of classes of orbits and sinuses.
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• F BA
r can easily be deduced from F AB

r ,
• when A and B are translated, F AB

r remains the
same,

• when a rotation is applied, the histogram is sim-
ply shifted along its h-axis,

• when a dilation (i.e., homothety) is applied, the
histogram is stretched (the forces are multiplied
by a value that depends on r and on the scale
factor).

4. Experiments

4.1. Description

About forty drawings of orbits and sinuses––
defined from craniums found in a necropolis––
constituted the test database. Each drawing was
scanned and for each image, six histograms were
computed (histograms of constant forces and

Fig. 3. First example: image misa_1.
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gravitational forces, F0 and F2, for the pair of
orbits, and for each sinus). The classification of
orbits and sinuses is based on the computation
of similarities between the histograms associated
with the test images and those associated with
prototypes provided by experts. Consider two
histograms H1 and H2. The similarity ratio SR
(expressed as a percentage) between H1 and H2 is
defined as in formula 4, where H 1 and H 2 denote
the normalized histograms. Hence, SR is not sen-
sitive to object scaling. Moreover, note that cir-
cular shifts a are applied to H 2, and SR is obtained
by maximizing the classical Tanimoto index (min
over max). In that way, SR is not sensitive to
object rotation either.

SRðH1;H2Þ

¼ 100max
a

P
h minðH 1ðhÞ;H 2ðh þ aÞÞP
h maxðH 1ðhÞ;H 2ðh þ aÞÞ

� �
ð4Þ

To assess the accuracy of our approach and its
consistency with human perception, we have con-
ducted a blind test with a population of 100 peo-
ple. Each person was asked to classify the cranial
orbits and sinuses according to the prototypes and
the fact that in each drawing the two orbits belong
to the same class whereas the two sinuses are in-
dependent. We also compared our method with a
method implemented from Zhan and Roskies
(1972) and based on the computation of Fourier
descriptors (up to the 15th order).

4.2. Prototypes

See Fig. 2; eight drawings defined by an expert
constituted the prototypes of the classes of orbits
and sinuses. The two orbits belong to the same
class whereas the two sinuses are indepen-
dent. Each drawing was scanned and the regions
corresponding to the orbits and sinuses were

Fig. 4. Second example: image misa_11.
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determined using a classical binarization method.
Then 24 histograms were computed. Half are
histograms of constant forces (F0) and half are
histograms of gravitational forces (F2). Each his-
togram represents the relative position (i) of the
right orbit with regard to the left one or (ii) of the
right sinus with regard to itself or (iii) of the left
sinus with regard to itself (in cases (ii) and (iii), the
histograms are F-signatures).

4.3. Representative results

In this section, we examine three representative
results. The different classes of orbits and sinuses
are denoted by Re (rectangular), El (elliptical), Tr
(trapezoid) and Ci (circular) for the orbits; Be
(bean), Fo (foliaceous), Py (pyramidal) and Fs
(fan-shaped) for the sinuses.

This first example (see Fig. 3) illustrates the fact
that if the histograms were not normalized (see Eq.
(4)) then numerous misclassifications would be
encountered––mostly because the size of the si-
nuses vary a lot from one cranium to the other. On
the other hand, the results obtained with normal-
ized histograms are compatible with the opinion
expressed by the majority of people.

Even normalized, the F0-histograms may lead to
incorrect classifications. In this second example
(see Fig. 4) the right sinus is actually fan-shaped,
and not bean-shaped (according to most people).

The use of normalized F2-histograms allows
most of the orbits and sinuses to be classified
correctly, but the method is not foolproof. In the
case of this drawing, for instance, the orbits are
misclassified (see Fig. 5). It is not clear, however,
whether they are circular or trapezoid, and the

Fig. 5. Third example: image misa_8.
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people are divided. There are three ambiguous
cases like this one in the whole database.

Finally, note that the method based on the
computation of Fourier descriptors yields poor
results. It is often unable to distinguish between
the different orbit classes, and the sinuses are
generally assigned to the same class (foliaceous).

The complexity of the presented approach is in
Oðpn ffiffiffi

n
p Þ where n denotes the number of pixels of

the processed image and p the number of direc-
tions in which forces are computed. It drops to
OðpnÞ for convex objects. The experiments were
carried out with p ¼ 128. When using a greater
value, the similarity ratios differ by 0.1% only.

5. Conclusion

We have shown in this paper that the notion of
the histogram of forces (Matsakis, 1998; Matsakis
and Wendling, 1999) can be exploited in pat-
tern recognition. In particular, the F-signature
(Matsakis, 1998; Matsakis and Wendling, 2000) of
an image region proves to be a powerful repre-
sentation of its shape. The use of force histograms
allows shapes to be categorized consistently with
human perception. Compared to classical meth-
ods based on geometric features or Fourier de-
scriptors, the histogram-based method presented
in this paper is of lower computing time and leads
to much higher classification accuracy.
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