
 

 

 

  

Abstract—A directional spatial relationship to a reference 

object (e.g., “east of the post office”) can be represented by a 

spatial template, i.e., a fuzzy subset of the Euclidean space. For 

each point of the space, the template indicates to what extent 

the relationship holds. The objects for which the relationship 

holds best can then be located. In previous work, we discussed 

the case of crisp 2D objects in raster form. We introduced a 

new algorithm for directional spatial template computation, 

which is faster, gives better results and is more flexible than its 

competitors. The present paper continues this line of research. 

The algorithm is extended to handle fuzzy objects and embed 

distance information. In existing models, only angular deviation 

is taken into account. Spatial distance, however, also contrib-

utes in shaping directional templates.  

I. INTRODUCTION 

PACE plays a fundamental role in human cognition. In 

everyday situations, it is often viewed as a construct 

induced by spatial relationships, rather than as a container 

that exists independently of the objects located in it. Spatial 

relationships, therefore, have been thoroughly investigated 

in many disciplines, including cognitive science, psychol-

ogy, linguistics, geography and artificial intelligence. They 

act as a connecting link between visually perceived data and 

natural language, and an important part of research naturally 

deals with two types of tasks: those related to the translation 

of visual information into linguistic expressions (e.g., 

automatic digital image analysis and description), and those 

related to the translation of linguistic expressions into visual 

information (e.g., query processing in spatial database 

systems). In this paper, we focus on directional (also called 

projective) relationships (e.g., front, south, above). The past 

ten to fifteen years have seen significant advancements in 

the development of mathematical and computational models 

of these relationships [1] [2] [3] [4] [5]. Tasks of the first 

type require from such models the capability to identify 

which relationships hold best between any two objects. 

Tasks of the second type require different capabilities. Given 

a directional relationship to a reference object (e.g., “east of 

the post office”), the models should be able to identify the 

objects for which the relationship holds best, and also to 

distinguish regions where it holds from regions where it does 

not hold. These regions, of course, blend into one another. 

Whether implicitly or explicitly, they are usually represented 
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by a fuzzy subset of the Euclidean space. Different names 

can be found in the literature (e.g., “fuzzy landscape” [6], 

“spatial template” [7], “applicability structure” [8], 

“potential field” [9]). Here, we will use the term “directional 

spatial template” (or “template”, for short). For each point of 

the space, the template indicates to what extent the 

relationship holds. Directional relationships defy precise 

definitions. The idea that fuzzy set theory should be applied 

was suggested more than thirty years ago [10] and has since 

been widely accepted.  

There exists a very simple and yet cognitively plausible 

way to model a template without sacrificing the geometry of 

the reference object (i.e., the object is not approximated 

through its centroid or minimum bounding rectangle). 

Computationally, however, exact calculation of the model in 

case of 2D raster data is prohibitively expensive, and a 

tractable approximation algorithm was proposed in [6]. We 

recently presented another approximation algorithm, which is 

faster, gives better results and is more flexible [11]. On the 

downside, only crisp objects were considered. This is a 

limitation, since image regions are often represented as 

spatial fuzzy sets, with the purpose of taking into account 

different types of imprecision. Possible sources of 

imprecision include our ignorance (e.g., extent of a mineral 

deposit), intrinsic vagueness (e.g., marshlands), image 

acquisition (e.g., spatial resolution) and processing (e.g., 

filtering procedures). In Section III, we show that our 

algorithm can easily be extended to handle fuzzy objects, 

while keeping its advantages. Although a directional 

template depends mainly on angular deviation, spatial 

distance to the reference object also contributes in its 

shaping [7] [12] [13]. The only models that do not ignore 

distance information, however, approximate the object 

through its centroid or minimum bounding rectangle (see, 

e.g., [8]). In Section IV, the issue is examined, and distance 

information is embedded into our model. Conclusions and 

directions of future work are given in Section V. First, in 

Section II, we introduce some notations and briefly review 

two important concepts. 

II. BASIC TEMPLATES AND F-TEMPLATES 

A. Notations 

In this paper,  denotes the set of real numbers, + the set 

of non-negative real numbers ( 0) and +
*
  the set of positive 

real numbers (>0). The symbol μ denotes a mapping from  

into [0,1], periodic with period 2 , even, decreasing on 

[0, ], and such that μ(0)=1 and μ( /2)=0. See Fig. 1. The 
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symbol P denotes the Cartesian plane. For any two points q 

and p in P, with q p, the expression (q,p) represents the 

direction of the vector qp. It is a value that belongs to the 

interval [ , ). An object is a non-empty subset of P. For 

any object B, any  in [0, ) and any p in P, the symbol 

Bp( ) denotes the intersection of B with the line that runs in 

direction  and passes through p. This intersection is a 

longitudinal section of B (or section, for short). See Fig. 2. 

The set of all possible longitudinal sections is denoted by L. 

Consider some section J, i.e., some element J of L. There 

exists a line J that includes J. This line runs in some 

direction J [0, ). Assume p J. The symbols J,p and 
+
J,p 

denote the two half-lines such that 
 

           J,p  
+
J,p = J  and  J,p  

+
J,p = {p} (1) 

  q J,p {p},  (q,p) = J    (2) 

  q
+
J,p {p},  (q,p) = J  (3) 

 

See Fig. 3. The notations above hold whether B is crisp or 

fuzzy. Note that a section J of a fuzzy object is a fuzzy 

subset of the crisp line J.  

B. Basic Templates 

In this section, A and B denote crisp objects. If you were 

told that A was perfectly (or somewhat, or not at all) in 

direction  (e.g., west, above-right) of B, where in space 

would you look for A? Cognitive experiments suggest that 

you would mentally build a spatial template [7] [12] [13]. 

Using essentially angular deviation, you would partition the 
  

 

Fig. 1.  Two possible functions μ. 

 

         

Fig. 2.  Points, angles, objects, and longitudinal sections. 

 

 

Fig. 3.  The line J runs in direction J and includes the section J. 

The point p splits J into two half-lines, J,p and 
+
J,p . 

The point q1 in J,p is such that (q1,p) = J  . 
The point q2 in 

+
J,p  is such that (q2,p) = J.      

space into regions where “in direction  of B” holds to 

various degrees. It therefore makes sense to represent this 

template by a mapping from P into , such as S
B
. 

 

  p  P,  S
B
(p) = supq B {p} μ( (q,p) ) (4) 

 

S
B
 defines a fuzzy subset of the Cartesian plane, called the 

basic directional spatial template induced by B in direction .  

As an example, Fig. 4b shows the basic template induced by 

some reference building in direction north. The brighter the 

area, the higher the membership value S
B
(p), i.e., the more it 

is considered that the area is north of the reference building. 

In case of raster data, the algorithm that corresponds to Eq. 4 

is straightforward. Computationally, however, it is prohibi-

tively expensive, and a tractable approximation algorithm 

was proposed in [6]. Note that S
B
 allows the proposition “A 

is in direction  of B” to be readily assessed for any object 

A. The degree of truth of this proposition can be set to, e.g., 

supp A S
B
(p), or infp A S

B
(p). These two values correspond 

to the most optimistic and most pessimistic points of view 

(Fig. 4c). They can also be interpreted as a possibility degree 

and a necessity degree [6]. 

 

    

Fig. 4.  (a) Campus map. (b) Basic spatial template: show me 
where the north is (relative to the reference building). (c) Are 

the buildings 1 to 9 north of the reference one? The white bars 

represent all possible points of view. 
 

C. F-Templates 

F-templates were introduced in [11] as a concept dual to 

that of the F-histogram (described much earlier in [14] [4]). 

Let  be a direction and B a crisp object. An F-template in-

duced by B in direction  is a mapping F
B
 from P into . In 

“F
B
”, the letter “F” denotes a function from P L into 

. (The letter “F” in the expression “F-template”, however, 

is not dissociable from the word “template”, and does not 

refer to any specific function.) The value F
B
(p) is a com-

bination of the F(p, ,Bp( )) values, for all  (Fig. 5). In the 

rest of this paper  
 

  p  P,   F
B
(p) = sup [0, ) F(p, ,Bp( ))  (5) 

 

Now, consider the function F defined as follows, for any 

crisp section J, direction , and point p aligned with J. 

 
 

(a) (b) 

(c) 
(a) (b) 



 

 

 

If  J=   or  J={p}  then  F(p, ,J)=0, (6) 

else  if  J J,p   then  F(p, ,J) = μ(( J  )  ), (7) 

else  if  J
+
J,p  then  F(p, ,J) = μ( J  ), (8) 

else  F(p, ,J) = max { μ(( J  )  ) , μ( J  ) }. (9) 
 

The corresponding F-template F
B
 is equal to the basic 

directional spatial template S
B
. In case of raster data, Eqs. 5 

to 9 lead to a new approximation algorithm, which is faster 

and gives better results than the algorithm presented in [6]. 

Details can be found in [11].  

 

         

Fig. 5.  F-templates. Each line gives an F(p, ,Bp( )) value. 
F B(p) is a combination of the F(p, ,Bp( )) values, for all . 

 

III. CASE OF FUZZY OBJECTS 

A. Equations 

Let  be a direction and B a fuzzy object. The basic 

directional spatial template S
B
 is naturally redefined as 

follows, where t denotes a fuzzy conjunction (i.e., a t-norm) 

and B(q) the membership degree of q in B. 
 

  p  P,  S
B
(p) = sup q  P {p} t ( B(q) , μ( (q,p) ) )        (10) 

 

This is nothing new (see, e.g., [6]). Note that Eqs. 4 and 10 

are consistent, i.e., if the object B is crisp, then Eq. 10 comes 

down to Eq. 4. Now, consider the function F defined as 

follows, for any point p, direction , and fuzzy longitudinal 

section J. Again, t denotes a fuzzy conjunction and J(q) the 

membership degree of q in J. 
 

 F(p, ,J) = max { sup q
J,p

{p}  t ( J(q) , μ(( J  )  ) ) ,  

   sup q +
J,p

{p}  t ( J(q) , μ( J  ) ) } (11) 
 

Equation 11 and Eqs. 6 to 9 are consistent. They give the 

same value if J is crisp. Moreover, it is easy to show that the 

directional F-template F
B
 defined by Eqs. 5 and 11 is equal 

to the basic directional template S
B
 as in Eq. 10. 

B. Implementation 

In case of 2D raster data, the algorithm that corresponds to 

Eq. 10 is straightforward but computationally expensive, 

since its complexity is quadratic in the number of pixels in 

the image. The directional F-template F
B
 defined as in Eqs. 

5 and 11 is computed very much like F-histograms, using the 

duality between the two concepts. Let us describe the 

principle of the algorithm. First, F
B
 is initialized to 0, and a 

finite set of reference directions evenly distributed in the 

Cartesian plane is selected (e.g., {0°,1°, … ,359°}). Then, 

for each  of that set, the image is partitioned into rasterized 

lines that run in direction . When growing such a line, the 

pixels q1, q2, …, qk are successively encountered. The values 

F
B
(qi) are updated as follows: 

 

maxMembership  0  

FOR  all i in 1..k  DO 

IF  B(qi)>maxMembership  THEN  maxMembership  B(qi)         

   F
B
(qi)  max { F

B
(qi) , t ( μ( ), maxMembership) } 

 

Besides this update procedure, the algorithm is the same as 

the algorithm presented in [11] (case of crisp objects). The 

reader can therefore refer to [11] for details on, e.g., optimi-

zation and template initialization (which is actually not 

F
B
  0). The complexity of the algorithm is linear in the 

number of pixels in the image and in the number of 

reference directions. 

As an example, Fig. 6 shows a fuzzy object and the F- 

template it induces in direction 180° (left). As stressed in 

[6] where Fig. 6a is taken from directional spatial 

templates induced by fuzzy structures can be of use in 

model-based pattern recognition. The object in Fig. 6a 

represents the left ventricle of a human brain, and was 

obtained through fuzzy segmentation of a magnetic reso-

nance image. 

 

       

Fig. 6.  (a) A fuzzy reference object. 

(b) The F-template it induces in direction 180°  (left). 

 

C. Comparative experimental study 

In this section, the basic directional spatial template S
B
 

(see Eq. 10) is compared with its approximations F
B
 (the 

F-template computed as in Eqs. 5 and 11) and M
B
 (the 

fuzzy landscape computed as in [6], using a morphological 

approach). Figures 7 and 8 illustrate well our findings. Basic 

directional spatial templates can be approximated faster and 

better by F-templates. By simply adjusting the number of 

reference directions, users can finely control the balance 

between quality and processing time (Fig. 7). Also note that 

F-templates induced by the same reference object B in 

different directions 1, 2, 3, … can be batch-processed [11]. 

Experiments were conducted on a 1.8GHz P4 with 1024MB 

memory, running Windows XP. The implementation lan-

guage was C++. In Eqs. 10 and 11, the function μ was as in 

Fig. 1a, and the fuzzy conjunction t was the algebraic product 

(i.e., as in [6] for the computation of M
B
). The images were 

8-bit images.   

(a) (b) 

B 

 



 

 

 

 

 

          
 

 

 

          
   
 
 

Fig. 7.  (a) Quality analysis. (b) Efficiency analysis. 

In (b), processing time for F
B
 depends on the number 

of reference directions (72, 144, 288 or 576). Processing 
time for S

B
 is about 10 seconds when the image width 

is 200, and about 150 seconds when the width is 400. 
 

IV. EMBEDDING DISTANCE INFORMATION 

A. Reason and principle 

Cognitive experiments show that a directional spatial 

template depends mainly on angular deviation [7] [12] [13]. 

They also show, however, that distance contributes in 

shaping the template. For a given angular deviation, the 

membership degrees are not constant. They fluctuate slightly, 

depending on the distance to the reference object. Moreover, 

the fluctuation varies from one angular deviation to another. 

Finally, when sufficiently far from the object, all the mem-

bership degrees usually drop. For example, if you were told 

that the soccer ball was to the right of the bench, you would 

not look for it hundreds of feet from the bench. Distance 

information, therefore, can help improve the modeling of 

directional spatial templates. 

Let FANG
B

 be an F-template that models the relationship “in 

direction  of B” based solely on angular deviation. 
 

 p P,  FANG
B

(p) = sup [0, ) FANG (p, ,Bp( )) (12) 
 

The function FANG can be defined as in Section III.A (Eq. 11). 

Now, assume we are able to model the relationship “close to 

B” by an F-template FDIST
B

. 
 

 p P,  FDIST
B

(p) = sup [0, ) FDIST (p, ,Bp( )) (13) 
 

FDIST
B

(p) can be seen as the degree of truth of the proposition 

“p is close to B”, and FDIST (p, ,Bp( )) as the degree of truth 

of “p is close to Bp( )”. The two functions FANG and FDIST allow 

 

 

     

     

     

Fig. 8.  Comparative example. The basic template S
B
 is 

approximated by the fuzzy landscape M
B
 (see [6]) and the 

F-template F
B
. The error images are contrast-enhanced. 

The darker, the higher the error. The average error of 

M
B
 is about five times the average error of F

B
. 

 
us to define a third F-template F

B
, where F = t ( FANG , FDIST ) 

and t denotes a fuzzy conjunction. For any p, 
 

F
B
(p)  =  sup [0, )  t ( FANG (p, ,Bp( )) , FDIST (p, ,Bp( ))) (14) 

 

F
B
(p) represents a logical assessment of the proposition “p 

is in direction  of B” based on both directional and distance 

information. Note that t(FANG
B

(p),FDIST
B

(p)) is another possible 

assessment of the proposition. t(FANG
B

,FDIST
B

), however, is not 

an F-template, and distance information is not really 

embedded into the model. The fusion of information from 

independent sources is a different problem, which will not 

be considered here. FANG
B

 and FDIST
B

 have been introduced for 

the only purpose of facilitating the reading. 

In Section IV.B, we assume the object B is crisp and we 

examine what is probably the simplest and most natural way 

to model the relationship “close to B”. We show that this 

model can be seen as an F-template FDIST
B

, which gives us a 

first candidate for the function FDIST in Eq. 14. We argue, 

however, that some properties of this function might not be 

(b) S
B
 computed in 47s  

(d) F
B
 computed in 0.51s  (c) M

B
 computed in 0.74s  

(a) Reference object  

(e) Error image |M
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B
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desirable. Our analysis leads us to introduce, in Section IV.C, 

another candidate for FDIST. The case of fuzzy objects is con-

sidered in Section IV.D and experimental results are pre-

sented in Section IV.E. 

B. First proposition 

According to Eq. 14, distance information can be embed-

ded into our model described by Eqs. 5 and 11 through a 

function FDIST. In this section, a first candidate for FDIST is 

presented. The distance between a point p and a crisp object 

B is usually defined as infq B pq, where pq denotes the 

Euclidean distance between p and q. The degree of truth of 

the statement “p is close to B” could therefore be set to 

h (infq B pq), where h is a continuous, non-increasing mapping 

from + onto [0,1]. The fuzzy subset of the Cartesian plane 

so defined can actually be seen as an F-template. In other 

words, it is possible to find a direction  and a function F 

from P L into [0,1] such that:  
 

p P,   F
B
(p) = sup [0, ) F(p, ,Bp( )) = h (infq B pq) (15) 

 

We assume here that any (crisp) longitudinal section J is the 

union i 1…n Ji of a finite number of pairwise disjoint seg-

ments. If J is empty, n is 0. Consider a point p aligned with J. 

Let zi be the length of the segment Ji and let yi be the 

distance between p and Ji. Equation 15 holds (for any ) 

when F is chosen such that 
 

 F(p, ,J) = h (min i 1..n g(zi,yi)) (16) 
 

with 
 

  (z,y)  +
2
,   g(z,y) = y (17) 

 

By convention, min i 1..0 g(zi,yi) = +  and h(+ ) = 0. Note 

that Eq. 16 can be replaced with Eqs. 18 and 19 below. This 

is illustrated by Fig. 9, and will be useful in the next sections.  
 

     (J  J,p  or J  
+
J,p) 

  F(p, ,J) = h (min i 1..n g(zi,yi)) (18) 
 

     (J  J,p   and  J  
+
J,p) 

 F(p, ,J) = max { F(p, ,J J,p) , F(p, ,J
+
J,p) } (19) 

 

The function F above is a candidate for FDIST in Eq. 14. There 

are two reasons, however, why one might not be happy with 

it. Consider F
B
 (as in Eq. 15). This spatial fuzzy set is not 

defined relative to the size of the object B. According to it, 

 

 

Fig. 9.  (a) J=J1 J2 is included in J,p or in 
+
J,p . The degree 

of truth of “p is close to J” is h(y2), i.e., h(min{y1,y2}) (Eq. 18). 

(b) J=J1 J2 is not included in J,p and is not included in 
+
J,p . 

The degree of truth of “p is close to J” is h(y1), 
i.e., max{h(y1),h(y2)} (Eq. 19). 

if John is close to the Olympic stadium when 100 feet from 

it, then Mary is close to her glasses when 100 feet from them. 

Moreover, a region of negligible size (e.g., a single pixel) 

can change F
B
 drastically (Fig. 10). Note that the same 

comment applies to all existing models of directional spatial 

templates (including our F-template model described by Eqs. 

5 and 11). The first issue could be addressed by setting the 

distance unit to the radius of the disk whose area is the area 

of B. One might try to resolve the second issue by opening B 

beforehand where “opening” should be understood in the 

context of mathematical morphology. In the next section, we 

design a function F that naturally answers both issues.  

C. Second proposition 

Here, another candidate for the function FDIST in Eq. 14 is 

presented. As in Section IV.B, the Greek letter  denotes a 

direction, J = i 1…n Ji  a crisp longitudinal section (empty if 

n is 0) and p a point aligned with J. The symbol zi denotes 

the length of the segment Ji and the symbol yi the distance 

between p and Ji. Our candidate, F, is defined by Eqs. 20 and 

21 below. The value F(p, ,J) can be seen as the degree of 

truth of the statement “p is close to J”. In this paper, we 

assume it does not depend on , nor on J.  
 

      (J  J,p   or  J  
+
J,p) 

  F(p, ,J) = h( i 1..n g(zi,yi)) (20) 
 

     (J  J,p   and  J  
+
J,p) 

 F(p, ,J) = max { F(p, , J J,p) , F(p, , J
+
J,p) } (21) 

 

As expressed by Eq. 21, the second case comes down to the 

first one. In Eq. 20 (which should be compared with Eq. 18), 
 

 

     

     
   
Fig. 10.  (a) B and .  (b) FANG

B , where FANG is defined as in Eqs. 6 

to 9 (with t = min and μ as in Fig. 1a).  (c) FDIST
B , where FDIST is as 

in Eqs. 16 and 17 (with h(x) = exp[ (x/100)2], for any x +).  

(d) min {FANG
B

 , FDIST
B }. The region of negligible size in the bottom- 

left part of (a) has a significant impact on (b), (c) and (d). 

(b) 

(a) (b) 

(d) (c) 
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(a) 



 

 

 

[G1]  g is a continuous mapping from + +
*
  into . 

[G2]  k +
*
  , z +, y +

*
  ,  g(kz,ky)=g(z,y) 

[G3]  (z,z') +
2
, y +

*
  ,  g(z,z'+y)+g(z',y)=g(z+z',y)  

 

We will come back to h later. The properties [G2] and [G3] 

are illustrated by Fig. 11. According to [G2], the value 

F(p, ,J), i.e., how close p is to J, is scale invariant. Now, 

suppose n=2, i.e., J=J1 J2. Consider the gap between J1 and 

J2. If it is of negligible size, then it has negligible impact on 

how close p is to J (Fig. 12a). This comes from [G1] and [G3] 

(assume, for now, that h is continuous). Moreover, if J2 is of 

negligible size, then J2 has negligible impact on how close p 

is to J (Fig. 12b). This also comes from [G1] and [G3], since 

[G3] implies that  y +
*
  , g(0,y)=0  (replace z' with 0). As 

mentioned in Section IV.B, we have here desirable properties, 

which could not be obtained using Eq. 18. The summation in 

Eq. 20 is a legitimate choice, consistent with the additivity 

of distances and segment lengths (Fig. 11b). A solution to 

the above system of functional equations is defined by 
 

  (z,y)  + +
*
  ,   g(z,y) = ln (1 + z/y) (22) 

 

where ln denotes the natural logarithm having base e 2.718. 

The solution is unique up to a multiplicative factor. Function 

g as in Eq. 22 also satisfies 
 

[G4]  (z,z') +
2
, y +

*
  ,  z>z'  g(z,y)>g(z',y) 

[G5]  z +, (y,y') +
*
  

2
,  y>y'  g(z,y)<g(z,y') 

[G6]  ( y +
*
  , g(0,y) = 0)  and  ( z +

*
  , lim y  0+ g(z,y) = + ) 

 

Its range is +. The role of h in Eq. 20 is to guarantee that 

F(p, ,J) falls into [0,1], and to allow flexibility in the 

shaping of the F-templates. Function h should be chosen 

depending on the application in hand, such that 
 

[H1]  h is a continuous mapping from + into [0,1]. 

[H2]  (x,x') +
2
,  x>x'  h(x) h(x') 

[H3]  h(0)=0  and  lim x +oo h(x) = 1 
 

Suppose n=1, i.e., J is a segment. According to [G4] and 

[H2], the longer J, the greater F(p, ,J), i.e., the more p is 

close to J. According to [G5] and [H2], the higher the 

distance between p and J, the less p is close to J. Once again, 

these are highly desirable properties. In the rest of the paper, 
 

 x  +
*
  ,  h(x) = max {0, min ( 1

k2 k1
[k2 +

1

1 ex
],1) } (23) 

 

with 0  k1 < k2 . When J is a segment, F(p, ,J) varies in a 

very simple and predictable way. This is easy to understand: 

replace x with ln (1 + z/y) in Eq. 23. If the distance y 

between p and J is less than k1 times the length z of J, then p 

is definitely close to J. If it is more than k2 times the length 

of J, then p is not close to J at all. See Fig. 13. Finally, note 

the following conventions, consistent with [G6] and [H3], 

for the evaluation of F(p, ,J) in Eq. 20: 
 

                             i 1..0 g(zi,yi) = 0  and  g(0,0) = 0  

           and  ( z +
*
  ,  g(z,0) = + )  and  h(+ ) = 1 (24) 

 

     
 

     
 

Fig. 11.  (a) Property [G2]. Scale invariance 

     (b) Property [G3]. Additivity. 

 

     
 

     
 

Fig. 12.  (a) A gap of negligible size has negligible impact. 

       (b) A segment of negligible size has negligible impact. 

 

 
 

Fig. 13.  When J is a segment, 
F(p, ,J) varies in a very simple and predictable way. 

 

D. Case of fuzzy objects 

In Eqs. 20 and 21, the symbol J denotes a crisp 

longitudinal section. Here, we show that fuzzy sections can 

be handled as well. First, notice that Eq. 22 can be rewritten 

as 
 

              (z,y)  + +
*
  ,   g(z,y) =  

1

v
 dv

y
y + z

 
(25) 

 

Consider a direction , a crisp longitudinal section J, and a 

point p aligned with J. Assume J is included in J,p  (resp. 
+
J,p). For any v +, let qv be the point of J,p (resp. 

+
J,p) 

whose distance to p is v. Finally, let J(qv) {0,1} be the 

membership degree of qv in J. The equality in Eq. 20 can 

now be rewritten as 
  

 F(p, ,J)  = h (  
J(qv )

v
 dv

0
+

) (26) 

 

At this point, the extension to fuzzy objects is straightfor-

ward. Equations 20 and 21 are replaced with the following 

definition for F(p, ,J). There are, again, two cases. Assume 

the support supp(J) of the fuzzy longitudinal section J is 

(a) 

(b) 

(a) 

(b) 

= 

+ 

= 

 

 



 

 

 

included in J,p (resp. 
+
J,p). Let J(qv) [0,1] be the member-

ship degree of qv in J. We have 
 

 F(p, ,J)  = h (  
J(qv )

v
 dv

0
+

) (27) 

 

Now, assume supp(J)  J,p and supp(J)  
+
J,p. As expressed 

by Eq. 28, this case comes down to the previous one.  

 

        F(p, ,J) = max { F(p, ,J J,p ) , F(p, ,J
+
J,p) } (28) 

E. Examples 

In this section, FANG denotes the function defined by Eq. 11, 

with t=min and μ as in Fig. 1a. The function FDIST is defined 

by Eqs. 27 and 28, with h as in Eq. 23. Finally, the function 

F is min (FANG , FDIST), i.e., it is defined by Eq. 14, with t=min. 

The F-template F
B
 is, therefore, a directional F-template that 

embeds distance information. It is computed here for various 

objects B, directions , and parameters k1 and k2 (Eq. 23, Fig. 

13). The role of k1 and k2 is illustrated by Fig. 14. The higher  

 

 

 

      
 

Fig. 14.  Shaping the F-templates: the role of k1 and k2. 

The reference object is as in Fig. 8a.   

 (a)(b)(c) Constant k1, increasing k2. 
(d)(e)(f) Increasing k1, constant k2. 

 

k1 or k2, the less distance information has an impact on the 

F-template nearby the reference object. F
B
 does not embed 

any distance information and coincides with FANG
B

 when k2=+ . 

The two properties we wanted the F-templates F
B
 to satisfy 

are illustrated by Fig. 15. They stem from the axiomatic 

properties [G2] and [G3] (Section IV.C). If the reference 

object is scaled, the F-template is scaled by the same factor 

(Fig. 15a). Consider a region of negligible size relative to the 

size of the reference object. Whether it is part or not of the 

object does not have much impact on the F-template (Fig. 

15b). As shown by Fig. 16b, this second property is not 

satisfied by min (FANG
B

,FDIST
B

). Remember (Section IV.A) that 

min (FANG
B

,FDIST
B

) is not an F-template. Distance information is 

not really embedded into the model. Rather, min (FANG
B

,FDIST
B

) 

should be seen as the result of a fusion of information from 

two independent sources. Finally, note that the two proper-

ties above have the following implication. If John is close to 

the car when 3 feet from the driver’s door, then Mary is even 

closer to the car when 3 feet from the front bumper. (Unless 

the vehicle is as wide as it is long.) This is well illustrated by 

Fig. 16a. In the F-template, regions of high membership 

values tend to stretch more along the major axes of the 

reference object (which is here quite elongated).  

 
 

 

  
 

Fig. 15.  Fundamental properties. 
Here, k1=0.5 and k2=3. (a) Scale invariance. 

The reference object is as in Fig. 8a, but half its size. 

Compare with Fig. 14b. (b) A region of negligible size 
has negligible impact. The reference object is as in Fig. 10a. 

 

 

     
 

Fig. 16.  A last example and a counterexample. 

Here, k1=0.5 and k2=3. (a) F-template induced by the object 

as in Fig. 6a. (b) The fuzzy set  min  {FANG
B

 , FDIST
B }. It is not 

an F-template. The reference object is as in Fig. 10a. 
 

(a) k1=0.5 and k2=2 

(b) k1=0.5 and k2=3 

(c) k1=0.5 and k2=4 

(d) k1=1 and k2=3 

(e) k1=2 and k2=3 

(f) k1=2.999 and k2=3 (a)  

(b)  (a)  

(b)  



 

 

 

V. CONCLUSIONS AND FUTURE WORK 

A directional spatial relationship to a reference object can 

be represented by a spatial template, i.e., a fuzzy subset of 

the Euclidean space. These templates (which are given 

different names in the literature) play an important role in 

object localization tasks. In previous work, we modeled 

them through F-templates and discussed the case of crisp 2D 

objects in raster form. We introduced a new algorithm for 

directional spatial template computation, which is faster, 

gives better results and is more flexible than its competitors. 

Here, we have shown that our algorithm can easily be 

extended to handle fuzzy objects, while keeping its advan-

tages. In existing models, only angular deviation is taken 

into account. The issue has been examined, and directional 

F-templates embedding distance information have been 

designed to elegantly satisfy two interesting properties. The 

shape of the F-templates, i.e., the impact of distance infor-

mation, can be controlled with great flexibility using two 

very intuitive parameters. 

In future work, we intend to submit our model to exten-

sive experiments, and further explore the issue above. The 

concept of the F-template is dual to that of the F-histogram, 

which can handle not only 2D objects and raster data, but 

also 3D objects and vector data [15] [14] [4] [16]. We will 

show that F-templates have the same capabilities. 
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