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Abstract.   The importance of topological and directional relationships between spatial 
objects has been stressed in different fields, notably in Geographic Information Systems 
(GIS). In an earlier work, we introduced the notion of the F-histogram, a generic 
quantitative representation of the relative position between two 2D objects, and showed 
that it can be of great use in understanding the spatial organization of regions in images. 
Here, we illustrate that the F-histogram constitutes a valuable tool for extracting 
directional and topological relationship information. The considered objects are not 
necessarily convex and their geometry is not approximated through, e.g., Minimum 
Bounding Rectangles (MBRs). The F-histograms introduced in this chapter are coupled 
with Allen’s temporal relationships based on fuzzy set theory. Allen’s relationships are 
commonly extended into the spatial domain for GIS purposes, and fuzzy set theoretic 
approaches are widely used to handle imprecision and achieve robustness in spatial 
analysis. For any direction in the plane, the F-histograms define a fuzzy 13-partition of the 
set of all object pairs, and each class of the partition corresponds to an Allen relation. Lots of 
directional and topological relationship information as well as different levels of refinements 
can be easily obtained from this approach, in a computationally tractable way. 

Keywords.   F-histograms, Allen relations, spatial relations, spatial analysis, Geographic 
Information Systems, fuzzy sets. 

1   Introduction 

Space plays a fundamental role in human cognition. In everyday situations, it is 
often viewed as a construct induced by spatial relations, rather than as a container 
that exists independently of the objects located in it. A variety of formalisms 
developed in Artificial Intelligence naturally deal with space on the basis of 
relations between objects. Geographic Information Systems constitute a wide area 
of applications for such formalisms. Many authors, from different fields, have 
stressed the importance of topological (Allen 1983; Clementini and Di Felice 



1997; Cohn et al. 1997; Kuipers 1978) and directional relationships (Bloch 1999; 
Dutta 1991; Krishnapuram et al. 1993; Kuipers and Levitt 1988). Work in the 
modeling of these relationships for GIS is often based on an extension into the 
spatial domain of Allen’s temporal relationships (Allen 1983). A common 
procedure is to approximate the geometry of spatial objects by Minimum 
Bounding Rectangles (Clementini et al. 1994; Nabil et al. 1995; Sharma and 
Flewelling 1995). A 2D object is then represented as a set of two perpendicular 
1D segments and relationships between objects are inferred from relationships 
between segments. To enhance querying and improve accuracy in relationship 
determination, however, several alternatives and refinements have been proposed. 
In (Petry et al. 2002), for instance, MBRs are partitioned into sets of rectangles. 
Such partitioning results in a finer approximation of the object’s true geometry, 
called Multiple Rectangle Representation. 

The need to handle imprecise and uncertain information concerning spatial 
data has been widely recognized in recent years, e.g., (Goodchild and Gopal 
1990), and there has been a strong demand in the field of GIS for providing 
approaches that deal with such information. Humans often deal with space on a 
qualitative basis, allowing for imprecision in spatial descriptions when interacting 
with each other. Qualitative spatial reasoning, a subfield of AI, aims at modeling 
commonsense knowledge of space (Cohn 1995). Computational approaches for 
spatial modeling and reasoning, however, can benefit from more quantitative 
measures. For instance, qualitative composition of positional relations, if iterated 
over a path of several intermediate positions, introduces too much indeterminacy 
in the result. The problem can be addressed by coupling qualitative with fuzzy, 
semi-quantitative knowledge (Clementini 2002). As many authors early 
emphasized, fuzzy approaches are of great interest for spatial modeling and reas-
oning (Dutta 1991; Freeman 1975; Robinson 1988; Wang et al. 1990). Research on 
fuzzy sets and GIS is very active. A recent special issue of Fuzzy Sets and Systems 
(Cobb et al. 2000), for instance, touches on topics as varied as fuzzy objects for 
GIS, fuzzy spatial queries and landform classification with fuzzy k-means. 

In earlier publications, we introduced the notion of the F-histogram (Matsakis 
1998; Matsakis and Wendling 1999). It is a generic quantitative representation of 
the relative position between two 2D objects. It encapsulates structural 
information about the objects as well as information about their spatial 
relationships. It is sensitive to the shape of the objects, their orientation and their 
size. It is also sensitive to the distance between them. Moreover, the F-histogram 
enables the handling of intersecting, concave, non-connected, unbounded, fuzzy 
objects as well as of disjoint, convex, bounded, crisp objects. Most work focused 
on particular F-histograms called force histograms. These histograms offer solid 
theoretical guarantees and nice geometric properties (Matsakis et al., to appear). 
They ensure fast and efficient processing of vector data (Skubic et al. 2003) as 
well as of raster data (Matsakis et al. 2001). Numerous applications have been 
studied, and new applications continue to be explored. For instance, the histogram 
of forces lends itself, with great flexibility, to the definition of fuzzy spatial 



relations. The fuzzy directional relations described in (Matsakis et al. 2001) 
preserve important relative position properties and can provide inputs to systems 
for linguistic scene description. One such system has been developed and 
dedicated to human-robot communication (Skubic et al. 2003). Reference 
(Matsakis 2002) reviews and classifies work on the histogram of forces. It shows 
that the notion of the F-histogram can be of great use in understanding the spatial 
organization of regions in images. 

The aim of this chapter is to illustrate that the F-histogram, because of its 
general properties, constitutes a valuable tool for extracting directional and 
topological relationship information from two objects. The objects considered here 
are 2D, crisp, bounded objects, but they are not necessarily convex, nor connected, 
and they may have holes in them. Their geometry is not approximated through, 
e.g., centroids, MBRs or convex hulls. The F-histograms described in the present 
work are coupled with Allen relations using fuzzy set theory. Obviously, the set of 
Allen relations does not allow all possible topological relationships between 2D 
concave objects to be described. However, it is a well-known set, of reasonable 
size, which has been extensively used. For any oriented line, ∆, the Allen relations 
define a crisp 13-partition of the set of pairs of segments on ∆. For any direction, 
θ, the F-histograms introduced here define a fuzzy 13-partition of the set of all 
object pairs, and each class of the partition corresponds to an Allen relation. Lots of 
directional and topological relationship information as well as different levels of 
refinements can be easily obtained from this approach, in a computationally 
tractable way. The notion of the F-histogram is described in Section 2 and the way 
F-histograms are coupled with Allen relations is examined in Section 3. Preliminary 
experiments validate the approach in Section 4 and conclusion is given in Section 5.  

2   When Pairs of 2D Objects 
     Are Handled as Pairs of 1D Sections 

We describe here the notion of the F-histogram (Section 2.2), which was 
introduced in an earlier work (Matsakis 1998; Matsakis and Wendling 1999). F-
histograms include f-histograms (Section 2.3) and f-histograms include ϕ-
histograms (Section 2.4). Most of the previous research has focused on force 
histograms, which are particular ϕ-histograms and have shown to be of great use 
in understanding the spatial organization of image objects (Section 2.5). First of 
all, we go over some terms and introduce a few notations (Section 2.1). 

2.1   Terminology and Notations   

As shown in Fig. 1, the plane reference frame is a positively oriented orthonormal 
frame (O, i , j ).  For any real numbers α and v, the vectors iα  and jα are the 



respective images of i and j  through the α-angle rotation, and ∆α(v) is the 
oriented line whose reference frame is defined by iα and the point of coordinates 
(0,v) — relative to (O,iα, jα).  The term object denotes a nonempty bounded set of 
points, E, equal to its interior closure 1, and such that for any α and v the 
intersection E∩∆α(v) is the union of a finite number of mutually disjoint 
segments.  Note that an object may have holes in it and may consist of many 
connected components. The intersection E∩∆α(v), denoted by Eα(v), is a 
longitudinal section of E. Finally, the symbol T denotes the set of all triples 
(α,Eα(v),Gα(v)), where α and v are any real numbers and E and G are any objects.   

 

 

Fig. 1.   Oriented straight lines and longitudinal sections.  Here, Eα(v)=E∩∆α(v) is the 
union of three disjoint segments. 

2.2   F−−−−Histograms 

Consider two objects A and B (the argument and the referent), a direction θ and 
some proposition �AB(θ) like “A is after B in direction θ,”  “A overlaps B in dir-
ection θ,”  or “A surrounds B in direction θ.”  We want to attach a weight to �AB(θ). 
To do so, the objects A and B are handled as longitudinal sections (Fig. 2). 

 
- For each v, the pair (Aθ(v),Bθ(v)) of longitudinal sections is viewed as an 

argument put forward to support �AB(θ). 
- A function F from T into IR + (the set of non-negative real numbers) attaches 

the weight F(θ,Aθ(v),Bθ(v)) to this argument (Aθ(v),Bθ(v)). 
- The total weight FAB(θ) of the arguments stated in favor of �AB(θ) is 

naturally set to: 

FAB(θ) =  � −∞
+∞

 F(θ,Aθ(v),Bθ(v)) dv. 
 

- If the domain of the function F 
AB so defined is all of IR    (the set of real 

numbers), then F 
AB is called the F−histogram associated with (A,B). This 

histogram, which is a periodic function with period 2π, is one possible 
representation of the position of A with regard to B. 

                                                           
1  In other words, it is a 2D object that does not include any “grafting,”  such as an arc or 

isolated point. 
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Fig. 2.   The objects are handled as longitudinal sections: 

FAB(θ) = � −∞
+∞  F(θ,A∩∆θ(v),B∩∆θ(v)) dv.  

2.3   f−−−−Histograms 

There exists one set { I i} i∈1..n of mutually disjoint segments (and only one) such 
that Aθ(v) = ∪i∈1..n I i . Likewise, there exists one set { Jj} j∈1..m of segments such that 
Bθ(v) = ∪j∈1..m Jj . The function F, in charge of the longitudinal sections, might 
delegate the handling of these segments to some function f, from IR + ×IR  × IR +  into 
IR + (Fig. 3). The case is described below. 
 

- Each (I i,Jj) is considered an argument put forward to support the proposition 
�

AB(θ). 
- The function f attaches the weight f(xIi , y

 θ 
I i Jj , xJj) to this argument (I i,Jj)—

where xIi and xJj denote the lengths of I i and Jj , and where y 
θ 
I i  Jj  characterizes 

the relative position of I i and Jj on ∆θ(v) (Fig. 4). 
- F(θ,Aθ(v),Bθ(v)) is naturally set to the sum of the weights f(xIi , y 

θ 
I i Jj , xJj) of 

all the (I i,Jj) arguments:    F(θ,Aθ(v),Bθ(v)) = Σ i∈1..n, j∈1..m  f(xIi , y 
θ 
I i Jj ,  xJj). 

- FAB can then be renamed f 
AB and called the f−histogram associated with (A,B).   
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Fig. 3.   The function F, in charge of the longitudinal sections, might delegate the handling 
of segments to some function f:   F(θ,A∩∆θ(v),B∩∆θ(v)) = f(x1,y1,x) + f(x2,y2,x).
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Fig. 4.   A pair (I,J) of segments on an oriented line ∆θ(v) and the values attached to it. 

2.4   ϕϕϕϕ−−−−Histograms 

In turn, f, which is in charge of the pairs (I,J) of segments, might delegate the 
handling of points to another function ϕ, from IR   into IR + (Fig. 5). The case is 
described below. 
 

- Each (M,N), with M in I and N in J, is considered an argument put forward 
to support the proposition �AB(θ). 

- The function ϕ attaches the weight ϕ(u−w) to this argument (M,N)—where 
u and w specify the location of M and N on ∆θ(v) and u−w characterizes the 
relative position of these points on ∆θ(v) (Fig. 5). 

- f(xI, y 
θ 
I  J , xJ) is naturally set to the sum of the weights ϕ(u−w) of all the 

(M,N) arguments:  

  f(xI, y 
θ 
I  J , xJ)  =  ( �0

x J ϕ(u−w) dw) du. 

Note that: 

J
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I
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u

w
ϕ(u−w)du)dw,  

where u 
θ 
I  , w 

θ 
I  , u 

θ 
J   and w 

θ 
J   represent the coordinates of the ends of the two 

segments I and J (Fig. 4). 
- f  

AB (or FAB) can then be renamed ϕAB and called the ϕ−histogram 
associated with (A,B).   
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Fig. 5.   The function f, in charge of the segments, might delegate the handling of points like 
M and N to some function ϕ:    f(x,y,z) =  � y z

x y z
+
+ + ( � 0

z  ϕ(u−w) dw) du.
 

2.5   Force Histograms vs. Other F-Histograms 

In most previous work, the considered proposition �AB(θ) is “A is in direction θ of 
B” (i.e., “A is after B in direction θ”) and the F-histograms are ϕr-histograms, 
where r is a real number and ϕr is the function from IR   into IR +  defined by:  

 
∀d∈IR  ,  d≤0 � ϕr(d)=0    and     d>0 � ϕr(d)=1/dr . 

 
The value ϕ r 

A    B(θ) can be seen as the scalar resultant of elementary forces. These 
forces are exerted by the points of A on those of B, and each tends to move B in 
direction θ (Fig. 6). The mapping ϕr defines the force fields. As an example, 
gravitational force fields can be represented by ϕ2. This is according to Newton’s 
law of gravity, which states that every particle attracts every other particle with a 
force inversely proportional to the square of the distance (i.e., d) between them.  
The argument A and the referent B can then be seen as flat metal plates of uniform 
density and constant and negligible thickness. A ϕr-histogram is called a histogram 
of forces. It offers solid theoretical guarantees and nice geometric properties. 
Numerous applications have been studied, and new applications continue to be 
explored.  Reference (Matsakis 2002) reviews and classifies work on the histogram 
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Fig. 6.   Force histograms.  (a) ϕ r
A B(θ) is the scalar resultant of elementary forces (black 

arrows).  Each one tends to move B in direction θ.  (b) The histogram of gravitational forces 
associated with (A,B) is one possible representation of the position of A relative to B.   

ϕ2
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of forces. It touches on varied topics, such as the modeling of spatial relations, 
spatial indexing mechanisms for medical image databases, pattern recognition, 
scene matching, linguistic scene description and human-robot communication.  

As said above, most work on F-histograms has focused on force histograms. 
The use of f-histograms that are not ϕ-histograms, however, was suggested in 
(Matsakis 1998) for the handling of convex objects. The use of F-histograms that 
are not f-histograms was suggested in (Matsakis and Andréfouët 2002) with the 
aim of attaching a weight to the proposition �AB(θ) ≡ “A surrounds B in direction 
θ.”  Malki et al. (2002) consider the propositions � r  

A     B(θ) ≡ “A r B in direction θ,”  
where r belongs to the set { >, mi, oi, f, d, si, =, s, di, fi, o, m, <}  of Allen relations 
(Fig. 7). For instance, � >  

A     B(θ) is “A is after B in direction θ”  and � o  
A     B(θ) is “A 

overlaps B in direction θ.”  To attach a weight to these propositions, the authors 
rely on the research presented in (Matsakis 1998) and propose the use of f-
histograms. The thirteen f-histograms are defined by the following functions: 

 
� if y>0 then f>(x,y,z)=y/(x+y+z) 

else f>(x,y,z)=0 
 

� if y=0 then fmi\(x,y,z)=1 
else fmi\(x,y,z)=0 

 

� if (y<0 and x+y>0 and y+z>0) then foi\(x,y,z)=−y(1/x+1/z) 
else foi\(x,y,z)=0 

 

� if (y<0 and x+y>0 and y+z=0) then fsi (x,y,z)=z/x 
else fsi (x,y,z)=0 

 

� if (y<0 and x+y>0 and y+z<0) then fdi\(x,y,z)=z/x 
else fdi\(x,y,z)=0 

 

� if (y<0 and x+y=0 and y+z>0) then ff\ (x,y,z)=x/z 
else ff\ (x,y,z)=0 

 

� if (y<0 and x+y=0 and y+z=0) then f=(x,y,z)=x 
else f=(x,y,z)=0 

 

� if (y<0 and x+y=0 and y+z<0) then ffi (x,y,z)=z/x 
else ffi (x,y,z)=0 

 

� if (y<0 and x+y<0 and y+z>0) then fd\(x,y,z)=x/z 
else fd\(x,y,z)=0 

 

� if (y<0 and x+y<0 and y+z=0) then fs\(x,y,z)=x/z 
else fs\(x,y,z)=0 

 

� if (y<0 and x+y<0 and y+z<0 and x+y+z>0) then fo(x,y,z)=(x+y+z)(1/x+1/z) 
else fo(x,y,z)=0 

 

� if (y<0 and x+y<0 and y+z<0 and x+y+z=0) then fm(x,y,z)=1 
else fm(x,y,z)=0 

 

� if (y<0 and x+y<0 and y+z<0 and x+y+z<0) then f<(x,y,z)=y/(x+y+z) 
else f<(x,y,z)=0 



Only convex objects are actually considered. Moreover, there is no real 
consistency between the fr functions and, hence, between the fr−histograms. For 
instance, the function f> , which is continuous on its domain and whose range is 
[0,1], defines a fuzzy relation between aligned segments. The function fsi  also 
defines a fuzzy relation between aligned segments; it is not, however, continuous 
on its domain; its range is [0,1). The function fmi defines a crisp relation; its range 
is {0,1}. The function foi defines neither a crisp nor a fuzzy relation; its range is 
[0,2). In this chapter, we revisit the work of Malki et al. Note that, in their public-
ations, the authors refer to the set of thirteen fr−histograms as the histogram of 
spatial relations. They also use the term of orientation histogram instead of ϕ-
histogram. We do not subscribe to these changes in terminology. 
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Fig. 7.   Allen relations (Allen 1983) between two segments on an oriented line. The black 
segment is the referent, the gray segment is the argument. Two relations r1 and r2 are linked 
if and only if they are conceptual neighbors (Freksa 1992), i.e., r1 can be obtained directly 
from r2 by moving or deforming the segments in a continuous way. 

3   When F-Histograms Are Coupled With 
     Allen Relations Using Fuzzy Set Theory 

Consider an Allen relation r, two objects A and B (convex or not) and a direction 
θ. The goal of this chapter is to attach an appropriate weight to the proposition 
� r  

A     B(θ) ≡  “A r B in direction θ” (see Section 2.5). As discussed in Section 2.2, 
each pair (Aθ(v),Bθ(v)) of longitudinal sections will be viewed as an argument put 
forward to support � r  

A     B(θ). A function Fr will attach the weight Fr (θ,Aθ(v),Bθ(v)) 
to this argument and the total weight F  r  

A      B(θ) of the arguments stated in favor of 
� r  

A     B(θ) will be set to: 
 

F r  
A     B(θ) = � −∞

+∞
 Fr (θ,Aθ(v),Bθ(v)) dv. 

 
The question, therefore, is how to define Fr . Let us describe a very simple idea. 
Consider two segments I and J on an oriented line. We have either IrJ or ¬(IrJ). 
The first case can be rewritten r(I,J)=1 and the second case r(I,J)=0. Now, assume 



the oriented line is ∆θ(v) and I and J are the longitudinal sections Aθ(v) and Bθ(v). 
There exists one set { I i} i∈1..m of mutually disjoint segments such that:  I = ∪i∈1..m I i. 
Likewise, there exists one set { Jj} j∈1..n of segments such that:  J = ∪j∈1..n Jj. We 
could extend the thirteen Allen relations between segments to relations between 
longitudinal sections and say that r(I,J)=1 (i.e., Fr (θ,Aθ(v),Bθ(v)=1) if and only if 
there exist two segments I i and Jj such that r(I i,Jj)=1 (and r(I,J)=0 otherwise). The 
idea, obviously, is not very satisfactory. For instance, as shown by Figs. 8 to 10, 
small changes in the longitudinal sections could affect their relationships 
significantly. As mentioned in Section 1, fuzzy set theoretic approaches have been 
widely used to handle imprecision and achieve robustness in spatial analysis. The 
issue raised by Fig. 8 is addressed in Section 3.1 by fuzzifying the thirteen Allen 
relations. The issue raised by Fig. 9 is addressed in Section 3.2 by fuzzifying the 
longitudinal sections. Section 3.3 addresses the last issue (Fig. 10) and defines the 
function Fr .  
 

I
J

 

Fig. 8.   A single pixel at the end of one segment might change the relationships 
significantly. We may have  ( >(I,J)=1 and mi (I,J)=0 and oi (I,J)=0 )  or  ( >(I,J)=0 and 
mi (I,J)=1 and oi (I,J)=0 )  or  ( >(I,J)=0 and mi (I,J)=0 and oi (I,J)=1 ). 

 

 (a)     I
J

  (b)     I
J

 

Fig. 9.   A missing pixel in the middle of one segment might change the relationships signif-
icantly.  (a) mi (I,J)=0 and oi (I,J)=1 and d (I,J)=0.  (b) mi (I,J)=1 and oi (I,J)=0 and d (I,J)=1. 

(a)    I
J

  (b)    I

J

 

Fig. 10.   A single pixel lost in the middle of nowhere might change the relationships 
significantly.  (a) >(I,J)=1 and <(I,J)=0.  (b) >(I,J)=1 and <(I,J)=1. 

3.1   Fuzzification of Allen Relations 

An Allen relation r can be fuzzified in many ways, depending on the intent of the 
work. Guesgen (2002), for instance, proceeds in a qualitative manner. Let (I,J) be 
a pair of segments and let r’  be the only (crisp) Allen relation such that I  r’J. 
Denote by r(I,J) the degree to which the statement IrJ is to be considered true. 
r(I,J) is chosen as a decreasing function of the conceptional distance between r 
and r’  (i.e., of the distance between r and r’  on the graph shown in Fig. 7). Only a 
few membership values—which are to be provided by the user—can therefore be 
taken. Here, we proceed in a quantitative manner. Let α, β, γ and δ be four real 
numbers such that α<β≤γ<δ and let µ(α,β,γ,δ) be the trapezoid membership function 
defined on the set of real numbers by: 

 



 

µ(α,β,γ,δ)(u) = max(min( ��
�u

-

-
,1, ��

u
�

-

-
),0) 

 

The support of the corresponding fuzzy set is the open interval (α,δ) and the core 
is [β,γ]:  µ(α,β,γ,δ)(u) ≠ 0 ⇔ u∈(α,δ)  and  µ(α,β,γ,δ)(u) = 1 ⇔ u∈[β,γ]. The thirteen 
Allen relations are fuzzified as shown in Fig. 11. Each relation, except =, is 
defined by the min of a few trapezoid membership functions. For instance, the 
fuzzy relation mi associates with each pair (I,J) of segments the value 
   

mi(I,J) = µ(−a/2,0,0,a/2)(y) 
   
and the relation f associates with each (I,J) the value 
   

f(I,J) = min (µ(−3a/2,−a,−a,−a/2)(y), µ(−(b+a)/2,−a,−a,+∞)(y), µ(−∞,z/2,z/2,z)(x)). 
   
Notations are as described in the caption of Fig. 11. Let � be the set of all thirteen 
fuzzy relations. Three properties are worth noticing. First, for any pair (I,J), we 
have:  Σr∈� r(I,J) = 1.  This, of course, comes from the definition of = (and it can 
be shown that = takes its values in [0,1]). Second, for any r in ��, there exist pairs 
(I,J) such that r(I,J)=1. Lastly, for any pair (I,J) and any r1 and r2 in ��, if r1(I,J)≠0 
and r2(I,J)≠0 then r1 and r2 are direct neighbors in the graph of Fig. 7. 

3.2   Fuzzification of Longitudinal Sections 

In this section, we address the issue raised by Fig. 9. The idea is to consider that if 
two segments are close enough relative to their lengths, then they should be seen, 
to a certain extent, as a single segment. Let I be the longitudinal section E∩∆θ(v) 
of some object E. Assume I is not empty. There exists one set {Ii}i∈1..n of mutually 
disjoint segments (and only one) such that:  I = ∪i∈1..n Ii. The indexing can be 
chosen such that, for any i in 1..n−1, the segment Ii+1 is after Ii in direction θ. Let Ji 
be the open interval H(Ii∪Ii+1)−Ii∪Ii+1, where H(Ii∪Ii+1) denotes the convex hull of 
Ii∪Ii+1, i.e., the smallest segment that contains both Ii and Ii+1. The longitudinal 
section I is considered a fuzzy set on ∆θ(v). Its membership function is µI and its 
α-cut is αI. For any point M on any Ii , the value µI(M) is 1. For any point M on 
any Ji , the value µI(M) is αi —and, initially, αi = 0. The algorithm presented in 
Fig. 12 fuzzifies I by increasing these membership degrees αi. An illustration of 
the fuzzification process is presented in Fig. 13. Note that the maximum number 
of iterations of the while loop is n.  
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Fig. 11.   The thirteen fuzzified Allen relations between two segments I and J on an 
oriented line. Each relation, except =, is defined by the min of a few membership functions 
(one for <, >, m, mi, o, oi; three for s, si, f, fi, d and di). x is the length of I (the argument), z 
is the length of J (the referent), a is min(x,z), b is max(x,z) and y characterizes the position 
of I relative to J (see Fig. 4).  



 
c ← 0; 
α ← 1; 
while α > 0 do 

%--------------- There exists one set {I
c
 i }i∈1..nc of 

mutually disjoint segments (and only one) such that:  

αI = ∪i∈1..nc I
c
 i  . For any i and any j in 1..nc, with i≠j, 

the length of I
c
 i  is denoted by x

c
 i  and the distance 

between I
c
 i  and I

c
 j  is denoted by d

c
 i j. -----------------%  

for any i in 1..nc−1 do 
for any j in i+1..nc do 

β ← α(1− dc i j/min(x
c
 i ,x

c
 j )); 

for any k in 1..n−1 do 
if Jk ⊂ H(Ic i   ∪ I

c
 j ) then αk ← max{αk,β}; 

endif; 
endfor; 

endfor; 
endfor; 

α ← max {αk}k∈1..n−1 ∩ [0,α); 
c ← c+1; 

endwhile; 

 

Fig. 12.   Algorithm for the fuzzification of a longitudinal section I. The symbol H(I  

c
i ∪I  

c
j ) 

denotes the convex hull of I  

c
i ∪I  

c
j . The indexing is chosen such that the segments I  

c
i  and I  

c
i +1 

are consecutive in I. The algorithm increases the membership degrees αk associated with 
the open intervals Jk = H(I  

0
k ∪I  

0
k +1)−I  

0
k ∪I  

0
k +1 (initially, all αk values are zero). 

3.3   Coupling F-Histograms with Allen Relations 

Consider an Allen relation r and the longitudinal sections Aθ(v) and Bθ(v) of some 
objects A and B. We are now able to define the value Fr (θ,Aθ(v),Bθ(v)) (see the 
introductory paragraph of Section 3). If Aθ(v)=∅ or Bθ(v)=∅ then Fr (θ,Aθ(v),Bθ(v)) 
is naturally set to 0. Assume Aθ(v)≠∅ and Bθ(v)≠∅. Assume Aθ(v), Bθ(v) and r 
have been fuzzified as described in Sections 3.1 and 3.2. There exists a tuple 
(α0,α1,…,αc) of real numbers such that α0=0<α1<α2<…<αc=1 and { αk} k∈0..c = 
{ µAθ(v)(M)} M∈∆θ(v) ∪ { µBθ(v)(M)} M∈∆θ(v) (the set of all membership values in the 
fuzzy sections Aθ(v) and Bθ(v)). For any k in 1..c, there exists one set { Ik i  } i∈1..mk of 
mutually disjoint segments such that:  αk Aθ(v) = ∪i∈1..mk I

k i  . Likewise, there exists 
one set { Jk i  } i∈1..nk of segments such that:  αk Bθ(v) = ∪i∈1..nk J

k i  . For any i in 1..mk, 
the length of Ik i   is denoted by xk i  . For any i in 1..nk, the length of Jk i   is denoted by zk i  . 
The value Fr (θ,Aθ(v),Bθ(v)) is defined as follows: 

 
 Fr (θ,Aθ(v),Bθ(v)) = Σk∈1..c Σi∈1..mk Σj∈1..nk [x

k i   z
k j   (αk−αk−1)] r(I

k i  ,J
k j  ). (1) 
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Fig. 13.   Fuzzification of a longitudinal section I using the algorithm given in Section 3.2. 
Here, I is the union of five segments (n=5). Its membership function µI is plotted in (a). We 
have: x

0
 1   = 1 (length of I

0
 1  ), x

0
 2   = 8, x

0
 3   = 1/2, x

0
 4   = 6, x

0
 5   = 10, d0 1  2 = 3 (distance between I

0
 1   and I

0
 2  ), 

d
0
 2  3 = 1, d

0
 3  4 = 1/2, d

0
 4  5 = 5. At the end of the first iteration of the while loop, µI is as shown 

in (b). It has been modified because of two pairs of segments: (I
0
 2   , I

0
 4   ) and (I0 4   ,I

0 5   ). At the end 
of the second iteration, µI is as shown in (c). It has been modified again, because of (I

1
 2   , I

1
 3   ). 

The third and last iteration does not bring any changes. The fuzzified longitudinal section is 
therefore defined by the membership function plotted in (c). 

 

The issues raised by Figs. 8 to 10 are solved. For instance, since r(Ik i  ,J
k
 j  ) is 

weighted by xk i   and z
k
 j , the emergence of a segment as in Fig. 10 has no significant 

impact on Fr (θ,Aθ(v),Bθ(v)). Fig. 14 shows that the emergence of a hole in a 
segment has no real impact either. Small changes in the longitudinal sections do 
not affect Fr (θ,Aθ(v),Bθ(v)) significantly. Continuity is satisfied and, hence, 
robustness is achieved. The Fr −histogram associated with (A,B) is as defined in 
Section 2.2: 

 

  F r  
A     

 
B(θ) =  � −∞

+∞
 Fr (θ,Aθ(v),Bθ(v)) dv. (2) 

 
Remember that the issue raised by Fig. 9 has led us not to consider a 

longitudinal section a set of independent segments or points (Section 3.2). As a 
result, the Fr −histograms are neither f-histograms nor ϕ-histograms. Also note that 
the sum  Σr∈� Fr (θ,Aθ(v),Bθ(v)) = Σk∈1..c Σi∈1..mk Σj∈1..nk [x

k i   z
k j  (αk−αk−1)]  does not 

depend on any Allen relation. Therefore: 



Σr∈� F r  
A     B(θ) = Σr∈� � −∞

+∞
 Fr (θ,Aθ(v),Bθ(v)) dv = � −∞

+∞
 Σr∈� Fr (θ,Aθ(v),Bθ(v)) dv 

 
does not depend on any Allen relation either. Its value, however, is difficult to 
interpret. Let us redefine Fr (θ,Aθ(v),Bθ(v)) this way 2 : 

 

 Fr (θ,Aθ(v),Bθ(v)) = w
zx +

Σk∈1..c Σi∈1..mk Σj∈1..nk [x
k i   z

k j   (αk−αk−1)] r(Ik i  ,J
k j  ) , (3) 

 
where  x = Σi∈1..mc x

c i  ,  z = Σj∈1..nc z
c
 j  ,  and  w = Σk∈1..c Σi∈1..mk Σj∈1..nk [x

k i   z
k
 j  (αk−αk−1)]. 

We now have  Σr∈� Fr (θ,Aθ(v),Bθ(v)) = x+z,  and the value Σr∈� F r  
A     B(θ) = 

� −∞
+∞

 Σr∈� Fr (θ,Aθ(v),Bθ(v)) dv  is the total area of the subregions of A and B that 
are “facing” each other in direction θ (Fig. 15). In other words, Σr∈� F r  

A     B(θ) tells 
us to what extent the objects are involved in some spatial relationships along 
direction θ. If this information is judged to be unimportant, the Fr −histograms, of 
course, can be normalized. Let us denote by �F r  

A     B� the histogram F r  
A     B after 

normalization. �F r  
A     B� is defined by 2 : 

 
 ∀θ∈ IR  ,  �F r  

A     B� (θ) = F r  
A     B(θ) / Σρ∈� Fρ

A  
 
B(θ). (4) 

 
For a given oriented line ∆θ(v), the Allen relations define a crisp 13-partition of 
the set of pairs of segments on ∆θ(v). For a given direction θ, the normalized 
Fr −histograms define a fuzzy 13-partition of the set of all object pairs, and each class 
of the partition corresponds to an Allen relation.  
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Fig. 14.   In (a), a missing pixel in the middle of one segment would not have much impact on 
F>(θ,Aθ(v),Bθ(v)). The way fuzzy relations are weighted (Eq. 1), combined with the way longit-
udinal sections are fuzzified, allow continuity to be satisfied.  (a) F> (θ,Aθ(v),Bθ(v)) = xx0 .  
(b) F> (θ,Aθ(v),Bθ(v)) = xx1ε+xx2ε+xx0(1−ε) = x(x1+x2)ε+xx0(1−ε) ≈ xx0ε+xx0(1−ε) = xx0 . 

                                                           
2   In Eqs. 3 and 4 we agree that a fraction is 0 if its denominator is 0. 

(b) 
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AB

 θ  

Fig. 15.   The value Σr∈� F r  
A     B(θ) is easy to interpret and gives useful information. In this 

example, Σr∈� F r  
A     

 
B(θ) is the total area of the two dark gray regions. 

4   Experiments 

In practice, of course, only a finite set of directions θ is considered. For the 
experiments described in this section, 360 directions were processed (i.e., the 
angle increment was 1 degree). All objects were stored in raster form. The 
computation of an F-histogram value, FAB(θ), is achieved by partitioning the 
objects into longitudinal sections, i.e., into sets of adjacent pixels (Matsakis 1998; 
Matsakis and Wendling 1999). The generation of these sections is based on the 
rasterization of a pencil of parallel lines (Fig. 2) by means of Bresenham’s 
algorithm in integer arithmetic, which is commonly circuit-coded in visualization 
systems. The handling of a pair of objects then comes down to the handling of 
pairs of longitudinal sections, as described by Eq. 3. Note that, in a given image, 
all pairs of objects can be processed simultaneously. Moreover, F-histogram 
computation is highly parallelizable. 

A grayscale value is associated with each Allen relation (Fig. 16(a)). The 
referent, B, is always shown in dark gray and the argument, A, in light gray (Fig. 
16(b)). The thirteen Fr −histograms that represent the extracted directional and 
topological relationship information are plotted in the same diagram (Fig. 16(c)). 
The topological relationships along direction θ (on the X-axis) are described by 
the vector composed of the thirteen F r  

A     B(θ) values (on the Y-axis). Usually, most of 
these values are zero. The histograms are arranged in “layers.” For a given θ, the 
total height of the layers (i.e., Σr∈� F r  

A     B(θ)) represents an area, as described in 
Section 3.3 and Fig. 15. It tells us to what extent the objects are involved in some 
spatial relationships along θ. The thirteen normalized Fr −histograms can be plotted 
in the same way (Fig. 16(d)). Figs. 16 and 17 show two object pairs and the 
corresponding diagrams. Fig. 16(d) and Fig. 17(c) illustrate well the symmetric 
nature of the histograms. For any θ, we have:  

 
F >  

A     B (θ) = F <  
A     B (θ+π)  and  ABFmi (θ) = F m  

A     B (θ+π) 
and  ABFoi (θ) = F o  

A     B (θ+π)  and  ABFsi (θ) = ABF fi (θ+π)  and  ABFf (θ) = F s  
A     B (θ+π). 

 
   
 
 



 
 

Fig. 16.   (a) Allen relations and attached grayscale values.  (b) A pair of objects.   
               (c) Corresponding Fr −histograms.  (d) Normalized Fr −histograms. 
 
 
 
 

 

Fig. 17.   (a) A pair of objects.  (b) Corresponding Fr −histograms.   
               (c) Normalized Fr −histograms. 
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The first series of experiments illustrates how the fuzzy relations defined in 
Section 3.1 are interconnected. It also demonstrates how the prominence of 
different relations waxes and wanes with the change of distance between the 
objects. In Fig. 18(a), the objects are quite far apart, and only the relations before 
and after are present. As the distance shortens, Fig. 18(b) and Fig. 18(c), meets 
and met by appear and become more and more prominent, while before and after 
decrease in their importance. Finally, when the objects touch, Fig. 18(d), meets 
and met by perfectly describe the scene.  

 

 

Fig. 18.   First series of experiments. Interconnection of fuzzy relations and sensitivity to dist-
ance. (a) Objects far apart. Relations before and after. (b) Objects closer together. Relations 
before, after, meets and met by. (c) Objects very close together. before and after are less prom-
inent, meets and met by are more. (d) Objects touching. Relations before and after disappear.  

 
In the second series of experiments (Fig. 19), we examine the relations 

between two convex objects A and B as A moves towards B, intersects it and, 
finally, goes through it. In Fig. 19(a) and Fig. 19(b), the only relations between A 
and B are before and after. As A moves towards B, the support of the two 
relations becomes wider. Once A intersects B, the relations become more complex 
and are mainly represented by the symmetric pairs before – after, meets – met by 
and overlaps – overlapped by (Fig. 19(c)). In directions close to horizontal, there 
are also small contributions from equals and its conceptual neighbors contains and 
during. Once A is completely in B (Fig. 19(d)), but still very close to its top edge, 
the relations finishes (when viewed from the bottom) and starts (when viewed 
from the top) become prominent and the relation during is consistently present. 
Once the object A moves further towards the center of B, during becomes by far 
the most important relation (Fig. 19(e)); finishes and starts occur only briefly, in 
the directions where the distances between the edges of A and B are the smallest.  
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Fig. 19.   Second series of experiments. Complex relation changes in a dynamic scene 
between convex objects. The same scene is considered in (Malki et al. 2002). 

 
The final set of experiments involves concave objects. It illustrates how the 

Fr −histograms allow more complex topological relationships to be described and 
differentiated. In Fig. 20(a), a convex object, B, is partially surrounded by a 
concave object, A. The diagram shows that the relations before and after coexist 
equally in the horizontal directions (B is between equidistant, equally thick 
“arms”). As the direction θ changes, before increases and then decreases in 
prominence, followed in its behavior by after. The twin “peaks” in the diagram 
(for both before and after) occur when θ passes through B and the arms of A 
(diagonal directions), whereas the “valleys” occur when θ passes through B and 
the “body” of A (vertical directions). In Fig. 20(b), the concave object is 
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asymmetrical, and the histograms are less regular. In the horizontal directions, 
before and after do not coexist any longer. Note that small contributions from 
meets and met by appear in both experiments due to the proximity of the objects. 
Also note the complete absence of the pair overlaps – overlapped by. 
 

Fig.  20.   Third series of experiments. Handling of concave objects. The same pairs are 
considered in (Petry et al. 2002).  (a) The referent is partially surrounded by the argument.  
(b) The referent is surrounded to a smaller degree.  

5   Conclusion 

The F-histogram is a powerful generic quantitative representation of the relative 
position between two 2D objects. In this chapter, we have designed a set of 
thirteen histograms that constitutes a valuable tool for extracting directional and 
topological relationship information. Imprecision is handled and robustness 
achieved through fuzzy set theoretic approaches. For any direction in the plane, 
the F-histograms introduced here define a fuzzy 13-partition of the set of all pairs of 
objects, where each class of the partition corresponds to an Allen relation. The 
considered objects are not necessarily convex, nor connected, and they may have 
holes in them. We have shown that the F-histograms associated with a given pair 
of objects carry lots of relationship information. For instance, an ambiguity index 
can be calculated to assess the complexity of the topological relationships along any 
direction. If so desired, only the Allen relation that represents these relationships the 
best can be kept (defuzzification). Alternatively, two Allen relations can be kept—
the most prominent—and weighed by their corresponding membership degrees. The 
number of directions to be processed can be chosen according to needs, interests and 
constraints (e.g., accuracy, computational efficiency). It can be as low as two 
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mi 
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< > 
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(horizontal and vertical directions, like for MBRs) and as large as a few hundred 
(e.g., the increment step of 1° chosen for our experiments). Since directions are 
handled independently from each other, additional ones can be considered in a 
second stage, depending on the case in hand (dynamic refinement). The direction for 
which the ambiguity index is minimum can be searched for. Spatial relationships 
can be compared from one pair of objects to another, using similarity or distance 
measures between the vectors of membership degrees in all considered directions. 
These are avenues that we intend to explore in future work. 
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