Generating Permutations and Combinations

CIS 2910

Joe Sawada - University of Guelph

Generating algorithms

So far we have only looked at the counting problem: How many items are there?

Now, we want to handle the question: What are all the possibilities?

Definition

A generation algorithm is an algorithm that exhaustively lists all instances of a specific object, so that each instance is listed exactly once.

Considerations for generation algorithms:

- representation (how do we represent the object?)
- efficiency (how fast is the algorithm?)
- order of output (lexicographic, Gray code ...)
Order of output

There are two common ways to order output of strings. Lexicographic and Gray code order.

Definition
A string \(a_1a_2 \cdots a_n\) is said to be **lexicographically larger** than another string \(b_1b_2 \cdots b_n\) if for some \(k\) we have \(a_k > b_k\) and \(a_i = b_i\) for all \(1 \leq i \leq k - 1\).

Lexicographic order is often what you think of as your standard alphabetic order.

Definition
A listing is said to be in **Gray code order** if each successive string in the listing differs by a constant amount. For example, the swapping of elements, or the flipping of a bit.

Orders of output

Lexicographic vs Gray code

<table>
<thead>
<tr>
<th>Lexicographic</th>
<th>Gray code</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>010</td>
<td>011</td>
</tr>
<tr>
<td>011</td>
<td>010</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
</tr>
<tr>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>110</td>
<td>101</td>
</tr>
<tr>
<td>111</td>
<td>100</td>
</tr>
</tbody>
</table>

The second list is known as the Binary Reflected Gray Code. Each binary string differs by a single bit flip from the previous string.
Applications

Some instances where a generation algorithm may be very useful.

Traveling SalesPerson

A salesperson wants to travel to 6 cities while on tour. We know that there are $6! = 120$ ways to visit the cities, but which order is cheapest? or minimizes total time/distance travelled? We could compute these values for each of the 120 possibilities.

Subset Sum

Given a set of 10 integers, does it contain a subset whose elements sum to 100? We could check all possible subsets and check their totals.

Generating permutations

Given a permutation, how can we determine the next permutation in the lexicographic ordering?

Observe that once we have a general way to do this we can generate all permutations by starting with $1234 \cdots n$ and successively finding the next largest permutation.

Permutations in lexicographic order

```plaintext
perm = array();

Next()
    Update perm[] to the next largest permutation;

Main(n: integer)
    for i = 1 to n do perm[i] := i;
    for i = 1 to n! − 1 do Next();
```

Finding the next permutation in Lex order

Examples

What is the next largest permutation for the following:

- 234156? next: 234165
- 234165? next: 234516
- 234516? next: 234561
- 362541? next: 364125

When can we simply exchange the last two characters? If not, what is a general strategy?

Algorithm: Next Permutation

Find the next largest permutation of $a_1a_2\cdots a_n$.

1. Find the largest position i such that $a_i < a_{i+1}$.
2. Replace a_i with the smallest value in $a_{i+1}\cdots a_n$ that is bigger than the current value of a_i.
3. Reassign the values from the remaining elements $a_{i+1}\cdots a_n$ (and the original value of a_i) into increasing order.

Example

Let’s apply the algorithm to the permutation where $n = 9$: 812369754

1. Largest i is $a_5 = 6$.
2. Next largest value to the right of 6 is 7. So we have 81237\cdots.
3. The remaining values are 6954, which we put into increasing order to get: 812374569.
Generating Subsets

Recall our first generation algorithm issue: how to represent an object. We can represent all subsets of an \(n \)-set with binary strings of length \(n \). So now given such a binary string, how can we find the next largest one?

Algorithm: Next Subset

Find the next largest binary string of \(b_1 b_2 \cdots b_n \).

1. Find the largest \(i \) such that \(b_i = 0 \) (scan from right).
2. Set \(b_i = 1 \).
3. Set \(b_j = 0 \) for all \(i + 1 \leq j \leq n \).

For example: \(\text{Next}(11010111) = 11011000 \)

Generating Combinations

To generate \(r \)-combinations of the set \(\{1, 2, \ldots, n\} \) we could use binary strings with \(r \) ones and length \(n \). (eg. 100110010)

However, for this algorithm we represent the \(r \)-elements with a sequence of their values given in increasing order. (eg. 1458)

Algorithm: Next Combination

Finding the next largest combination for \(a_1 a_2 \cdots a_r \)?

1. Find the largest \(i \) such that \(a_i \neq n - r + i \).
2. Set \(a_i = a_i + 1 \).
3. for \(j = i \) to \(r \) set \(a_j = a_{j-1} + 1 \).

Examples

Suppose that \(n = 9 \) and \(r = 4 \):

- \(\text{Next}(1458) = 1459 \)
- \(\text{Next}(1459) = 1467 \)
- \(\text{Next}(3789) = 4567 \)