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Abstract.   In earlier work, we introduced the notion of the F-histogram 
and demonstrated that it can be of great use in understanding the spatial 
organization of regions in images. Moreover, we have recently designed F-
histograms coupled with mutually exclusive and collectively exhaustive 
relations between line segments. These histograms constitute a valuable 
tool for extracting topological relationship information from 2D concave 
objects. For any direction in the plane, they define a fuzzy partition of all 
object pairs, and each class of the partition corresponds to one of the 
above relations. The present paper continues this line of research. It lays 
the foundation for generating a linguistic description that captures the 
essence of the topological relationships between two regions in terms of 
the thirteen Allen relations. An index to measure the complexity of the 
relationships in an arbitrary direction is developed, and experiments are 
performed on real data. 

1   Introduction 

Work in the modeling of topological relationships often relies on an 
extension into the spatial domain of Allen’s temporal relations (Allen 
1983). Although several alternatives and refinements have been proposed, 
a common procedure is to approximate the geometry of spatial objects by 
Minimum Bounding Rectangles (Nabil et al. 1995; Sharma and Flewelling 
1995). Many authors, e.g., (Goodchild and Gopal 1990), have stressed the 
need to handle imprecise and uncertain information about spatial data. 
Qualitative spatial reasoning aims at modeling commonsense knowledge 
of space. Nevertheless, computational approaches for spatial modeling and 
reasoning can benefit from more quantitative measures, and the interest of 
fuzzy approaches has been widely recognized (Dutta 1991; Freeman 1975). 

In previous publications, we introduced the notion of the F-histogram 
(Matsakis 1998; Matsakis and Wendling 1999), a generic quantitative 
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representation of the relative position between two 2D objects. Most work 
focused on particular F-histograms called force histograms. As 
demonstrated in (Matsakis 2002), these histograms can be of great use in 
understanding the spatial organization of regions in images. For instance, 
they can provide inputs to systems for linguistic scene description 
(Matsakis et al. 2001). Moreover, we have recently shown (Matsakis and 
Nikitenko, to appear) that the F-histogram constitutes a valuable tool for 
extracting topological relationship information from 2D concave objects. 
The present paper builds both on (Matsakis et al. 2001) and (Matsakis and 
Nikitenko, to appear). It lays the foundation for generating a linguistic 
description that captures the essence of the topological relationships 
between two complex regions in terms of the thirteen Allen relations. The 
notion of the F-histogram is briefly described in Sect. 2. The way F-
histograms can be coupled with Allen relations using fuzzy set theory is 
examined in Sect. 3. Section 4 describes experiments on real data. It shows 
that the F-histograms associated with a given pair of objects carry lots of 
topological relationship information. An index to measure the complexity of 
the relationships in an arbitrary direction is developed in Sect. 5. This index 
will play an important role in the generation of linguistic descriptions. 
Conclusions are given in Sect. 6. 

2   F-Histograms 

As shown in Fig. 1, the plane reference frame is a positively oriented 
orthonormal frame (O, i , j ). For any real numbers α and v, the vectors iα 
and jα are the respective images of i and j  through the α-angle rotation, 
and ∆α(v) is the oriented line whose reference frame is defined by iα and 
the point of coordinates (0,v) — relative to (O,iα, jα). An object is a 
nonempty bounded set of points, E, equal to its interior closure 

1, and such 
that for any α and v the intersection Eα(v)=E∩∆α(v) is the union of a finite 
number of mutually disjoint segments. An object may have holes in it and 
may consist of many connected components. Eα(v) is a longitudinal 
section of E. Finally, T denotes the set of all triples (α,Eα(v),Gα(v)), where 
α and v are any real numbers and E and G are any objects.   

Now, consider two objects A and B (the argument and the referent), a 
direction θ and some proposition �AB(θ) like “A is after B in direction θ,”  
“A overlaps B in direction θ,”  or “A surrounds B in direction θ.”  We want 
to attach a weight to �AB(θ). To do so, the objects A and B are handled as 
longitudinal sections. 

                                                      
1    In other words, it is a 2D object that does not include any “grafting,”  such as an 

arc or isolated point. 
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•  For each v, the pair (Aθ(v),Bθ(v)) of longitudinal sections 
    is viewed as an argument put forward to support �AB(θ). 
•  A function F from T into IR + (the set of non-negative real numbers) 
    attaches the weight F(θ,Aθ(v),Bθ(v)) to this argument (Aθ(v),Bθ(v)). 
•  The total weight FAB(θ) of the arguments stated in favor of �AB(θ) 
    is naturally set to (Fig. 2):   FAB(θ) =  � −∞

+∞
 F(θ,Aθ(v),Bθ(v)) dv. 

 

The function FAB so defined is called the F−histogram associated with (A,B). 
It is one possible representation of the position of A with regard to B. 
F-histograms include f-histograms, which include ϕ-histograms, which 
themselves include force histograms (Matsakis 1998; Matsakis and 
Nikitenko, to appear). Most work has focused on force histograms 
(Matsakis 2002). Malki et al. (2002), however, use f-histograms 

2 to attach 
weights to the propositions � r  

A     B(θ) ≡ “A r B in direction θ,” where r 
belongs to the set {>, mi, oi, f, d, si, =, s, di, fi, o, m, <} of Allen relations 
(Fig. 3). But the thirteen f-histograms are not defined in a consistent 
manner and only convex objects are considered. The work of Malki et al. 
is discussed and revisited in a book chapter by Matsakis and Nikitenko (to 
appear). The F-histograms designed in that chapter are presented in Sect. 3.  

3   F-Histograms and Allen Relations  

Consider a set of mutually exclusive and collectively exhaustive relations 
between segments of an oriented line. F-histograms can be coupled with 
such relations using fuzzy set theory. We consider here the well-known set 
of Allen relations (Fig. 3). More details about the F-histograms described 
below can be found in (Matsakis and Nikitenko, to appear). 
 
 

 

A

B

v

 v)∆ (θ

 θ
 

Fig. 1. Oriented straight lines and 
longitudinal sections. Eα(v)=E∩∆α(v) 
is here the union of three segments. 

  Fig. 2.   The objects A and B are 
  handled as longitudinal sections:   
  FAB(θ) = � −∞

+∞  F(θ,A∩∆θ(v),B∩∆θ(v)) dv. 

                                                      
2  Although the authors rely on the research presented in (Matsakis 1998), they 

refer to these f-histograms as the histogram of spatial relations. In their public-
ations, they also use the term of orientation histogram instead of ϕ-histogram 
or force histogram. We do not subscribe to these changes in terminology. 
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     by)
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< (before) o (overlaps)
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     oi (overlapped
by)  

> (after)

=

 
Fig. 3.   Allen relations (Allen 1983) between two segments of an oriented line. 
The black segment is the referent, the gray segment is the argument. Two relations 
r1 and r2 are linked if and only if they are conceptual neighbors, i.e., r1 can be 
obtained directly from r2 by moving or deforming the segments in a continuous way. 

 
Let r denote an Allen relation, A and B two objects (convex or not), and 

θ a direction. To attach a weight to the proposition � r  
A     B(θ) ≡ “A r B in 

direction θ,” each pair (Aθ(v),Bθ(v)) of longitudinal sections is viewed as an 
argument put forward to support � r  

A     B(θ) (Sect. 2). A function Fr attaches 
the weight Fr (θ,Aθ(v),Bθ(v)) to this argument, and the total weight F r  

A      B(θ) 
of the arguments stated in favor of � r  

A     B(θ) is set to: 

 F r
AB(θ) = � −∞

+∞
 Fr (θ,Aθ(v),Bθ(v)) dv.  

The question, of course, is how to define Fr . Small changes in the 
longitudinal sections should not affect F r

AB(θ) significantly. Fuzzy set 
theoretic approaches have been widely used to handle imprecision and 
achieve robustness in spatial analysis. Allen relations are fuzzified in Sect. 
3.1 and longitudinal sections in Sect. 3.2. The last section, Sect. 3.3, 
defines the function Fr . 

3.1 Fuzzification of Allen Relations 

An Allen relation r can be fuzzified in many ways, depending on the intent 
of the work. For instance, Guesgen (2002) proceeds in a qualitative manner. 
Here, we proceed in a quantitative manner. The 13 Allen relations are 
fuzzified as shown in Fig. 4. Each relation, except =, is defined by the min 
of a few trapezoid membership functions. Let � be the set of all thirteen 
fuzzy relations. Three properties are worth noticing. First, for any pair (I,J) 
of segments, we have  Σr∈� r(I,J) = 1,  where r(I,J) denotes the degree to 
which the statement I r J is to be considered true. This, of course, comes 
from the definition of = (and it can be shown that = takes its values in 
[0,1]). Second, for any r in �, there exist pairs (I,J) such that r(I,J)=1. 
Lastly, for any pair (I,J) and any r1 and r2 in ��, if r1(I,J)≠0 and r2(I,J)≠0 
then r1 and r2 are direct neighbors in the graph of Fig. 3. 
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3.2   Fuzzification of Longitudinal Sections 

The idea is to consider 
that if two segments are 
close enough relative to 
their lengths, then they 
should be seen, to a 
certain extent, as a single 
segment. Let I be the 
longitudinal section Eθ(v) 
of some object E. Assume 
I is not empty. There 
exists one set { I i} i∈1..n 
(and only one) of mut-
ually disjoint segments 
such that:  I = ∪i∈1..n I i. 
The indexing can be 
chosen such that, for any 
i in 1..n−1, the segment 
I i+1 is after I i in direction 
θ. Let Ji be the open 
interval “between” I i and 
I i+1. The longitudinal sect-
ion I is considered a 
fuzzy set on ∆θ(v) with 
membership function µI. 
For any point M on any 
I i  , the value µI(M) is 1. 
For any point M on any 
Ji  , the value µI(M) is 
αi —and, initially, αi = 0. 
Fuzzification of I proc-
eeds by increasing these 
membership degrees αi. 
An example is presented 
in Fig. 5. Details can be 
found in (Matsakis and 
Nikitenko, to appear). 
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Fig. 4.   Fuzzified Allen relations between two 
segments I and J of an oriented line. Each rel-
ation, except =, is defined by the min of a few 
membership functions (one for <, >, m, mi, o, oi; 
three for s, si, f, fi; and two for d and di). x is the 
length of I (the argument), z is the length of J (the 
referent), a=min(x,z), b=max(x,z) and y is the 
signed distance from the end of J to the start of I. 

3.3   Coupling F-Histograms with Allen Relations 

Consider an Allen relation r and the longitudinal sections Aθ(v) and Bθ(v) of 
some objects A and B. We are now able to define the value Fr (θ,Aθ(v),Bθ(v)) 
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Fig. 5.   Fuzzification of a longitudinal section I.  (a) Membership function µI 
before fuzzification.  (b) Membership function after fuzzification. 
 
(see the introductory paragraph of Sect. 3). If Aθ(v)=∅ or Bθ(v)=∅ then 
Fr (θ,Aθ(v),Bθ(v)) is naturally set to 0. Assume Aθ(v)≠∅ and Bθ(v)≠∅. 
Assume r, Aθ(v) and Bθ(v) have been fuzzified as described in Sects. 3.1 
and 3.2. There exists a tuple (α0,α1,…,αc) of real numbers such that  
α0=0<α1<α2<…<αc=1 and { αk} k∈0..c={ µAθ(v)(M)} M∈∆θ(v) ∪ { µBθ(v)(M)} M∈∆θ(v)  
(the set of all membership values in the fuzzy sections Aθ(v) and Bθ(v)). 
For any k in 1..c, there exists one set { Ik i  } i∈1..mk of mutually disjoint 
segments such that the αk-cut  αk Aθ(v)  is equal to  ∪i∈1..mk I

k i  .  Likewise, 
there exists one set { Jk j  } j∈1..nk of segments such that  αk Bθ(v) = ∪j∈1..nk J

k j .  
For any i in 1..mk, the length of Ik i   is denoted by xk i  . For any j in 1..nk, the 
length of Jk j   is denoted by zk j  . The value Fr (θ,Aθ(v),Bθ(v)) is defined as  

3
 : 

Fr (θ,Aθ(v),Bθ(v)) = w

zx +
Σk∈1..c Σi∈1..mk Σj∈1..nk [x

k i   z
k j   (αk−αk−1)] r(I

k i  ,J
k j  ),    (1) 

with x = Σi∈1..mc xc i  , z = Σj∈1..nc z
c
 j   and w = Σk∈1..c  Σi∈1..mk Σj∈1..nk [xk i   z

k
 j  (αk−αk−1)].  

It can be shown that small changes in the longitudinal sections do not 
affect Fr (θ,Aθ(v),Bθ(v)) significantly (Matsakis and Nikitenko, to appear). 
Continuity is satisfied and, hence, robustness is achieved. Moreover, 
Σr∈� F r  

A     B(θ) measures to what extent the objects are involved in some 
spatial relationships along direction θ. If this information is judged 
unimportant, the Fr −histograms, of course, can be normalized. Let us 
denote by �F r  

A     B� the histogram F r  
A     B after normalization 

3
 : 

 ∀θ∈ IR  ,  �F r  
A     B� (θ) = F r  

A     B(θ) / Σρ∈� Fρ
A  

 
B(θ). (2) 

For a given direction θ, the normalized Fr −histograms define a fuzzy 13-
partition of the set of all object pairs, and each class of the partition 
corresponds to an Allen relation. 
                                                      
3   In Eqs. 1 and 2, we agree that a fraction is 0 if its denominator is 0. 
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4   Experiments 

In Figs. 6 and 7, a grayscale value is associated with each Allen relation 
(Fig. 6(a)). The thirteen normalized Fr −histograms that represent the 
extracted directional and topological relationship information are plotted in 
the same diagram (Fig. 6(b)). The topological relationships along direction 
θ (on the X-axis) are described by the vector composed of the thirteen 
�F r  

A     B� (θ) values (on the Y-axis). Usually, most of these values are zero. 
The histograms are arranged in “layers.” Several synthetic examples and 
histogram properties are presented in (Matsakis and Nikitenko, to appear). 

Figure 7 represents a sequence of National Weather Service Detroit / 
Pontiac Doppler radar images. The sequence, captured on June 26, 2001, 
shows a mayfly aerial courtship over St. Clair County, Michigan 
(http://www.crh.noaa.gov/dtx/mayfly.htm). The argument is the mayfly 
swarm (light gray) and the referent is St. Clair County (dark gray). In (a), 
only the relations before and after are present; the swarm is born. In (b), 
the swarm becomes an unconnected object. The fragments close to and 
at the county border are responsible for the introduction of the relations s, 
f, m, mi, o, oi, and d. In (c), the swarm has grown considerably and moved 
over the county. The relation during clearly dominates at θ ≈ 90° and θ ≈ 

270° with just a tiny bit of before and after caused by the single disjoint 
fragment below the county border. In (d), the relation equals becomes 
more prominent for the near horizontal directions θ ≈ 0° and θ ≈ 180°. 
Figure 7(e) shows that the only prominent relations are equals, during, 
starts, and finishes, which indicate that the swarm object is strictly 
contained by or is inner adjacent to the referent. Trace amounts of overlaps 
and overlapped by are still present, as the swarm object “spills over” the 
county boundary in some places. Note how before and after gradually 
diminishes as we progress from (a) to (e). Figure 7(f) demonstrates that 
Fr −histograms can handle highly irregular and unconnected objects. 

 

 
 
 (a) (b) 

Fig. 6.   (a) Allen relations and attached grayscale values. 
(b) An example of normalized Fr −histogram. 
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Fig. 7.   Mayfly mating sequence captured by Doppler radar and the correspond-
ing normalized Fr −histograms. 

5 Towards a Linguistic Description of the Topological 
Relationships 

Fr −histograms carry lots of topological relationship information. In (Matsakis 
et al. 2001), we used force histograms to generate a linguistic description 
of the relative position between two objects in terms of the four primitive 
directional relationships (“to the right of,” “above,” “to the left of,” 
“below”). In future work, we plan to generate a linguistic expression that 
describes the topological relationships between two objects in terms of the 
thirteen Allen relations. Consider the direction θ = 0° and the object pair of 
Fig. 7(d). Is the argument before or contained by (during) the referent? 
Does it start, finish, or overlap it? All of these relations are present to some 
degree, but which one(s) give(s) the best description of the topological 
relationships between the two objects? The generated linguistic description 

(a) 

(b) 

(c) 

(d) 

(e) 

 (f) 
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should be terse and, at the same time, capture the essence of the relat-
ionships. Ultimately, it will consist of (i) a topological component to depict 
the relationships in terms of the most prominent Allen relations, (ii) a 
directional component to provide, if relevant, the direction where these 
relations hold true, (iii) a self-assessment component to give an indication 
of how satisfactory the description is—or how ambiguous the config-
uration is. None of these components are independent of each other. In this 
section, we focus our discussion on computing a satisfactory index for an 
arbitrary direction based on the Allen relations present along that direction. 

5.1   Coherent Sets of Allen Relations and Satisfactory Indices 

A linguistic expression like “A is before B in direction θ”  might not 
describe satisfactorily a given configuration (another Allen relation might 
capture better the essence of the topological relationships between the two 
objects; the configuration might be ambiguous), but it certainly sounds 
coherent (it is easy to picture two such objects A and B). Although more 
complex, “A is mostly before but partially meets and overlaps B in 
direction θ”  might also sound coherent to the reader. Three Allen relations 
are involved in this expression, but they do not semantically contradict 
each other. “A contains and is after B in direction θ”  might seem less 
coherent. Whether a description sounds coherent or not is, of course, a 
subjective matter. Let us now formalize this discussion. 

5.1.1   Coherent Sets of Allen Relations 

We will say that a set of Allen relations is coherent iff it belongs to some 
subset C of the power set 2�. The relations within a coherent set are 
considered not to semantically contradict each other and, therefore, might 
be used together in a linguistic description. Here are 3 possible choices for C: 

C1 = ∪r∈� { { r} }  (3) 
C2 = C1 ∪ { { r, r'} ⊂� | δrr' = 1}  (4) 
C3 = C2 ∪ { { r, r', r"} ⊂� | δrr' = δrr" = δr'r" = 1}  (5) 

 

In these formulas, δrr' denotes the conceptual distance between r and r'. It 
is the length of the shortest path between r and r' in the graph of Fig. 3. For 
instance, δmm =0, δmo =1 and δmf  =3. The set C1 contains 13 singletons: { < } , 
{ m} , { o} , etc. By choosing C=C1, we indicate that, in our opinion, 
coherent descriptions cannot involve more than one Allen relation. 
Therefore, an expression like “A is mostly before but partially meets B in 
direction θ”  should not be produced by the system for linguistic 
description generation. The set C2 includes C1 and contains all pairs of 
neighbor relations (like { < , m} , but not { di, > } ). In the case where C=C2, 
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the above-mentioned expression might be generated. “A contains and is 
after B in direction θ,” on the other hand, will be rejected by the system. 
C3 also contains elements like {s, d, eq} (but not {s, d, f}). There are, of 
course, other possible choices for C. It seems reasonable to state that C 
should not contain the empty set and should include C1. 

5.1.2   Satisfactory Indices 

Several linguistic expressions can be associated with the same coherent set of 
Allen relations. For instance, “A is before B in direction θ” and “A is mostly 
before B in direction θ” are both associated with {<} (we will not discuss 
here the problem of finding the most appropriate expression). Again, such 
descriptions might be coherent, but not satisfactory for the configuration in 
hand. For any relation r, let vr denote the value �F r  

A     B�(θ). Here is the 
simplest way to attach a satisfactory index σ{r} to the coherent set {r} (i.e., 
to the most appropriate description associated with {r}):  σ{r} = vr . One might 
argue, however, that σ{<} should be higher when v< = 0.7 and vm = 0.3 
(before and meets coexist) than when v< = 0.7 and v> = 0.3 (before and 
after coexist).  σ{r} = max (0, vr − Σρ∈�−{r} (δρr /6) vρ)  is another way to 
define a satisfactory index. Note that 6 is the maximum possible conc-
eptual distance between two Allen relations. Any relation ρ that coexists 
with r makes σ{r} decrease, and the higher its distance to r, the bigger the 
decrease. σ{r} belongs to the interval [0,1]. It is 1 if and only if vr is 1 (r is 
the only relation present), and cannot be 0 if vr is greater than 0.5. 
Generalization is easy, and a satisfactory index σc can be attached to any 
coherent set c of Allen relations. Here are two possible definitions: 

 σc = Σ r∈c vr , (6) 
 σc = max (0, Σ r∈c vr − Σρ∈�−c (δρc /6) vρ) (7) 
 

In Eq. 7,  δρc denotes a weighted average conceptual distance between the 
Allen relation ρ and the coherent set c:  δρc = (Σr∈c vr δρr) / Σr∈c vr . The index 
σc is a continuous function of all the vr values. Moreover, if c = c'∪{r0} 
with c' another coherent set and r0 such that vr0 = 0, then σc = σc'. The 
transition between different coherent sets is also continuous. 

5.2   Examples and Future Work 

Consider the object pair in Fig. 7(d) and the direction θ = 0°. Table 1 
shows the highest satisfactory index for two different definitions of σc 
(Eqs. 6 and 7) and three different choices of C (Eqs. 3 to 5). Here, both 
definitions agree. In direction θ = 0°, if the topological relationships 
between the swarm and the county had to be described by exactly one 
Allen relation, that relation should be equals. The description, however,  
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TABLE 1. 
Highest satisfactory index for the object pair in Fig. 7(d) and the direction θ = 0°. 

 

σc defined by Eq. 6  σc defined by Eq. 7 
C  maxc∈C σc argmaxc∈C σc  C  maxc∈C σc argmaxc∈C σc 
C1 
C2 
C3 

0.373 
0.541 
0.687 

{eq} 
{eq , f} 

{eq , f , d} 

 C1 
C2 
C3 

0.247 
0.426 
0.595 

{eq} 
{eq , f} 

{eq , f , d} 

 
would not be very satisfactory. A better description would be obtained if 
equals, finishes and during were considered not to semantically contradict 
each other. As expected, Eq. 7 gives lower values than Eq. 6 due to the 
negative influence of the relations outside of the winning coherent sets. 

Much work remains to be done before we can generate a linguistic 
description that captures the essence of the topological relationships 
between two complex objects in terms of the thirteen Allen relations. First, 
we intend to find a direction where a description would be most 
representative. Intuitively, the direction θ0 we seek maximizes both the 
highest satisfactory index maxc∈C σc(θ) and the degree Σr∈� F r  

A     B(θ) of 
object interaction. The linguistic expression generated by the system will 
involve the Allen relations comprising c0, the coherent set that maximizes 
σc(θ0). A fuzzy rule base will be used to produce the most appropriate 
expression given the values �F r  

A     B�(θ0). Finally, the self-assessment comp-
onent of the description will be derived from the satisfactory index σc0(θ0).  

6   Conclusions 

The F-histogram is a powerful generic quantitative representation of the 
relative position between two 2D objects. In this paper, we have 
considered Fr −histograms, which are dedicated to the extraction of 
directional and topological relationship information. Imprecision is 
handled and robustness achieved through fuzzy set theoretic approaches. 
For any direction in the plane, the Fr −histograms define a fuzzy 13-
partition of all object pairs, and each class of the partition corresponds to an 
Allen relation. The objects are not necessarily convex, nor connected, and 
their geometry is not approximated through, e.g., Minimum Bounding 
Rectangles. Experiments on real data have shown that Fr −histograms carry 
lots of topological relationship information. An index to measure the 
complexity of the relationships in an arbitrary direction has been developed. 
This index will play an important role in the generation of linguistic 
descriptions that capture the essence of the topological relationships 
between regions in terms of the Allen relations.  
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