System Design Document

Project Name

DCCT*3030 Distributed Programming I
Winter 2005
Computing Co-Op
University of Guelph-Humber
Toronto, ON, Canada

ProjectName Members:

__________signatures_______________

Table of Contents

Revision History

Introduction

 And so on…

This can be generated automatically in Word.

Revision History:

Version R1.0

- 9/20/2001. Created by all team members.

· release composed to Requirements Analysis Document

Version R2.0

- Date. Name of person who revised the document.

- What was added? Removed?

And so on…

Note: each document will have a similar revision history

Preface:

 This document addresses the design of the ?productName? system. The intended audience for this document are the designers and the clients of the project

1.Goals and Trade-offs

In this section describe the design goals of your system. Some of the design goals are mentioned in your non-functional requirements of the problem statement. After discussing the design goals, describe how they influence the functional requirements (use cases) and describe the trade-offs you have made. The system design must set priorities that will be used to guide trade-offs during the rest of design and implementation. During design it is often required that you choose among desirable but incompatible goals. For example, a system cannot often be made faster by using extra memory. Design trade-offs must be made regarding not only the software product itself but also regarding the process of developing it. For example, timely delivery might have to be traded-off against functionality. Note that not all the trade-offs are made during system design, but the priorities for making them are established in this phase. The entire character of a system is affected by the trade-off decisions made by the designer. The success or failure of the final product may depend on whether its goals are well-chosen. Here are some typical questions to be answered:

· What are the design priorities?

· What are the trade-offs made between design goals and why are they made?

Examples of trade-offs:

· Rapid prototyping vs. completeness of functionality

· Usability vs. functionality

· Efficiency vs. portability

· Cost vs. reliability

· Reusability vs. cost

2. System Decomposition

The content of this section will hopefully be produced as a result of the design modeling in whatever UML tool you are using (e.g. the creation and descriptions of design level subsystems). Some of the information required will need to be explicitly entered in appropriate sections to complete the Design Model.

2.1 System Decomposition

Typical issues to be described in this section:

· Description of the subsystems

· Relationship between the subsystems

· Client/Server relationships (may not be applicable to your system)

· Peer-to-Peer Relationships (may not be applicable to your system)

· Do the subsystems call each other services (Peer-to-Peer architecture)?

2.1.1 Layers &Partitions

· Describe the dependency associations between subsystems.

· Can the dependency between the subsystems (in your system) be described as a hierarchy? If not, why not?

2.1.2 System Topology

· Illustrate the topology of the your system with component and deployment diagrams. (physical system architecture). As I explained in class you can get as detailed as you wish. You may want to show each component and the classes it contains; component diagram with dependencies; and deployment diagram showing nodes and components within them.

3. Concurrency Identification

NOTE: if your system does not support access to multiple users simultaneously then you do not have to worry too much about this section. HOWEVER, I have noticed from the project descriptions that many of the projects support multiple access.

Typical questions to be answered in this section:

· Which objects of the object model are independent?

· What kinds of threads of control are identifiable?

· Does the system provide access to multiple users?

· Could queries be handled in parallel by different subsystems? Describe the problems for such a design.

· Describe the concurrency scheme used in the system.

4. Hardware/Software Allocation

· Describe the existing hardware platform (client environment) and the hardware platform chosen for development. Justify the choice of the development platform.

· How are the subsystems mapped on the existing hardware & software?

· Do certain tasks require specific locations to control the hardware or to permit concurrent operation?

4.1 System Performance

4.1.1 General system performance
· Describe the desired response time?

· What is the expected transaction rate? (Requests/sec)?

4.1.2 Input/Output Performance
· Do you need an extra piece of hardware to handle the data generation rate?

· Does the response time or information flow rate exceed the available communication bandwidth between subsystems or a task and a piece of hardware?

4.1.3 Processor allocation
· Is the computation rate too demanding for a single processor?

4.1.4 Memory allocation
· Is there enough memory to buffer bursts of requests?

4.2 Connectivity

This section describes the connectivity of the subsystems in terms of physical connections and the underlying network architecture. After determining the kinds and relative numbers of physical components in the system (processors, memory and network), this section describes the arrangement and form of the connections among them. The following decisions must be made and described:

· Choose the topology of connecting the physical units (Physical connections often correspond to associations in the analysis model).

· Choose the topology of repeated components. If several copies of a particular kind of unit or group of units is included for performance reasons, their topology must be specified. The analysis model is usually not helpful here, because the use of multiple components is a design optimization not required by analysis.

· Show a diagram of the connectivity. This does not have to be a UML diagram!

4.3 Network architecture

(If your systems is not client/server then this section may not apply to you).

Describe the form of connection channels and the communication mechanisms. Describe bandwidth of the communication channels and whether they determine the choice for the protocol. Typical questions to be answered in this section:

· What is the transmission media?

· What kind of connection channels and communication mechanisms are used?

· What are the estimated bandwidth requirements (Kbytes or Mbytes/sec)?

5.
Data Management

The internal and external data stores in a system provide clean separation points between subsystems with well-defined interfaces. In general each data store may combine data structures, files and databases implemented in memory or on secondary storage devices. Typical questions to be answered in this section:

· How does the system deal with data? Are they using main memory, files, databases?

· Are the data distributed?

· What is the average request (query) rate? Worst case?

· How often is the data accessed?

· What is the size of typical (average) requests (queries)? Worst case?

· Does the data need to be archived? Which ones?

· Does the system hide the location of the data (location transparency)?

· Does the data have a single interface to the rest of the applications accessing the data?

· What is the query format?

6.
Global Resource Handling

This section identifies global resources and determines mechanisms for controlling access to them. Global resources include: physical components (lap-tops, workstations, smart cards,...), disk space, workstation screens, buttons on a mouse, microphone, logical names such as IDs, filenames, service names, access to shared data, etc. Typical questions to be answered in this section:

· Does the system provide authentication?

· What is the authentication scheme?

· What is the user interface for authentication?

· What hardware is used to support global resource handling?

· Does the system have a network-wide name server?

· How is a subsystem service known to the rest of the system?

· Are resources partitioned? Are they named? Can subsets of resources be assigned to different guards?

· In time-critical applications it might be necessary to provide direct access to a resource, because the general access mechanism is too slow. The problem is that each resource user must be trusted to behave itself when accessing the resource.

7. Software Control Implementation

7.1 External control flow (between subsystems)

· Is the control flow distributed within the system?

· Is there a single control flow residing within a single program?

· Do procedures request input, wait for it and resume control when it arrives?

· Is there a single control flow residing within a dispatcher?

· Does it wait for events and dispatches to the procedure that will take care of it (callback)?

7.2 Concurrent control

· Describe subsystems or components of subsystems that can be run concurrently.

7.3 Internal control (within a single process)

· How is the process control implemented? Are there any threads?

7.4 User Interface

· Describe the rationale for certain design decisions made for the control flow in your system, in particular

<<NOTE: try to think of the MVC that we discussed in class>>

a) does all the control reside in a single location?
b) do the subsystems have their own user interface and event loop?

8. Boundary Conditions

Although most of the design effort in many systems is concerned with the steady-state behavior, the system designer must consider boundary conditions as well, in particular initialization, termination and failure. This section describes how your system deals with each of these issues.

8.1 Initialization

· Dynamic model of the system start up

· Description of data that need to be accessed at start-up time

· Services that have to be registered

· What does the user interface do at start up time?

· How does the system present itself to the user?

8.2 Termination

· Are single subsystems allowed to terminate?

· Are other subsystems to be notified if only a single subsystem terminates?

· Are local updates communicated to the database when the system or a subsystem terminates?

8.3 Failure

· How does the system behave in the context of node or communication link failures?

· Are there backup communication links?

· How does the system recover from failure?

· Is this recovery different from initialization?

9. Design Rationale

Describe design issues that were discussed in the various subsystems. Describe why certain design decisions were made. Describe proposals that were considered but rejected. Give the reasoning behind your decisions (Arguments pro, Arguments against the proposal). Describe important issues that are still unresolved.

Open the design window by 3 more months, look at technology enablers that were considered but dropped due to the length of the current design window. Describe the redesign and/or growth possibilities of the system with respect to different Customer, End-user, System Administrator. Show how the current system design can be converted to incorporate these technology enablers. What kind of problems do you expect in the transition? Typical questions asked in this part of the rationale are:

· Scalability: What is the growth path of the system? Does the design allow the addition of more users?

· How does the system design deal with

· the addition of more workstations

· additional types of communication links, for example wireless communication?

· Extensibility: Does the system allow the addition of new data types?

· What is the impact of adding new databases?

· What is the impact of interfacing to existing legacy databases?

· What is the impact of adding video as new data type to the system?

· Modifiability of the design

· How stable is the hardware/software platform?

· What kind of technological changes will happen in the near future?

· Did these anticipated changes influence your design?

Can your design cope with these changes.

