Multi-threading

Introduction to Concurrency
What is a Thread?
Benefits of Threads
Programming with Threads
Pitfalls of Threads
Synchronization

READ CHAPTER 21

Copyright © Qusay H. Mahmoud 1

Introduction to Concurrency

A program with a single flow of control is
called a sequential program

A program has four parts: source code, global
data, heap, and stack

Introduction to Concurrency

A program with multiple points of execution is
called a concurrent program

Copyright © Qusay H. Mahmoud 3

Tasks and Processes

A task is the execution of a sequential program (or a
sequential program within a concurrent program)

A process is used in Operating Systems (OS) as a
unit of resource allocation for CPU and memory

A traditional OS process has a single thread of
control (i.e. no internal concurrency)

Modern OS allow a process known as a heavyweight
process (i.e. with multiple threads of control -
concurrency within the process)

Copyright © Qusay H. Mahmoud 4

Heavyweight v. Lightweight
Processes

Each thread of control within a heavyweight process
is known as a lightweight process

BECAUSE it shares the same memory

Multiple threads of a heavyweight process can
access shared data in the process’s memory

Access must be synchronized

“heavy” and “light” refers to the context-switching
overhead (CPU and memory allocation vs. CPU
allocation)

Copyright © Qusay H. Mahmoud

What is a Thread?

The term thread derives from the phrase thread
of execution in operating systems

It is a lightweight process
Threads can create other threads and kill them

Newly created threads will run in the same
address space allowing them to share data

They have been around for quite some time
They are built-in into Java
Java made the use ygf} them easy and productive

Benefits of Threads

The ability to perform multiple tasks
simultaneously
Allow us to take advantage of computers with
multiple CPUs
Other benefits

Increase application throughput

Responsiveness

The ability to use system’s resource efficiently

Copyright © Qusay H. Mahmoud

Programming with Threads

Creating and Starting Threads
Putting a Thread to Sleep
Controlling Threads

Thread Priorities

Pitfalls of Threads
Synchronization
Producer/Consumer
Scheduling

Copyright © Qusay H. Mahmoud 8

Creating and Starting Threads

There are two ways to create a thread in
Java

Extending the Thread class
class MyThread extends Thread {

public void run() {

}
public static void main(String argv[]) {

MyThread t1 = new MyThread();
tl.start();
}

} Copyright © Qusay H. Mahmoud 9

Creating and Starting Threads

The other way of creating a thread in Java is
By implementing the Runnable interface

class MyThread implements Runnable {
public void run() {

¥
public static void main(String argv[]) {

MyThread s = new MyThread();
Thread t1 = new Thread(s);
tl.start();

}

} Copyright © Qusay H. Mahmoud 10

Creating and Starting
Threads

Examples:

MyThread.java
MyThread2.java
Counter.java

Copyright © Qusay H. Mahmoud 11

Putting a Thread to Sleep

You may pause a thread for a specific period
of time by putting it to sleep using sleep ()
try {

Thread.sleep(4000); // 4 seconds
} catch (InterruptedException ie) {

ie.printStackTrace();
}
The argument to sleep specifies the number
of milliseconds the thread will sleep for

Copyright © Qusay H. Mahmoud 12

Controlling Threads
Do not use: stop(), suspend(), resume()

These methods have been deprecated in Java
2 and they should not be used

Basicaly they are not thread -safe....more on
this in class

Copyright © Qusay H. Mahmoud 13

Thread Priorities

Threads will normaly be competing for
processor time
Time-critical tasks with hard deadlines can
be given a higher priority than less critical
tasks
The Thread class defines three constants:
XAPRIORITY (10)
MIN_PRIORITY (1)
NMRPRIORITY (the default 5)

Use getPriority() and setPriority()
Copyright © Qusay H. Mahmoud

14

Pitfalls of Threads

One pitfall of threads is data sharing

Examples: Alice and Bob are sharing a checkbook
int balance;
boolean withdraw(int amount);
if (balance - amount >= 0) {
balance = balance - amount;
return true;

}

return false;

}

Copyright © Qusay H. Mahmoud 15

Pitfalls of Threads

If Alice and Bob are executing the code
segment simultaneously, we get:

Alice Bob Balance
If (80 - 50 >=0) 80
If (80 - 70 >=0) 80
Balance = Balance - 50 30
Balance = Balance- 70 | -40

Copyright © Qusay H. Mahmoud 16

Synchronization

Mutual Exclusion (preventing simultaneous access
to shared data) can be accomplished using the
synchronized access specifier

synchronized boolean withdraw(int amount) {

}

Or using the synchronized block:

boolean withdraw(int amount) {
synchronized(this) {

}

} Copyright © Qusay H. Mahmoud 17

Producer/Consumer Problem

The producer task produces information,
which is then consumed by the consumer task

Transfer a data from a producer task to a
consumer task

Synchronize between producer/consumer. If no
data is available the consumer has to wait for the
data to arrive from the producer
The producer and consumer may reside on
the same node or they can be distributed

Copyright © Qusay H. Mahmoud 18

wait() and notify()

Consumer:
private List objects = new ArrayList();

private Object remove() throws InterruptedException

synchronized(objects) {
objects.wait();

by

Object obj = objects.get(0);

objects.remove(0);

} Copyright © Qusay H. Mahmoud 19

wait() and notify()

Producer
public void insert(Object obj) {
synchronized(objects) {
objects.add(obj);
objects.notify(); // OR objects.notifyAll();
}
by

Copyright © Qusay H. Mahmoud 20

Scheduling

How does the Java runtime schedules CPU time among
threads?
If a thread is blocked (I/O) or sleep, it uses no CPU time
The runtime chooses the thread with the highest priority
If all threads have the same priority (then order is not
defined)
Preempting threads (share processor)
Allow one thread to run till it gives up the processor. All other threads
will be starved of CPU time
Because of this, you should not perform long compute-bound tasks
without calling Thread.yield() periodically
Note: the use of priorities and yield() result in non-
portable code. They simply offer hints to the
scheduler... Copyrht © Qusay H. Metimoud

21

Other issues

Deadlock: two threads competing for a
resource and they end up with each waiting
for the other to finish

How to avoid deadlock?

Atomicity: can an action be interrupted by
another thread

Memory: memory allocated for a thread is not
freed when the thread finishes

Copyright © Qusay H. Mahmoud 22

