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Abstract.   How to satisfactorily model spatial relationships between 2D or 3D 
objects? If the objects are far enough from each other, they can be approximated 
by their centers. If they are not too far, not too close, they can be approximated by 
their minimum bounding rectangles or boxes. If they are close, no such simplify-
ing approximation should be made. Two concepts are at the core of the approach 
described in this paper: the concept of the F-histogram and that of the F-template. 
The basis of the former was laid a decade ago; since then, it has naturally evolved 
and matured. The latter is much newer, and has dual characteristics. Our aim here 
is to present a snapshot of these concepts and of their applications. It is to high-
light (and reflect on) their duality⎯a duality that calls for a clear distinction be-
tween the terms spatial relationship, relationship to a reference object, and relative 
position. Finally, it is to identify directions for future research.  

1 Introduction 

Philosophers, physicists and mathematicians have been debating about space for 
centuries. Here, space is considered Euclidean and independent of time (our apol-
ogy to Einstein). It is not, however, a mere abstract void (and Leibniz would re-
joice): talking about space implies talking about (spatial) objects and relationships. 
Indeed, space is viewed as “the structure defined by the set of spatial relationships 
between objects” [58]. In the present paper as in related literature, space is usually 
two- or three-dimensional, with a Cartesian coordinate system. A physical object 
is of no interest in itself; the focus is on the part of space it occupies. Objects, 
therefore, are seen as subsets of the Euclidean space. A point, a line segment, a 
disk, a toroid, the union of these, are examples of objects. An object may be 
bounded or unbounded, convex or concave, open or closed, connected or discon-
nected, etc. Practically, it is either in raster or vector form. A raster object in 2D 
space, for example, is sometimes seen as the union of unit squares (pixels), and 
others as a cloud of points (pixel centers). Finally, note that fuzzy subsets of the 
Euclidean space may also be considered. Fuzzy sets make it possible to encapsu-
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late information regarding the imprecision or the uncertainty in the spatial extent 
of some physical objects. There is, in the end, a variety of spatial objects.   

So there is a variety of spatial relationships. Some are language-based, in the 
sense that they are naturally referred to using everyday terms, e.g., the relation-
ships “right” (is to the right of), “far” (is far from), “touch” (touches). Others are 
math-based, and may or may not be named (e.g., the 512 relationships defined by 
the 9-intersection model). Some are binary; they involve two objects only (e.g., 
object A is to the right of object B). Others are not (e.g., object A is between ob-
jects B and C). In this paper, we limit our discussion to binary relationships, which 
are by far the most common subject of studies. They are usually categorized into 
directional (e.g., “right”), distance (e.g., “far”), and topological (e.g., “touch”) re-
lationships. This is not surprising, since angles and distances are at the core of 
Euclidean geometry, and Euclidean spaces are, above all, topological spaces. 
Other categories, however, are sometimes considered (e.g., “intersect” is set-
theoretical before being topological). 

Spatial relationships are often modeled by fuzzy relations on the set of all ob-
jects. Consider, for example, the statement “A is far from B”. In many everyday 
situations, one would find it neither completely true nor completely false (even if 
A and B are very simple crisp objects). A fuzzy model of “far” attaches a numeri-
cal value to the pair (A, B), and this value is seen as the degree of truth of the 
statement above. Not only the use of fuzzy relations seems more natural than the 
use of standard, all-or-nothing relations, but it also allows two fundamental ques-
tions to be answered. How to identify the most salient relationship between two 
given objects in a scene? How to identify the object that best satisfies a given rela-
tionship to a reference object? Answering these questions comes down to calcula-
ting and comparing the degrees of truth of several statements. See Figs. 1 and 2. 

These statements, however, are not independent from each other. Part of the 
calculation of each degree of truth might therefore be common to all degrees of 
truth and yield an intermediate result, interesting if only for efficiency purposes. 
This result can be seen as a quantitative representation of either the relative posi-
tion between the two objects (first question, Fig. 1) or the relationship to the refer-
ence object (second question, Fig. 2). What we argue here is that a clear distinc-
tion should be made between the terms spatial relationship (a binary relationship), 
relationship to a reference object (a unary relationship), and relative position. 
True, the position of an object with respect to another may be described in terms 
of spatial relationships. However, it may also have a representation of its own, as 
mentioned above. Ideally, such a representation should allow any relationship be-
tween the two objects to be assessed. Practically, this is never the case. The infor-
mation relative to a given relationship might not have been captured by the repre-
sentation, or might have been encapsulated in an unfathomable way. One 
representation may be better suited than another to the assessment of some rela-
tionships, and vice versa. At any rate, we may be interested in relative positions 
for what they are, and not in any particular relationship (e.g., when carrying out a 
scene matching task).  
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Section 2 illustrates the discussion above. Its aim is to clarify, through exam-
ples, the differences between the terms spatial relationship, relationship to a refer-
ence object, and relative position. Sections 3 and 4 introduce the two concepts at 
the core of the general approach described in this paper, while pointing out dual 
characteristics. Sections 5 and 6 show how these concepts may rely on two others, 
also with dual characteristics. Section 7 deals with algorithmic issues. Many ap-
plications have been studied; Section 8 presents a review of the related literature. 
Finally, directions for future research are given in Section 9. Note that spatial rela-
tionships have been studied for many years, in many disciplines, including cogni-
tive science, linguistics, geography and artificial intelligence. See, e.g., [7] [8] [13] 
[14] [18] [19] [39] [40]. The approach described here focuses on fuzzy models of 
spatial relationships (as opposed to, e.g., qualitative models) and is general only in 
the sense that: a variety of spatial objects can be handled (e.g., crisp or fuzzy, con-
nected or disconnected, in raster form or in vector form); a variety of spatial in-
formation can be captured and exploited (i.e., directional, distance, topological); 
there is a variety of current and potential applications. 

 
 

 
 
Fig. 1   How to identify the most salient relationship between two given objects A and B? Here, A 
and B are represented by vector data, the position of A relative to B is represented by an F-
histogram (Section 3), and the 3 statements by fuzzy logic values. The answer to the question is R1. 
 
 

 
 
Fig. 2   How to identify the object that best satisfies a given relationship R to a reference object 
B? Here, R is represented by a fuzzy binary relation, B by vector data, the relationship R to B by 
an F-template (Section 4), and the 3 statements by fuzzy logic values. The answer to the ques-
tion is A3. 
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2 An important distinction 

2.1 Relative position vs. relationship⎯Example 

Consider two points p and q in the 2D space. Possible representations of the posi-
tion of p relative to q are the tuple (xp, yp, xq, yq), whose elements are the Cartesian 
coordinates of p and q; the pair (xqp, yqp), whose elements are the Cartesian coordi-
nates of the vector qp; the pair (ρqp,θqp), whose elements are the polar coordinates 
of qp; the angle θqp; etc. The first representation is trivial. The second one, (xqp, yqp), 
is much more interesting. Although some information about p and q is lost, there 
is no loss of information about the position of p relative to q (assuming that rela-
tive position is invariant to translation). The third representation has the same 
characteristic. However, it is better suited for the assessment of distance relation-
ships. These relationships cannot be assessed from the fourth representation, θqp. 
Too much information is lost. Nonetheless, θqp is a very compact representation, 
well suited for the assessment of directional relationships. For example, assuming 
that angular coordinates belong to (−π,π] and that the polar axis is horizontal and 
pointing to the right, we may consider that the degree of truth of the statement “p 
is to the right of q” is min{1, max{0,1−2|θqp|/π}}. In other words, the fuzzy rela-
tion R defined by  

 

 
 
R(p,q) = min 1,max 0,1− 2

π
θqp

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

 (1) 

 

is a fuzzy model of the binary directional relationship “right”. If θqp= 0 then 
R(p, q)=1, i.e., p is definitely to the right of q. If θqp= π/2 then R(p, q)=0, i.e., p is 
definitely not to the right of q. In the end, once the relative position θqp has been 
calculated given the Cartesian coordinates of p and q (a painful task if you are us-
ing only pen and paper), the statements “p is to the right of q”, “p is above q”, “p 
is in direction 45° of q”, etc., can be evaluated with comparatively much less ef-
fort. The link with Fig. 1 should now be clear to the reader. Note that this example 
can be easily adapted to the 3D case. 

2.2 Relationship vs. relationship to a reference object⎯Example 

Here, an object is a “friendly” set of points in a rectangular region R of the 2D 
space, i.e., it is a nonempty, bounded, connected, regular closed set of points, in-
cluded in R. Consider two objects A and B. Let |B| be the area of B. For any two 
points p and q, let |qp| be the distance between p and q. 
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We call   

 
 d(A,B) = infp∈A, q∈B qp  (2) 

 
the distance between A and B, and we call  

 

 s(B) = 2
B
π

 (3) 
 

the size of B (it is the diameter of a disk whose area is |B|). The fuzzy relation R 
defined by 

 
 
R(A,B) = max 0,1− d(A,B)

s(B) t
⎧
⎨
⎩

⎫
⎬
⎭

, (4) 

 

where t denotes a positive real number, is a fuzzy model of the binary distance re-
lationship “close”. If the distance between A and B is 0, then R(A, B)=1, i.e., A is 
definitely close to B. If the distance between A and B is t times larger than B, then 
R(A, B)=0, i.e., A is not close at all to B. Now, given B, assume we are asked to 
evaluate the statement “A is close to B” for a large number of objects A. Going 
through (2) and (4) every time would be inefficient. A better strategy is to com-
pute the function dB defined on R by 

 
 dB (p) = infq∈B qp  (5) 

 
and then use the fact that  

 
 d(A,B) = infp∈A dB (p) . (6) 

 
Or, compute the function  

 dB (p) = max 0,1− dB (p)
s(B) t

⎧
⎨
⎩

⎫
⎬
⎭

 (7) 

and use the fact that  
 

 
 
R(A,B) = sup p∈A dB (p) . (8) 

 
Once d

_
  B has been computed, the statements “A1 is close to B”, “A2 is close to B”, 

etc., can be readily evaluated. dB and d
_
  B are two possible representations of the 

unary distance relationship “close to B”. See the link with Fig. 2. Note that dB is 
usually known as a distance map. Again, this example can be easily adapted to the 
3D case. 
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3 F-histograms 

One of the two concepts at the core of the general approach described in this paper 
is the concept of the F-histogram. Its basis was laid a decade ago [23]. Since then, 
of course, the concept has evolved and matured. The idea and assumption behind 
it are that acceptable representations of relative positions can be obtained by re-
ducing the handling of all 3D and 2D objects to the handling of 1D entities. 

Notation and terminology are as follows. S is the Euclidean space. A direction 
θ is a unit vector. θ⊥ is the subspace orthogonal to θ that passes through the origin 
ω (an arbitrary point of S). The expression Sθ(p) denotes the line in direction θ that 
passes through the point p. Now, consider a fuzzy subset A of S. The membership 
degree of p in A is µA(p). For any α∈[0,1], the α-cut of A is Aα={p ∈S | µA(p)≥α}. 
The (fuzzy) intersection of A with Sθ(p) is denoted by Aθ(p) and called a section of 
A. An object is a fuzzy subset A of S such that any µA(p) belongs to the set 
{α1,α2,…,αk+1}, with 1=α1>α2>…>αk+1=0, and any (Aθ(p))αi has a finite number of 
connected components.  

Consider two objects A and B. Consider a function F that accepts argument 
values of the form (θ, Aθ(p), Bθ(p)). The F-histogram associated with the pair 
(A, B) is a function FAB of θ. Its intended purpose is to represent, in some way, the 
position of A with respect to B. The histogram value FAB(θ) is defined as a 
combination of the F(θ, Aθ(p), Bθ(p)) values, for all p in θ⊥. See (9) and Fig. 3, 
where ope stands for the combination operator. Figure 4 is related, but will be 
commented in Section 4. 

 

 
 
F AB (θ) = opep∈θ⊥ F (θ,Aθ (p),Bθ (p))  (9) 

 

Typically, F and FAB are real functions, the combination operator ope is the addi-
tion, and  

 

  
F AB (θ) = F (θ,Aθ (p),Bθ (p))p∈θ⊥∫ dp .

 
(10)

 
 

The key point, then, is how to choose F. First, we might want to reduce the han-
dling of fuzzy sections I and J to that of crisp sections, through some other func-
tion F:  

 

  
F (θ, I , J ) = (αi −αi+1)(α j −α j+1) F(θ, I

αi , Jα j )j=1
k∑i=1

k∑ .
 

(11)
 

 

Second, we might want to reduce the handling of crisp sections I and J to that of 
their connected components I1, I2, …, Im and J1, J2, …, Jn: 

 

 F(θ, I , J ) = f (θ, Ii , J j )j=1
n∑i=1

m∑ . (12) 
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Fig. 3   Principle of the calculation of the F-histogram F AB 

 

 
Fig. 4   Principle of the calculation of the F-template F 

RB 

 

 
Further reduction can be expressed as 

 

 f (θ, I , J ) = ϕ
q∈J∫p∈I∫ (θ, p,q) dp dq , (13) 

 

where I and J are (crisp) singletons, segments, lines or half-lines. 
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Note that for any fuzzy sections I and J, we then have 
 

  
F (θ, I , J ) = µ I (p) µJ (q)ϕq∈S∫p∈S∫ (θ, p,q) dp dq .

 
(14)

 
 

FAB can also be referred to as the F-histogram FAB, the f-histogram f 
AB, or the ϕ-

histogram ϕAB, depending on whether (11), (11) and (12), or (11), (12) and (13) 
hold. This categorization is illustrated by Fig. 5.  
 
Two properties are worth noticing at this point:  

 

 FAB = (αi −αi+1)(α j −α j+1) F
Aαi Bα j

j=1
k∑i=1

k∑  (15) 

 

and 
 
f
( Aii=1

m
 )( Bjj=1

n
 )

= f AiBjj=1
n∑i=1

m∑ , (16) 

 

where A1, A2, …, Am are pairwise disjoint objects, and B1, B2, …, Bn too. Now, for 
any real number r, consider the function ϕr defined by: ϕr(θ, p, q)=1/|qp|r if p≠q 
and if θ is the direction of the vector qp; ϕr(θ, p, q)=0 otherwise. The ϕr-histogram 
ϕr

AB is called a force histogram. The reason for the term force (and for the symbols 
F, F, f and ϕ, which all refer to the first letter of the words function and force) is 
the following. For any direction θ, the value ϕr

AB
 (θ) can be seen as the scalar re-

sultant of elementary physical forces. These forces (which are additive vector 
quantities) are exerted by the points of A on those of B, and each tends to move B 
in direction θ. Assume r =2. The forces then correspond to gravitational forces. 
This is according to Newton’s law of gravity, which states that every particle at-
tracts every other particle with a force inversely proportional to the square of the 
distance between them. Under the above assumption, it is as if the objects A and B 
had mass and density: the area (2D case) or volumetric (3D case) mass density of 
A at point p is µA(p); the density of B at q is µB(q). Note that in the 2D case A and 
B can be seen as flat metal plates of constant and negligible thickness. 

 
 

 
Fig. 5   Categorization of F-histograms 

F-histograms include F-histograms, which include f-histograms, etc. 
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4 F-templates 

How to identify, in a scene, the object that best satisfies a given relationship to a 
reference object? This question, which is one of the two fundamental questions 
that arise when dealing with spatial relationships (Section 1), defines an object lo-
calization task. One theory supported by cognitive experiments is that people ac-
complish this task by parsing space around the reference object into good regions 
(where the object being sought is more likely to be), acceptable, and unacceptable 
regions (where the object being sought cannot be) [15] [22]. These regions blend 
into one another and form a so-called spatial template [22], which assigns each 
point in space a value between 0 (unacceptable region) and 1 (good region). In 
other words, a spatial template is a fuzzy subset of the Euclidean space that repre-
sents a relationship to a reference object. The concept of the F-template was in-
troduced in a series of three conference papers [29] [52] [10]. The idea and as-
sumption behind it are that acceptable representations of relationships to reference 
objects can be obtained by reducing the handling of all 3D and 2D objects to the 
handling of 1D entities. A formal definition of the F-template is given in Section 
4.1, and it is followed by an important example in Section 4.2.  

4.1 Definition 

Here, the line in direction θ that passes through the point p is denoted by Sp(θ) (in-
stead of Sθ(p), as in Section 3). The (fuzzy) intersection of Sp(θ) with a fuzzy sub-
set A of S is denoted by Ap(θ) (instead of Aθ(p)). Consider a spatial relationship R 
and an object B. Consider a function F that accepts argument values of the form 
(p, R, Bp(θ)). The F-template associated with the pair (R, B) is a function F RB of 
p. Its intended purpose is to represent, in some way, the relationship R to the ref-
erence object B. The template value F RB

 (p) is defined as a combination of the 
F(p, R, Bp(θ)) values, for all θ. See (17) and Fig. 4, where ope stands for the com-
bination operator. 

 

  
 
F RB (p) = opeθ F (p,R,Bp (θ))  (17) 

 

There is obviously a duality between the F-template and the F-histogram, and it 
echoes the duality between the two fundamental questions mentioned in Section 1. 
Compare Fig. 4 with Fig. 3, and Fig. 2 with Fig. 1. Compare (17) with (9). In (17), 
θ varies and p does not. In (9), p varies and θ does not. Replace any subset of A 
with R, replace p with θ and θ with p, and (9) transforms into (17). Typically, F 
and F RB are real functions with output values in the range [0,1], the template F RB 
is a fuzzy subset of the Euclidean space, and F RB

 (p) aims to represent the degree 
to which p satisfies the relationship R to the reference object B.  
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4.2 An important example: Basic directional templates 

A spatial template that represents a directional relationship to a reference object 
may be called a directional (spatial) template. To emphasize the analogy with the 
well-known distance maps (mentioned in Section 2.2), we may also call it a direc-
tional map. In [2], Bloch introduces the concept of the fuzzy landscape. A fuzzy 
landscape is a specific example of directional template, which does not sacrifice 
the geometry of the reference object (the object is not approximated through, e.g., 
its centroid, or its minimum bounding rectangle or box). Moreover, the defining 
equation (whose roots can be traced to earlier works [34] [20]) is very simple and 
intuitive. Because of this and the fact that the term template was coined earlier, 
and also to increase precision in language, we prefer to talk of basic directional 
templates, or basic directional maps, instead of fuzzy landscapes. The basic direc-
tional template induced by the object B in direction δ associates the value 

 

 supq∈S−{p} µB (q) min 1,max 0,1− 2
π
∠(qp,δ)⎧

⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

 (18) 

 

with each point p, where ∠(qp, δ) denotes the angle between the two vectors qp 
and δ. Compare (18) with (1). In the case of raster data, the exact algorithm that 
naturally results from (18) is straightforward but computationally expensive. Ref-
erence [2] describes a much faster approximation algorithm, inspired by chamfer 
methods. Consider, e.g., a 2D image. The pixels are examined sequentially, from 
top to bottom and left to right, and then from bottom to top and right to left. Each 
time a pixel is examined, it is assigned a value whose calculation also involves the 
pixel’s neighbors. As shown in [2], a basic directional template can be seen as the 
morphological dilation of the reference object by a fuzzy structuring element. The 
idea behind the algorithm is to perform the fuzzy dilation with a limited support 
for the structuring element. According to Bloch, “most approaches [e.g., the F-
histogram / template approach] reduce the representation of objects to points, 
segments or projections” [3] while hers “takes morphological information about 
the shapes… into account” [2], “considers the objects as a whole and therefore 
better accounts for their shape” [3]. The argument does not hold water, since basic 
directional templates can be proved to be F-templates [29]. As a result, they can 
be calculated by reducing objects to segments, using an F-template approach [29] 
[52]. An extensive experiment [30] has shown that this approach should be pre-
ferred to the morphological one in the case of 2D raster data, but that the opposite 
holds in the case of 3D raster data. 2D vector data can only be handled using the 
F-template approach, and there is yet no algorithm for 3D vector data. Once the 
basic directional template induced by B in direction δ has been computed, the de-
gree of truth of the statement “A is in direction δ of B” (i.e., “A is in relationship R 
with B” where R denotes the relationship “in direction δ”) can be calculated for 
any object A, in comparatively no time, using a fuzzy pattern-matching approach 
[12] [2]. 
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5 F-histograms from spatial correlation 

Most work on F-histograms has focused on force histograms. The reasons are 
multiple, as explained in Section 5.1. Force histograms can actually be generated 
from spatial correlations; this is an important concept, covered in Section 5.2. 

5.1 Interest in force histograms 

Force histograms are relative position descriptors with high discriminative power 
[25]. Moreover, the way they change when the objects are affine-transformed is 
known [25] [36]. This is an important issue in computer vision and pattern recog-
nition, especially because it is intrinsically linked to the design of widely used af-
fine invariant descriptors. Remember that affine transformations include, e.g., 
translations, rotations, scalings, reflections and stretches. Let aff be any invertible 
affine transformation. It can be written as the composition of a translation with a 
linear transformation lin (an affine transformation such that lin(ω)=ω). It is a 
common convention to see lin as a matrix (a 2×2 matrix if S is of dimension 2; a 
3×3 matrix if S is of dimension 3). Likewise, vectors can be seen as column matri-
ces and vice versa. As shown in [36], for any real number r, any objects A and B, 
and any direction θ,  

 

 ϕr
aff [A] aff [B](θ) = det(lin) lin−1 ⋅ θ

r−1
ϕr
AB (θ ') . (19) 

 
In this equation, det(lin) is the determinant of the matrix lin and⎟ det(lin) ⎜ its abso-
lute value; the symbol .  denotes matrix multiplication;⎟ lin−1

 .  θ ⎜ is the norm of the 
vector lin−1

 .  θ ; the direction θ' is the unit vector   (lin−1
 .  θ) /⎟ lin−1

 .  θ ⎜. The impor-
tance of having a property such as (19) is discussed in [25] and illustrated through 
experiments with synthetic and real data.  

Another reason for the special interest in force histograms is that they lend 
themselves, with great flexibility, to the modeling of directional relationships by 
fuzzy binary relations [26]. The main methods that can be used to achieve this are 
the aggregation method [20], the compatibility method [34], and the method based 
on force categorization [27]. The fuzzy relations then satisfy four fundamental 
properties, which express the following intuitive ideas: if the objects in hand are 
sufficiently far apart, each one can be seen as a single point in space; the direc-
tional relationships are not sensitive to scale changes; all directions have the same 
importance; the semantic inverse principle [16] is respected (e.g., object A is to the 
left of object B as much as B is to the right of A). As a corollary of these proper-
ties, it is possible to determine how the fuzzy relations react when the objects are 
similarity-transformed. There is, of course, a link with (19), since similarity trans-
formations are particular affine transformations. Note that the four abovemen-
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tioned properties form the axiomatic basis upon which the concept of the histo-
gram of forces was actually developed [23]. 

Directional relationships are not, however, the only spatial relationships that 
can be assessed from force histograms. Reference [42] describes a fuzzy model of 
inner-adjacency. The position of A relative to B is then represented by ϕr

A(B−A) in-
stead of ϕr

AB. Reference [45] describes a fuzzy model of surroundedness. The un-
derlying assumption is that A is connected and does not intersect the convex hull 
of B. Reference [24] describes a fuzzy model of betweenness. Although the prepo-
sition “between” usually denotes a ternary relationship, its model in [24] is a fuzzy 
binary relation. A sentence such as “A is between B and C ” is read “A is between 
B∪C ”. The position of A relative to B and C is represented by ϕr

A(B∪C). 
Most work on F-histograms has focused on force histograms, but not all. Con-

sider ϕ2
AB. It has interesting characteristics [33]. Usually, however, it is not de-

fined anywhere if A and B intersect, because the integral in (10) then diverges. As 
shown in [23], ϕ-histograms that are not force histograms make it possible to 
overcome this limitation while preserving the abovementioned characteristics. 
Reference [23] also suggests f-(non-ϕ-)histograms for the handling of convex ob-
jects. The fuzzy model of surroundedness mentioned in the previous paragraph 
suits the application considered in [45], but only because the objects there satisfy 
certain conditions. Another model would otherwise be necessary. Its design could 
be based on F-(non-f-)histograms, instead of force histograms. This is a promising 
avenue, as pointed in [24]. Finally, [31] describes F-(non-F-)histograms for the 
combined extraction of directional and topological relationship information. The 
particularity of these histograms is that they are coupled with Allen relations [1] 
using fuzzy set theory. Various systems rely on them to capture the essence of the 
relative positions of objects with natural language descriptions [32] [55] [56]. 

5.2 Spatial correlation 

In [27], a natural language description of the relative position between two objects 
A and B is generated from the force histograms ϕ 0 

AB and ϕ 2 
AB. The fact is that ϕ 0 

AB 
and ϕ 2 

AB have very different and interesting characteristics, which complement one 
another. As this example shows, it may be useful to calculate two or more force 
histograms associated with the same pair of objects. These histograms are obvi-
ously not totally independent from each other. Part of the calculation of one might 
therefore be common to all and yield an intermediate result, interesting if only for 
efficiency purposes. The same idea was expressed in Section 1; the intermediate 
result was seen as a quantitative representation of the relative position between 
two objects. Here, the intermediate result is a spatial correlation. Compare Fig. 6 
with Fig. 1. Figure 7 is related, but will be commented in Section 6. The spatial 
correlation between A and B provides raw information about the position of A 
relative to B. It is the function ψ 

AB defined by 
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 ψAB (v) = µA (q + v)µB (q)q∈S∫ dq , (20) 
 

where v denotes any vector and + denotes point-vector addition. All force histo-
grams ϕ r 

AB associated with A and B can be derived from ψ 
AB as follows: 

 

 ϕr
AB (θ) = ψAB (uθ)

ur0

+∞
∫ du . (21) 

 

Reference [36] shows that (20) and (21) lead to different algorithms than (10) and 
(14) and are better adapted to the solving of some theoretical issues.  

 
 

             
Fig. 6   F-histograms from spatial correlation 

  
 

   
Fig. 7   F-templates from force field 

6 F-templates from force field 

Basic directional templates have been used for spatial reasoning, object localiza-
tion and identification, structural and model-based pattern recognition [4] [9] [21] 
[48]. They have, however, important flaws. They are overly sensitive to outliers. 
Elongated reference objects pose problems, and concave objects as well [28]. The 
main reason is that basic directional templates make use of angle information but 
ignore distance information. According to cognitive experiments [22] [17] [15], 
the former is indeed of primary importance, but the latter also contributes in shap-
ing a directional template. For a given angular deviation, the membership degrees 



14  

are not constant. They fluctuate slightly, depending on the distance to the refer-
ence object. Moreover, the fluctuation varies from one angular deviation to an-
other. Finally, when sufficiently far from the object, all the membership degrees 
drop. For example, if you were told that the soccer ball was to the right of the 
bench, you would not look for it hundreds of feet from the bench.  

One may wonder whether angle information and distance information could be 
processed in separate steps. In [52], the authors argue that the answer is negative, 
and they show how directional F-templates can embed distance information to 
elegantly overcome the abovementioned flaws. Their work is based on the follow-
ing results: (i) basic directional templates are F-templates [29]; (ii) distance maps 
like dB and d

_
  B   (Section 2.2) are F-templates too [52]; a binary operation ⊗ and 

two F-templates p    opeθ F1(p,R, Bp(θ)) and p    opeθ F2(p,R, Bp(θ)) define a 
new F-template p    opeθ F1(p,R, Bp(θ)) ⊗ F2(p,R, Bp(θ)). 

Now, assume different directional relationships to the same reference object 
need to be considered. Assume they are represented by directional templates. 
These templates are obviously not totally independent from each other. Part of the 
calculation of one might therefore be common to all and yield an intermediate re-
sult, interesting if only for efficiency purposes. The same idea was expressed in 
Section 1; the intermediate result was seen as a quantitative representation of a re-
lationship to a reference object. Here, the idea is coupled with the desire to exploit 
the duality between F-templates and F-histograms; the intermediate result is a 
force field. Compare Fig. 7 with Fig. 2, and Fig. 7 with Fig. 6.  

Once the force field has been computed, F-templates that represent directional 
relationships to the reference object can be derived from the field in negligible 
time. Basic directional templates, and the templates described in [52], cannot be 
calculated using such a two-step procedure. The force field induced by B is the 
function ψ r 

B  defined as follows: 
 

 ψr
B (p) = µB (q)

qp
qp r+1

dq
q∈S∫  (22) 

 

The reason for the term force is the same as in Section 3. The object B is seen as 
an object with mass and density: the density of B at point q is µB(q). The vector 
ψ r 

B  ( p) is the force exerted on B by a particle of mass 1 located at p. The force 
field-based template induced by B in direction δ makes use of both angle and dis-
tance information. It is a function ϕ r 

RB that may be defined as  
 

 
  

ϕr
RB (p) = max 0, ψr

B (p)iδ
supq∈S ψr

B (q)iδ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (23) 

 

where  denotes the dot product and R is the relationship “in direction δ”. Once 
ϕ r 

RB has been computed, the degree of truth of the statement “A is in relationship 
R with B” (i.e., “A is in direction δ of B”) can be calculated for any object A, the 
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same way as mentioned in Section 4.2. Preliminary experiments [28] [38], where 
the characteristics of force field-based templates are examined and compared with 
those of basic directional templates, show the interest of the approach. Note that 
the connection between the two pairs (ψ 

AB, ϕ r 
AB

 ) and (ψ r 
B  , ϕ r 

RB
 ) in Figs. 6 and 7 

can be elegantly expressed by the equation below: 
 

 ϕr−1
AB (θ) θ dθ

θ∫ = µA (p)ψr
B (p) dp

p∫  (24) 

7 On the design of efficient algorithms 

F-histograms and F-templates lend themselves to the design of efficient algo-
rithms, whether the Euclidean space is of dimension two or three, the objects are 
crisp or fuzzy, in raster or vector form. Section 7.1 illustrates some of the typical 
steps in the design process. These steps are briefly described in Section 7.2, from a 
higher perspective. An important issue (the selection of a set of reference direc-
tions) is covered more extensively in Section 7.3. 

7.1 Illustrative example 

How can (10) and (14) be adapted to the case of 2D raster data? Consider two ob-
jects A and B, a direction θ and a point p. As illustrated in Fig. 8a, the line Sθ(p) 
might pass through some pixels i and j of A and B, with nonzero membership de-
grees µA(i) and µB(j). These pixels can be determined by rasterizing Sθ(p) using a 
line-drawing algorithm. They project on Sθ(p) as segments Ii and Jj. Let I=Aθ(p) 
and J=Bθ(p). The value of  F (θ, I , J )  may be calculated as follows:  

 

 
 
F (θ, I , J ) = µA (i) µB ( j) ϕ

q∈J j∫p∈Ii∫ (θ, p,q) dp dqj∑i∑  (25) 
 

(25) then replaces (14). Moreover, the integral in (10) can be approximated by a 
finite sum; (10) may be replaced with 

 

 
  
F AB (θ) = εθ F (θ,Aθ (pk ),Bθ (pk ))k∈Z∑ , (26)  

 

where εθ and the points pk are as suggested in Fig. 9a. Symbolic computation of 
the double integral in (25) yields closed-form expressions that do not depend on A 
nor B. See Fig. 10. In the end, numerical computation of  F (θ, I , J )⎯ and 
 F

AB (θ)⎯ translates into multiple instantiations of these expressions.  
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Fig. 8   The sections Aθ(p) and Bθ(p) are decomposed into segments Ii and Jj. In the case of fuzzy 
objects (left), all segments are of the same length. In the case of crisp objects (right), the seg-
ments Ii are mutually disjoint, and the segments Jj also. 

 
 
 
 
 
 
 
 
 
 

Fig. 9   In the case of raster data (left), the lines Sθ(pk) partition the objects into sets of adjacent 
pixels; the distance between two consecutive lines is constant. In the case of vector data (right), 
the lines pass through the vertices of the objects and partition the objects into trapezoids; the dis-
tance between two consecutive lines varies. 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 

 
 

 
 

        Fig. 10   Symbolic integration. Several cases must be considered, depending on r 
             and on the position of Ii relative to Jj. These segments are of length .  
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For crisp objects, (25) can be rewritten as follows: 
 

 
 
F (θ, I , J ) = ϕ

q∈J j∫p∈Ii∫ (θ, p,q) dp dqj∑i∑ , (27) 
 

where the segments Ii and Jj are now as illustrated in Fig. 8b. In this case, sym-
bolic computation of the double integral yields more expressions than as in Fig. 
10.  F

AB (θ) , however, computes much faster, since each instantiation corresponds 
to the process of a batch of pairs of object pixels instead of the process of a single 
pair. Actually, (27) can be used in place of (25) whether the objects are crisp or 
fuzzy: the idea is to exploit (15), i.e., it is to handle the fuzzy objects through their 
level cuts (which are crisp objects). Equations (15) and (27) lead to shorter proc-
essing times than (25) if one object is crisp and the other fuzzy with few member-
ship degrees. Note that all of the above holds in the case of 3D raster data: replace 
the word ‘pixel’ with ‘voxel’, and the sum in (26) with a double sum. Vector data 
require more important changes: these data can be handled very efficiently, be-
cause the objects can be partitioned into bigger blocks (Fig. 9b); however, the 
symbolic integration step is more complex and generates a higher number of 
closed-form expressions.   

7.2 Typical steps 

Typical steps in the design of efficient algorithms include the following. First, a 
set of reference directions is chosen (more on this in the next section). Then, for 
every reference direction θ, a partitioning of the space is undertaken. When deal-
ing with vector data, each block of the partition is a region of space delimited by 
two lines in direction θ (2D case), or by planes that include such lines (3D case). 
When dealing with raster data, each block corresponds to a raster line in direction 
θ, or to a region of the image defined by the union of such lines. The blocks, in 
turn, cut the considered object(s) into pieces, and vice versa. The whole partition-
ing procedure can rely on efficient computer graphics software and hardware 
tools. For example, line-drawing algorithms such as Bresenham’s [6] are often 
implemented in the firmware or hardware of graphics cards, and graphics accel-
erators provide operations such as polygon clipping implemented in high-speed 
hardware. Once the partitioning procedure is completed, the different blocks can 
be processed independently from each other. The same, of course, applies to the 
reference directions. The algorithms for the computation of F-histograms and F-
templates are, therefore, highly parallelizable. When equations like, e.g., (13) or 
(22) are involved, an additional and more common way to increase efficiency is to 
harness the power of integral calculus. A definite integral can be approximated by 
a finite sum. One may use, e.g., a Riemann sum, the trapezoidal rule, Simpson’s 
rule, or any other Newton-Cotes rule. Different algorithms may actually result 
from this procedure, depending, e.g., on whether the integral is written in Carte-
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sian or polar coordinates. In some cases, however, symbolic integration can be 
performed and closed formulas obtained. The domain of integration and the inte-
grand usually involve various parameters. One single integral may therefore corre-
spond to one, a few, tens, or even hundreds of formulas, which can be hard-coded 
and organized in a tree structure. The appropriate formula can then be found and 
instantiated at run-time, when the values of the parameters are known. The proce-
dure is particularly efficient. Note that crisp and vector data tend to lend them-
selves to symbolic integration more easily than fuzzy or raster data. 

7.3 Set of reference directions 

An important issue is how to choose the set of reference directions. Practically, of 
course, only a finite number K of directions can be considered. The higher K, the 
more complete the collected F-histogram data, or the more accurate the computed 
F-template values, but the longer the processing time. Usually, the reference di-
rections are so chosen as to satisfy the following properties: they are evenly dis-
tributed in space; they include the primitive directions (right and left, above and 
below, front and behind); if θ is a reference direction, its opposite −θ (which can 
be processed at the same time) also is a reference direction.  

In the 2D case, the standard procedure is therefore to pick the directions de-
fined by the angles 2πi/K, for all i in 0..K−1, with K a multiple of 4. The value for 
K can be as low as 4, and arbitrarily high, but a few tens to a few hundreds of ref-
erence directions, with a maximum of 360, seem to be necessary and sufficient for 
most applications. Note that when the objects are in raster form, K is naturally lim-
ited by the size of the image. In an n×n image, for example, the largest set of di-
rections worth considering is a set of 8n−8 unevenly distributed directions [35] [36]. 

In the 3D case, finding an arbitrarily large set of evenly distributed directions 
is not obvious. One might want to pick the directions ωp/|ωp|, for all vertices p of 
a regular convex polyhedron centered at ω. However, there exist only 5 regular 
convex polyhedra (the Platonic solids), and none has more than 20 vertices. A so-
lution is to calculate (e.g., using a random-start hill-climbing heuristic) the equilib-
rium positions, on a sphere centered at ω, of K points p that repulse each other like 
equally charged particles [37]. Obviously, to get the same density of information, 
many more reference directions are needed in 3D than in 2D. For example, 30 di-
rections in 2D correspond roughly to 300 directions in 3D (neighbor particles on 
the unit sphere will then be about 2π/30 apart). 300 directions in 2D correspond to 
30,000 in 3D. If the running time of the algorithm is linear in K, which is typical, 
one should definitely consider parallel computing. Some algorithms, however, fo-
cus on the calculation of intermediate data, and their running time is practically 
independent of K [35] [36]. Also note that K can be dynamically increased: since 
directions are handled independently from each other, additional ones can be con-
sidered in subsequent stages, depending on results and time constraints. 
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A peculiar situation is worth mentioning: it may happen that FAB(θ)=0 for all 
reference directions θ (Fig. 11a). One may then force FAB(θ0) to FAB(qp/|qp|), 
where p is an arbitrary point of A and q is an arbitrary point of B, and where θ0 is 
the reference direction closest to qp/|qp| (i.e., the dot product of the two vectors is 
maximum). In this situation, however, the objects might be too far apart, and a 
simpler model than the F-histogram might be sufficient (e.g., a model based on 
minimum bounding rectangles or boxes); the objects might not be appropriate for 
the model (e.g., clouds of scattered, small connected components); the number of 
reference directions might be too low (note that this number can be easily adapted 
to the objects, as illustrated in Fig. 11b). Similar comments apply to F-templates 
(Fig. 11c). 
 
 
 
 
 
 
 
 
 
 (a)    (b)     (c) 

 
 

Fig. 11   Each dark gray rectangle represents (the minimum bounding rectangle of) some 2D ob-
ject. The reference directions are the horizontal, vertical and diagonal directions. (a) All com-
puted F-histogram values are 0. (b) The number of reference directions may be chosen depend-
ing on the angle between the two lines. (c) The F-template values in the black areas must be 
calculated independently from the others. These areas are outside the region of interest (light 
gray rectangle) defined by the reference directions. The higher the number of directions, the 
larger the region of interest.  

8 Applications and related literature 

Numerous applications of the general approach described in this paper have been 
studied, and new applications continue to be explored. Here is a review of the re-
lated literature.  

Relative position descriptors like force histograms are orthogonal—and, there-
fore, constitute a natural complement—to color, texture, and shape descriptors. 
Reference [25] illustrates the point and explores the behavior of force histograms 
towards affine transformations. The findings, supported by experiments on syn-
thetic and real data, suggest that these histograms would yield powerful edge at-
tributes in attributed relational graphs and could be of great use in scene matching. 
The latter idea is examined and validated in [43]. The authors present a system 
able to determine whether two images acquired under different viewing conditions 
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capture the same scene. If the answer is positive, the system produces a mapping 
of objects from one view to the other and recovers the viewing transformation pa-
rameters. The approach is based, of course, on the computation and geometric 
properties of force histograms. 

The F-histogram F AA is called the F-signature of the object A [23]. In [57], F-
signatures are used to classify orbits and sinuses represented by drawings of crani-
ums from the 3rd century A.D. The results are consistent with human responses, 
and the approach compares favorably with standard ones based on geometric crite-
ria and Fourier descriptors. Reference [49] focuses on F-signatures of fuzzy ob-
jects. A region of a grayscale image is seen as a fuzzy object whose membership 
grades correspond to intensity values. An F-signature of this object can, of course, 
be calculated. In [49], however, F-signatures of its α-cuts are calculated instead, 
and then arranged in layers to form a 3D signature. The approach makes it easier 
to discriminate regions with similar shapes but different gray levels. It is extended 
to color images and validated using real data. Note that F-signatures of 2D objects 
can be easily expressed as periodic functions. For storage efficiency and noise re-
duction purposes, they can therefore be approximated based on the calculation of 
their Fourier descriptors. This is the approach adopted in [50], which deals with 
the recognition of graphical symbols in technical line drawings. The methodology 
is demonstrated using architectural drawings. Reference [41] takes advantage of 
another characteristic of F-signatures: they do not require objects to be connected. 
The paper presents a geospatial information retrieval and indexing system. It 
brings a diverse set of technologies together with an aim of allowing image ana-
lysts to more rapidly identify relevant imagery. In particular, the system is able to 
retrieve database satellite images with man-made objects in specific spatial con-
figurations. This ability comes from the fact that the several objects in a given 
configuration form a single disconnected object, an F-signature of which can be 
calculated.  

In [27], degrees of truth calculated from force histograms provide inputs to a 
fuzzy rule base that produces intuitive, human-like linguistic descriptions of rela-
tive positions. The system is tested on regions from laser radar range images of a 
complex power plant scene. The same system is used in [45], where a mobile ro-
bot describes its environment based on readings from a ring of sonar sensors. Ex-
periments are carried out with the Nomad simulator. Note that, in [27], the force 
histograms are computed from raster data, the spatial reference frame is implicitly 
determined by the reader’s location (world view), and the linguistic descriptions 
involve directional relationships only. In [45], however, the histograms are com-
puted from vector data, the reference frame is determined by the intrinsic orienta-
tion of the robot (egocentric view), and surroundedness is also considered. As a 
further step, the system is coupled with a multimodal robot interface [46]. This 
time, spatial information is extracted from an evidence grid map, which is built 
from range sensor data accumulated over time. Real examples of natural dialogs 
are presented. They include both robot-to-human feedback and human-to-robot 
commands. Another system for generating linguistic descriptions is worth men-
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tioning. In [32], the descriptions are generated from Allen F-histograms [31] [54] 
instead of force F-histograms, and they are built around topological relationships. 
The approach is validated using several sets of real and synthetic data. References 
[27] and [32] show the specificity and limits of each type of histogram, and they 
show how each one can contribute to the generation of natural language expres-
sions that capture the essence of relative positions. Finally, let us mention [44], 
which deals with hand-sketched route maps. Such a map does not generally con-
tain complete map information and is not necessarily drawn to scale, but yet it 
contains the correct qualitative information for route navigation. The system pre-
sented in [44] is able to generate, from the sketch, a natural language description 
of the route to follow. The methodology is based on the use of force histograms as 
relative position descriptors. It is demonstrated using example sketches drawn on a 
handheld PDA. 

The concept of the F-template is too recent to be the subject of application pa-
pers. At this time of writing (August 2009), [30], [28] and [38] have not even been 
published yet. We believe, however, that there is a real potential for the concept: 
first, because of the duality between the F-template and the F-histogram⎯and the 
fact that the latter has aroused significant interest, as illustrated above; second, be-
cause spatial templates have already been the subject of application papers [48] [4] 
[21] [9] [47]; third, because most of these papers make use of basic directional 
templates⎯and the F-template approach provides new, efficient algorithms for 
their computation [30]; last, because force field-based templates might in many 
cases be preferable to basic directional templates [28] [38]. Let us briefly describe, 
e.g., the work in [9] and [21]. As pointed out by Logan and Sadler in [22], spatial 
templates can be combined to represent compound relationships to reference ob-
jects. In [9], (normalized) distance maps and basic directional templates are com-
bined using fuzzy conjunctions and disjunctions. The template resulting from such 
a fusion is used to construct a new external force for a deformable model⎯a force 
that expresses constraints about spatial relationships. The approach is shown to 
improve the segmentation of brain subcortical structures in 3D magnetic reso-
nance images. Reference [21] describes an image retrieval system that can handle 
queries involving spatial relationships. The images are represented by fuzzy at-
tributed relational graphs: each node in the graph represents an image region; each 
edge represents the relationships between two regions and has an attribute whose 
value is a tuple of degrees of truth calculated from basic directional templates. The 
system is tested using synthetic and natural image databases.  

9 Directions for future work 

Several algorithms for the computation of force histograms in the case of 2D 
raster data have been implemented and are worth considering. The traditional al-
gorithm [23] [33] runs in O(Kk2N√N) time, where K is the number of directions in 
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which forces are considered, k is the number of possible membership degrees, and 
N is the number of pixels in the image. It is based on (15) and (27). A variant of 
the algorithm runs in O(KN√N) time and is based on (25). A second variant runs 
in O(KkN√N). A third variant, dedicated to the computation of constant force his-
tograms (r = 0), runs in O(KN) [53]. The traditional algorithm and its variants rely 
on (10). A completely different algorithm, the correlation-based algorithm [35] 
[36], is in O(NlogN) and relies on (21). Which algorithm or variant performs bet-
ter under which conditions is an issue discussed in [36]. From a theoretical point 
of view, extension to 3D raster data is straightforward. An implementation of the 
extended traditional algorithm is presented in [37]. The extended correlation-based 
algorithm, however, has not been implemented yet. This is the major missing 
piece for the handling of raster data. 

Vector data have received much less attention. Only one algorithm has been 
developed so far for the computation of force histograms in the 2D case [23] [33]. 
The algorithm runs in O(Kk2 η log η) time, where η is the total number of object 
vertices, and relies on (10) and (15). A variant runs in O(Kk η log η). The current 
implementation, however, can only handle disjoint crisp objects. Extension to 3D 
vector data can be easily achieved. For example, partition the Euclidean space us-
ing equidistant parallel planes. Each plane Pi intersects the 3D objects A and B in 
the 2D objects Ai and Bi. Compute the histograms ϕr

AiBi using the algorithm for 2D 
vector data. For any direction θ in the planes, ϕr

AB(θ) can be approximated by the 
Riemann sum Σi ϕr

AiBi (θ)  d, where d is the distance between two consecutive 
planes. This algorithm, however, has yet to be implemented. 

There are also directions, for future research, of a more theoretical nature. For 
example, given the F-histogram F AB, is it possible to find all the pairs (C, D) of 
objects such that F AB = F CD ? Only the beginnings of an answer are given in [25]. 
Given the F-histograms F AB and F BC, is it possible to find F AC ? Another question 
concerns the design of affine-invariant relative position descriptors. We know that 
the histogram of forces reacts “well” to affine transformations, in a mathemati-
cally predictable way (Section 5.1). However, the normalization procedure de-
scribed in [25] leads to a similarity-invariant relative position descriptor, not to an 
affine-invariant descriptor. Other normalization procedures should be developed. 
On a different note, it would be worth investigating new fuzzy models of “sur-
round” and “between”, based on dedicated F-histograms. Finally, let us come 
back to the systems for generating linguistic descriptions (Section 8). Further 
mechanisms to adapt these systems to individual users should be researched. Very 
preliminary work is reported in [5] and [51].  

We have not talked about F-templates in this section. Writing another long list 
of directions for future research would be useless. There is, indeed, only one ques-
tion that seems to really matter at this point, and this question summarizes it all: 
investigate the transfer of models, properties, algorithms, etc., from F-histograms 
to F-templates, using the duality between the two concepts. 
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