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ABSTRACT 
Spatial relationships play an important role in many 
domains of computer science, including computer vision, 
Geographic Information Systems (GIS), and medical 
imaging. In previous work, we introduced the notion of 
the histogram of forces. It is a quantitative representation 
of the relative position between two objects. It is sensitive 
to the shape, size, and orientation of the objects. The 
objects considered so far could be disjoint or intersecting, 
they could be bounded or unbounded, convex or concave, 
available in raster or in vector form, but they had to be 
two-dimensional. In this paper, we show that three-
dimensional raster data can be handled as well. By 
adopting proper optimization procedures, the presented 
technique provides a fast and reliable way for 
representing the relative position between two 3D objects. 
The results of experiments conducted on synthetic and 
real data validate our approach. 
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1.  Introduction 
 
The spatial organization of a scene is often expressed in 
terms of the spatial relationships between the objects or 
regions it contains. Representations that capture the 
essential attributes of spatial relationships between objects 
are therefore of critical importance in many fields, such as 
pattern recognition, spatial reasoning, scene understanding, 
spatial databases, and more. 

Relative positions are often assessed by considering 
only some very simple geometric characteristics. For 
instance, the object can be approximated by its centroid 
[1], its minimum bounding rectangle [2], its minimum 
bounding box [3] or bounding right parallelepiped [4]. All 
of these methods suffer from oversimplification, as they 
do not take into account the true shape of the object. 

The notion of the histogram of angles was introduced 
by Krishnapuram et al. [5] and Miyajima and Ralescu [6]. 
It is a shape-sensitive representation of the relative 
position between two objects. The calculation of the 

histogram of angles relies on the calculation of angles 
defined by all pixel pairs (for 2D objects) or voxel pairs 
(for 3D objects). This computation, however, is expensive, 
particularly in the case of three-dimensional data. 
Furthermore, histograms of angles cannot be computed 
from vector data. 

In [7] and [8], Matsakis and Wendling proposed the 
notion of the histogram of forces. In the 2D case, the force 
histogram generalizes and supersedes the angle histogram. 
It encapsulates structural information about the objects as 
well as information about their spatial relationships. It is 
sensitive to the shape of the objects, their orientation and 
their size. It is also sensitive to the distance between them 
and allows explicit and variable accounting of metric 
information. Moreover, the force histogram offers solid 
theoretical guarantees and nice geometric properties. It 
ensures fast and efficient processing of vector data as well 
as of raster data, and enables the handling of fuzzy objects 
as well as of crisp objects, intersecting objects as well as 
of disjoint objects, and unbounded objects as well as of 
bounded objects. The applications are numerous. For 
instance, relative positions can be described in terms of 
spatial relationships modeled by fuzzy relations. They can 
also be represented by linguistic expressions, for scene 
description or human-robot communication in natural 
language [9]. 

In this paper, the notion of the histogram of forces is 
extended to handle three-dimensional objects. Like in the 
2D case, a set of evenly distributed reference directions is 
considered. It is generated using a random-start hill-
climbing heuristic. Then, to lighten the computational 
burden, irrelevant directions are detected and dropped 
before further processing. Forces in the remaining 
directions are computed very much like in the 2D case. 

The remainder of the paper is organized as follows. In 
Section 2, we briefly explain how angle histograms and 
force histograms can be associated with two-dimensional 
objects. In Section 3, we show that 3D objects can be 
handled as well. Section 4 presents examples and a 
comparative study where force histograms are matched 
against angle histograms. Conclusions are given in 
Section 5. 

 



2.  The Case of 2D Objects  
 
In this section, the symbols A and B denote two 2D 
objects in the plane, n is a positive integer multiple of 4, 
and Dn is the set {2πi/n}i∈0..n−1. The values 2πi/n define 
directions, called reference directions. They are evenly 
distributed in the plane and include the four primitive 
directions 0 (horizontal right), π/2 (vertical above), π 
(horizontal left) and 3π/2 (vertical below). Moreover, if θ 
belongs to Dn, then the opposite direction θ+π (or θ−π) 
also belongs to Dn. 
 
2.1  Angle Histograms 
 
Here, we assume that A and B are available in raster form, 
i.e., A and B are two sets of pixels. The histogram of 
angles associated with the pair (A,B) represents the 
position of A relative to B. It is a function �AB from ℜ 
(the set of real numbers) into ℜ+ (the set of non-negative 
real numbers). For any two pixels p and q with p≠q, let qp 
be the oriented line that runs from the center of q to the 
center of p. For each θ∈ℜ, the value �AB(θ) is the 
number of pixel pairs (p,q)∈A×B such that the direction 
of qp is θ. In practice, however, an a posteriori 
digitization of the set of directions needs to be carried out. 
�

AB(θ) is defined for reference directions only (i.e., for 
values θ∈Dn): it is the number of pixel pairs (p,q)∈A×B 
such that the direction of qp is best approximated by θ 
(among all reference directions). Note that all pixel pairs 
have to be considered, whatever the number n of 
reference directions. Therefore, n has a negligible impact 
on the processing time of the angle histogram. One 
example is shown in Fig. 1. 
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Fig. 1.  Angle histograms. In this example, 360 reference directions 
were considered (n=360).   
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Fig. 2.  Force histograms. FAB(θθθθ) is the scalar resultant of forces that 
tend to move B in direction θθθθ (black arrows). In this example, FAB is 
the histogram of constant forces. 360 reference directions were 
considered (n=360).     
 

2.2  Force Histograms 
 
A histogram of forces FAB is also a function from ℜ into 
ℜ+ that represents the position of an object A relative to 
another object B. For any direction θ, the value FAB(θ) is 
the scalar resultant of elementary forces. These forces are 
exerted by the points of A on those of B, and each tends 
to move B in direction θ (Fig. 2). You can imagine, for 
instance, gravitational forces between two flat metal 
plates of uniform density and constant and negligible 
thickness. Here, however, we are not limited by the laws of 
physics. If the elementary forces do not depend on the 
distance between the points considered (i.e., constant 
forces) then F is denoted by F0. It can be shown [7][8] that 
the histogram of constant forces coincides with the 
histogram of angles, but without its weaknesses. 

In practice, an a priori digitization of the set of 
directions is carried out. FAB(θ) is computed for the n 
reference directions only, and the processing time is 
proportional to n. Actually, the letter F denotes a 
numerical function. For any oriented line ∆, the value 
F(A∩∆,B∩∆) is the scalar resultant of elementary forces. 
These forces are exerted by the points of A∩∆ on those of 
B∩∆, and each tends to move B in the direction pointed 
by ∆. You can imagine forces between aligned straight 
metal rods of uniform density and constant and negligible 
diameter. In the case of raster data, each rod represents a 
set of adjacent pixels (of either A or B) that are batch 
processed, and the computation of each FAB(θ) comes 
down to the computation of a finite number of values 
F(A∩∆,B∩∆). Note that the function F is defined by a set 
of algebraic expressions that are determined using integral 
calculus, and then hard coded [7][8].  
 
3.  The Case of 3D Objects 
 
In this section, the symbols A and B denote two 3D 
objects available in raster form, i.e., A and B are two sets 
of voxels. From both theoretical and practical points of 
view, the notion of the histogram of angles can easily be 
extended to handle such objects. In this section, we will 
limit our discussion to the extension of the notion of the 
histogram of forces. The principle is the same. For any 
direction 

��
 (now defined by a unit vector), the value 

FAB(
��

) is the scalar resultant of elementary forces. These 
forces are exerted by the points of A on those of B, and 
each tends to move B in direction 

��
. Only a finite 

number of values FAB(
��

) are considered: 
��

 is taken from 
some set Dn of reference directions. The computation of 
each FAB(

��
) comes down to the computation of a finite 

number of values F(A∩∆,B∩∆), where ∆ denotes an 
oriented line and F the same numerical function as in 
Section 2.2. From a practical standpoint, however, the 
problem is not as simple: 3D raster data tends to be much 
more voluminous than 2D data, and proper optimization 
methods have to be adopted. 
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3.1  Reference Directions 
 
The n reference directions should satisfy the following 
constraints: 
 

• They should be evenly distributed in the space. 
• They should include the six primitive directions 

(±1,0,0) (right/left), (0,±1,0) (above/below) and 
(0,0,±1) (front/behind).  

• If �
�

 belongs to the set Dn of reference directions, 
then the opposite direction − �

�
 should also 

belong to Dn. 
 

These constraints imply that n=6+8m, where “6”  
corresponds to the 6 primitive directions, “8”  to the 8 
regions delimited by the XY, XZ and YZ planes, and “m”  
to the number of reference directions in each region. 
Contrary to the 2D case, the term “evenly distributed”  can 
be given different meanings and, for most values n, the 
distribution of n directions in the 3D space cannot be 
perfectly even. Bourke describes a simple random-start 
hill-climbing heuristic for spreading points evenly on a 
sphere [10]. First, points are randomly generated on the 
sphere. The points repulse each other, and an iterative 
process allows a stable configuration to be found. We 
slightly modified this heuristic to populate Dn and make 
sure that the second and third constraints are satisfied. 
Examples are shown in Fig. 3. 

 

       
Fig. 3.  Two sets of reference directions: D38 (left) and D110 (right). 
 
3.2  Relevant Directions 
 
A reference direction �

�
 is relevant if FAB( �

�
) ≠ 0, i.e., if 

there exists an oriented line ∆ whose direction is �
�

 and 
such that A∩∆≠∅ and B∩∆≠∅. Otherwise, the direction 
is irrelevant, and need not be considered when computing 
FAB. A simple and rapid test allows us to detect most of 
the irrelevant directions and, therefore, save computational 
time. Consider a reference direction �

�
= (x, y, z) and the 

plane maxθ
�

 defined as follows: 
 

•    If  max { x, y, z}  = x  then maxθ
�

 is the YZ plane. 

•    If  max { x, y, z}  = y  then maxθ
�

 is the XZ plane. 

•    If  max { x, y, z}  = z  then maxθ
�

 is the XY plane. 
 

Now, consider the Minimum Bounding Boxes (MBBs) of 
the two objects A and B and project them onto maxθ

�
 along 

the direction �
�

 (Fig. 4). The resulting polygons are 
denoted by A ��  and B �� .  I f  A ��  ∩ B ��  = ∅, then �

�
 is  

 
 

(a)                                                      (b) 
 

Fig. 4.  Relevant directions.  (a) The plane maxθ
�

 is the YZ plane, and 
A ��  ∩∩∩∩ B �� ≠≠≠≠ ∅∅∅∅. The reference direction �

�
 might be relevant and 

should be considered.  (b) maxθ
�

 is the XZ plane, and A ��  ∩∩∩∩ B �� = ∅∅∅∅. 
The direction �

�
 can be ignored. 

 
 
irrelevant and should be ignored, otherwise �

�
 may be 

relevant and should not be dropped. The intersection of 
the convex polygons A ��  and B ��  can be determined using, 
e.g., O’Rourke’s linear algorithm [11]. 
 
 
3.3  Relevant Lines 
 
Consider a reference direction �

�
 that might be relevant 

according to the test described in Section 3.2. Let ∆ be an 
oriented line with direction �

�
. This line ∆ is relevant if 

F(A∩∆,B∩∆) ≠ 0, i.e., if A∩∆≠∅ and B∩∆≠∅. 
Otherwise, it is irrelevant, and need not be considered 
when computing FAB( �

�
). A second test allows us to 

detect most of the irrelevant lines and, therefore, save 
additional computational time. Moreover, a set of 
“canonical”  lines that might be relevant—according to 
this second test—can be rapidly determined and used to 
assess FAB( �

�
). 

The intersection A ��  ∩ B ��  (which is non-empty) is 
rasterized, i.e., approximated by a set R (A ��  ∩ B �� ) of 
pixels (A ��  ∩ B ��  is included in the plane maxθ

�
, which is 

either the XY, the XZ or the YZ plane). This is illustrated 
by Fig. 5. The rasterization can be performed using any 
standard algorithm (see, e.g., [12]). We have to make sure, 
however, that the pixels of R(A ��  ∩ B �� ) completely cover 
the surface A ��  ∩ B �� . 

Now, for each pixel p of the plane maxθ
�

, let ∆p be the 
oriented line that runs in direction �

�
 through the center of 

p. This line might be relevant if p belongs to R(A ��  ∩ B �� ). 
It is irrelevant otherwise. Let α be the angle between maxθ

�
 

and a plane perpendicular to �
�

 (Fig. 6). It is easy to show 
that  the value  [Σ p ∈ R (A ��  ∩ B �� )  F(A∩∆p,B∩∆p)] cos(α)  is 
a good approximation of FAB( �

�
). Remember that the 

symbol F denotes the same numerical function as in 
Section 2.2. It is defined by a set of algebraic expressions 
that are determined using integral calculus, and then hard 
coded [7][8]. At this stage, FAB( �

�
) can therefore be 

computed.  
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Fig. 5.  Rasterization of the intersection A ��  ∩∩∩∩ B �� . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Relevant lines. Here, the plane maxθ
�

 is the YZ plane. We have: 
A∩∩∩∩∆∆∆∆p≠≠≠≠∅∅∅∅ and B∩∩∩∩∆∆∆∆p≠≠≠≠∅∅∅∅. Therefore, F(A∩∩∩∩∆∆∆∆p,B∩∩∩∩∆∆∆∆p) ≠≠≠≠ 0, and the 
oriented line ∆∆∆∆p is relevant. The plane represented by the gray 
parallelepiped is perpendicular to �

�
. With maxθ

�
, it makes the angle αααα.  

 
4.  Experiments 
 
Two series of experiments were performed, on real and 
synthetic data. The aim of the first series was to compare 
force histograms with angle histograms in terms of 
computational efficiency and quality of representation. 
The aim of the second series was to illustrate a typical 
application of the histogram of forces. 
 
4.1  Force Histograms vs. Angle Histograms 
 
The 3D objects considered in the first series of 
experiments were two concentric objects: a sphere A and 
a shell B, as shown by Fig. 7. The values �AB( �

�
) and 

FAB( �
�

), therefore, were expected not to depend on �
�

. 
The results given in Fig. 8 demonstrate that force 
histograms preserve space isotropy much better than angle 
histograms. Note that for bigger objects (i.e., higher 
values of r, r1 and r2), the force histograms get even flatter. 

Fig. 7.   Concentric objects. 

 

 
(a) Force histogram with n=46        (b) Angle histogram with n=46 
 

 
(c) Force histogram with n=102      (d) Angle histogram with n=102 
 

 
(e) Force histogram with n=566      (f) Angle histogram with n=566 

 
Fig. 8.  Isotropy. The F0 and angle histograms are associated with the 
pair of concentric objects shown in Fig. 7 (r=5, r1=10, r2=16) and 
computed using (a)(b) 46, (c)(d) 102 and (e)(f) 566 reference directions. 
 

An empirical evaluation of the efficiency of computing 
force and angle histograms was also conducted. The 
hardware used was a 2.4GHz Pentium 4 with 512MB of 
memory. The operating system was Windows 2000 and 
the implementation language was C. The results presented 
in Fig. 9a clearly show that force histograms are computed 
much faster than angle histograms. The main reasons are 
that not all voxel pairs are considered (a natural selection is 
induced by the a priori digitization of the set of directions 
in the space, see Fig. 9b) and many voxel pairs are batch 
processed (through integral calculus and the function F, as 
mentioned in Section 2.2). Angle histogram computation, 
on the other hand, requires all voxel pairs to be considered 
and processed one by one (the number of reference 
directions has a negligible impact on the processing time). 

        
  (a) Processing time (seconds)          (b) # of voxel pairs considered 
 
Fig. 9.  Computational efficiency. A: F0-histogram with forces 
computed in n=46 reference directions.  B: F0-histogram with n=102. 
C: F0-histogram with n=566.  D: angle histogram.  All histograms 
are associated with the pair of concentric objects shown in Fig. 7 (r=25, 
r1=40, r2=64). 
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4.2  A Typical Application 
 
A force histogram associated with a pair (A,B) of 3D 
objects can be graphically represented by a surface 
[FAB( �

�
)+r] �

�
. This surface is wrapped around a sphere 

of arbitrary radius r, and bumps on it indicate the presence 
of forces. Figs. 10 and 11 show the histograms of constant 
forces associated with a pair of synthetic objects and a 
pair of MRI objects. 

 
 

 
      (a) Objects                              (b) Force histogram F0
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Fig. 10.  Force histogram associated with a pair of synthetic objects. 
 
 

 
      (a) MRI of brain              (b) Brain slice         (c) Selected regions 
 

 
(d) 3D view of the regions                 (e) Force histogram F0

AB       
 

Fig. 11.  Force histogram associated with a pair of MRI objects. 
 
 

 
Propositions Synthetic Objects MRI Objects 
 

A is to the right of B 
 

0.77 
 

0.82 
A is to the left of B 0.00 0.00 
A is above B 0.16 0.36 
A is below B 0.17 0.00 
A is in front of B 0.13 0.12 
A is behind B 0.13 0.04 

 
Fig. 12.  Degrees of truth associated with the six primitive directions 
for both synthetic (Fig. 10) and MRI (Fig. 11) objects. 
 

 

 
The applications of the histogram of forces are 

numerous [9]. A typical application is the assessment of 
spatial relationships modeled by fuzzy relations. This is 
illustrated by Fig. 12, where each value belongs to the 
interval [0;1] and corresponds to the degree of truth of 
some proposition. For instance, 0 indicates that the 
proposition is completely false, and 1 that it is completely 
true. All degrees of truth are computed using the method 
described in [5]. They are computed, however, from the 
histograms of constant forces associated with the 3D 
objects, and not, as in the original work, from angle 
histograms associated with 2D objects. 

 
5.  Conclusions and Future Work 
 
The histogram of forces is a powerful representation of 
the relative position between two objects. In previous 
work, only 2D objects were considered. We have shown 
in this paper that three-dimensional raster data can be 
handled as well. The computation of force histograms is 
much more efficient than the computation of angle 
histograms. Moreover, space isotropy is much better 
preserved. In the future, we intend to further extend the 
notion of the histogram of forces and consider three-
dimensional vector data. 
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