Efficient Algorithms for Ranking, Unranking, and Generating Stacks of Pancakes and Burnt Pancakes

Joe Sawada ${ }^{\text {a }}$, Aaron Williams ${ }^{\text {b }}$
${ }^{a}$ School of Computer Science, University of Guelph, Canada. Research supported by NSERC.
${ }^{b}$ Department of Mathematics and Statistics, McGill University, Canada.

Abstract

Stacks of pancakes and burnt pancakes can be modeled by permutations and signed permutations, with the 'flip' operation corresponding to prefix-reversal and complementing prefix-reversal, respectively. Recently it was shown that stacks can be rearranged in all possible ways with successive stacks differing by a single flip by greedily flipping the minimum or maximum number of pancakes (Sawada and Williams, Greedy Flipping of Pancakes and Burnt Pancakes, Discrete Applied Mathematics, 2016). This article translates the four Gray code orders into efficient algorithms for ranking, unranking, and generating the underlying permutations and signed permutations. This builds on the results of Zaks who provided these results for pancakes using the minimum-flip strategy (Zaks, A New Algorithm for Generation of Permutations, BIT Numerical Mathematics, 1984).

Keywords: Gray code, permutations, signed permutations, prefix-reversal, ranking, unranking

1. Introduction

In this paper we investigate two orders for the n ! permutations of $\{1,2, \ldots, n\}$ and two orders for the $2^{n} n$! signed permutations of $\{1,2, \ldots, n\}$. A signed permutation is a permutation in which each symbol x is either positive or negative, which are denoted x and \bar{x}, respectively. We write both permutations and signed permutations using one-line notation.

The four orders originate from a recent article [1] and are illustrated below on the left for $n=4$:

$$
\begin{array}{ll}
1234,2134,3124,1324,2314,3214,4123, \ldots & 2,3,2,3,2,3,4, \ldots \\
1234,4321,2341,1432,3412,2143,4123,3214,2314, \ldots & 4,3,4,3,4,3,4,2, \ldots \\
1234, \overline{1} 234, \overline{2} 134,2134, \overline{1} \overline{2} 34,1 \overline{2} 34,2 \overline{1} 34, \overline{2} \overline{1} 34, \overline{3} 124, \ldots & 1,2,1,2,1,2,1,3, \ldots \\
1234, \overline{4} \overline{3} \overline{2} \overline{1}, 234 \overline{1}, 1 \overline{4} \overline{3} \overline{2}, 34 \overline{1} \overline{2}, 21 \overline{4} \overline{3}, 4 \overline{1} \overline{2} \overline{3}, 321 \overline{4}, \overline{1} \overline{2} \overline{3} \overline{4}, 4321, \ldots & 4,3,4,3,4,3,4,3,4, \ldots
\end{array}
$$

The significance of the four orders is they are all flip Gray codes. This means that each successive (signed) permutation is obtained from the previous (signed) permutation by an operation known as a 'flip'. When applied to a permutation a flip of length k reverses the order of first k symbols, and in addition when it is applied to a signed permutation the sign of these symbols is also reversed. The specific flips that are used to create the four orders are illustrated above on the right.

The flip terminology comes from the representation of permutations and signed permutations as stacks of pancakes and burnt pancakes, respectively. In this analogy, flip of length k corresponds to taking a spatula, and flipping over the top k pancakes, thereby reversing their order, and their up/down

[^0]orientation in the case of burnt pancakes which are burnt on one side. This analogy is illustrated below for a permutation and its stack of pancakes (left), and for a signed permutation and its stack of burnt pancakes (right).

$\overline{6} 3 \overline{2} 514$

$\overline{1} \overline{5} 2 \overline{3} 64$

The beauty of the four orders is that they can all be generated by simple greedy algorithms. In particular, the first order is obtained by greedily flipping the smallest number of symbols that produces a new permutation. To explain one step of this process in more detail, observe that the order begins 1234, $2134,3124,1324,2314,3214$. At this stage the algorithm examines the last permutation 3214 and tries to determine the smallest flip that will create a permutation that does not already appear in the list. The algorithm does not flip the first two symbols, since 2314 already appears in the list. Similarly, it does not flip the first three symbols, since 1234 already appears in the list. Thus, the algorithm considers flipping the first four symbols, and this time it succeeds since 4123 has not already appeared in the list. The new permutation 4123 is added to the end of the list and the algorithm continues by trying to flip the smallest number of symbols in it. Amazingly, this process does not get stuck until all n ! permutations are created. The resulting order of permutations was first discovered by Zaks [3].

We refer to the algorithm that produces Zaks's order as the minimum fip order for permutations. The recent article by Sawada and Williams [1] showed that the greedy strategy also works when using the largest number of possible flips, and moreover, both strategies also work for signed permutations. In fact, the three other orders illustrated above are the maximum fip order for permutations, the minimum flip order for signed permutations, and the maximum flip order for signed permutations, respectively.

Although the greedy algorithms are elegant, they are not efficient since all previous (signed) permutations must be stored. The purpose of this article is to translate the four orders into efficient algorithms. More specifically we provide three efficient algorithms for each of the orders:

- Generation. These algorithms are used for creating one (signed) permutation after another as quickly as possible and with little additional memory.
- Ranking. These algorithms determine the rank (ie position) of each (signed) permutation in the list.
- Unranking. These algorithms determine the (signed) permutation that has a particular rank.

Prior to this article Zaks provided all three algorithms for the minimum flip order for permutations [3]. Collectively, the provided algorithms help bolster the value of the corresponding orders in the context of interconnection networks, where both the pancake network and burnt pancake network are popular in applications. See Siegel [2] for further discussion of interconnection networks.

The remainder of this document is organized as follows. Section 2 introduces notation. Then Section 3 discusses the ranking and unranking algorithms for the minimum flip order of permutations originally given by Zaks. Sections 5, 4, and 6 repeat these results for the three other orders. Section 7 provides efficient generation algorithms for all four orders. Finally, Section 8 summarizes our results. Full implementations are provided in C in the Appendix.

2. Notation

In this paper we are concerned with providing Gray code listings for the permutations and signed permutations for the set $\mathbf{S}=\{1,2,3, \ldots, n\}$. However, for the proofs we must consider arbitrary sets
of n elements. For example the six permutations of $\mathbf{S}=\{1,2,4\}$ are $\{124,142,214,241,412,421\}$ and the eight signed permutations of $\mathbf{S}=\{1,4\}$ are $\{14,41, \overline{1} 4,4 \overline{1}, 1 \overline{4}, \overline{4} 1, \overline{1} \overline{4}, \overline{4} \overline{1}\}$ where \bar{p} denotes $-p$.

Let the set of (unsigned) permutations of an n-set be denoted by $\mathbb{P}(n)$. Given $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n} \in$ $\mathbb{P}(n)$, we will use the following notation for $1 \leq j \leq n$:

- flip $_{j}(\mathbf{p})=p_{j} p_{j-1} \cdots p_{1} p_{j+1} \cdots p_{n}$ denotes a flip (prefix-reversal) of length j, and
- $\mathbf{p}(j)=p_{j+1} \cdots p_{n} p_{1} \cdots p_{j-1}$ denotes a full rotation to the left by j positions followed by the removal of the element p_{j}.

Let the set of signed permutations of an n-set be denoted by $\overline{\mathbb{P}}(n)$. Given $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n} \in \overline{\mathbb{P}}(n)$, we will use the following notation for $1 \leq j \leq n$:

- $\overline{\text { flip }}_{j}(\mathbf{p})=\bar{p}_{j} \bar{p}_{j-1} \cdots \bar{p}_{1} p_{j+1} \cdots p_{n}$ denotes a flip (complemented prefix reversal) of length j, and
- flipSign $(\mathbf{p})=\bar{p}_{1} \bar{p}_{2} \bar{p}_{3} \cdots \bar{p}_{n}$ flips the sign of every element.
- $\mathbf{p}^{\prime}(j)=\bar{p}_{j+1} \cdots \bar{p}_{n} p_{1} p_{2} \cdots p_{j-1}$, and
- $\overline{\mathbf{p}}(j)=p_{j+1} \cdots p_{n} \bar{p}_{1} \bar{p}_{2} \cdots \bar{p}_{j-1}=\operatorname{flipSign}\left(\mathbf{p}^{\prime}(i)\right)$.

For both signed and unsigned permutations we will use the following notation for a permutation \mathbf{p} :

- $\mathbf{p} \cdot n$ denotes the concatenation of the symbol n to the permutation \mathbf{p}.
- $\operatorname{rotLeft}(\mathbf{p}, j)=p_{j+1} \cdots p_{n} p_{1} \cdots p_{j}$ denotes a full rotation to the left by j positions,
- $\operatorname{rotRight}(\mathbf{p}, j)=p_{n-j+1} \cdots p_{n} p_{1} \cdots p_{n-j}$ denotes a full rotation to the right by j positions,

Consider a sequence of unsigned permutations $\rho=\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}$ and an integer sequence $\phi=$ $f_{1}, f_{2}, \ldots f_{m-1}$ for some $m>1$. We say that ϕ is the flip-sequence for ρ if $\mathbf{p}_{i+1}=\operatorname{flip}_{f_{i}}\left(\mathbf{p}_{i}\right)$ for $1 \leq i \leq$ $m-1$. Similarly, if $\rho=\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{m}$ is a sequence of m signed permutations then $\phi=f_{1}, f_{2}, \ldots f_{m-1}$ is said to be the flip-sequence for ρ if $\mathbf{p}_{i+1}=\overline{\text { flip }}_{f_{i}}\left(\mathbf{p}_{i}\right)$ for $1 \leq i \leq m-1$.

When describing sequences, we let x^{k} denote k repeated concatenations of the sequence x. For example $(1,3)^{4}=1,3,1,3,1,3,1,3$.

3. Minimum Flips for Permutations

In [1], the following cyclic prefix-reversal Gray code for permutations is presented. It is equivalent to one that was initially discovered by Zaks [3], except that we use prefix-reversals as opposed to suffixreversals.

Let $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n} \in \mathbb{P}(n)$. Let $\mathbf{p}(i)=p_{i+1} \cdots p_{n} p_{1} \cdots p_{i-1}$ where $1 \leq i \leq n$. Then $\operatorname{Min}(\mathbf{p})$, defined below, produces a prefix-reversal Gray code for permutations:

$$
\operatorname{Min}(\mathbf{p})= \begin{cases}\mathbf{p} & \text { if } n=1 \tag{1}\\ \operatorname{Min}(\mathbf{p}(n)) \cdot p_{n}, \operatorname{Min}(\mathbf{p}(n-1)) \cdot p_{n-1}, \ldots, \operatorname{Min}(\mathbf{p}(1)) \cdot p_{1} & \text { if } n \geq 2\end{cases}
$$

Example 3.1. $\operatorname{Min}(1234)=\operatorname{Min}(123) \cdot 4, \operatorname{Min}(412) \cdot 3, \operatorname{Min}(341) \cdot 2, \operatorname{Min}(234) \cdot 1$. The full listing is given below (read down, then left to right). The length of the prefix-reversal to go from one permutation to the next is given in parentheses after each permutation.

(2)	4123 (2)	$3412{ }_{\text {(2) }}$	2341
2134 (3)	1423 (3)	$4312{ }^{\text {(3) }}$	3241 (3)
$3124{ }_{\text {(2) }}$	2413 (2)	1342 (2)	4231
1324 (3)	4213 (3)	3142 (3)	2431
2314 (2)	1243 (2)	4132 (2)	3421
214 (4)	2143	1432	432

The permutations at the top of each column in this example are equivalent under rotation and each column has the same flip-sequence. If we ignore the final flip to return to the initial permutation, then the sequence σ_{n} given by Zaks [3] is the flip-sequence for $\operatorname{Min}(\mathbf{p})$:

$$
\sigma_{n}= \begin{cases}2 & \text { if } n=2 \\ \left(\sigma_{n-1}, n\right)^{n-1}, \sigma_{n-1} & \text { if } n>2\end{cases}
$$

3.1. Ranking

In this subsection we provide a ranking algorithm for the listing $\operatorname{Min}(123 \cdots n)$. The algorithm corresponds to the one described by Zaks in [3] which uses suffix-reversals instead of prefix-reversals. We provide a similar presentation here. Similar ideas will be applied when we discuss the minimum flip approach for signed permutations.

Let $\operatorname{Rank}\left(p_{1} p_{2} p_{3} \cdots p_{n}\right)$ denote the position of the permutation $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n}$ in the listing $\operatorname{Min}(123 \cdots n)$. Observe from the recurrence in (1) that all $\left(n-p_{n}\right)(n-1)$! permutations ending with one of $n, n-1, n-2, \ldots, p_{n}+1$ will precede \mathbf{p} in the ordering. So the crux of the problem is to determine the position of \mathbf{p} among permutations ending with p_{n}. From Lemma ?? we can deduce that the first permutation ending with p_{n} is $\left(p_{n}+1\right)\left(p_{n}+2\right) \cdots n 12 \cdots\left(p_{n}-1\right)$. Notice that by subtracting p_{n} from each element in this permutation (modulo n) we obtain $123 \cdots n-1$. Thus, we can reduce our problem to recursively solving for $\operatorname{Rank}\left(q_{1} q_{2} q_{3} \cdots q_{n-1}\right)$ where $q_{i}=\left(p_{i}-p_{n}\right) \bmod n$. This leads to the following algorithm:

$$
\operatorname{Rank}\left(p_{1} p_{2} p_{3} \cdots p_{n}\right)= \begin{cases}1 & \text { if } n=1 \\ \left(n-p_{n}\right)(n-1)!+\operatorname{Rank}\left(q_{1} q_{2} q_{3} \cdots q_{n-1}\right) & \text { if } n>1\end{cases}
$$

where $q_{i}=\left(p_{i}-p_{n}\right) \bmod n$.
As an example, we consider the recursive decomposition for computing the rank of 261453 in the ordering Min(123456):

$$
\begin{aligned}
\operatorname{Rank}(261453) & =3 \cdot 5!+\operatorname{Rank}(53412) \\
& =3 \cdot 5!+3 \cdot 4!+\operatorname{Rank}(3124) \\
& =3 \cdot 5!+3 \cdot 4!+0 \cdot 3!+\operatorname{Rank}(312) \\
& =3 \cdot 5!+3 \cdot 4!+0 \cdot 3!+1 \cdot 2!+\operatorname{Rank}(12) \\
& =3 \cdot 5!+3 \cdot 4!+0 \cdot 3!+1 \cdot 2!+0 \cdot 1!+\operatorname{Rank}(1) \\
& =360+72+0+2+0+1=435 .
\end{aligned}
$$

3.2. Unranking

Finding the permutation $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n}$ at rank rank in the listing $\operatorname{Min}(123 \cdots n)$ also follows from the discussion in [3]. The first step is to determine the value of the last element p_{n} in the permutation. Based on the recurrence in (1) we have $p_{n}=n-x$ where $x=\left\lfloor\frac{r a n k-1}{(n-1)!}\right\rfloor$. Then recursion is applied
to find the permutation $q_{1} q_{2} q_{3} \ldots q_{n-1}$ at rank $\operatorname{rank}-x(n-1)!$ in $\operatorname{Min}(123 \cdots n-1)$. By observing that the first permutation that ends with p_{n} in $\operatorname{Min}(123 \cdots n)$ is given by $\left(p_{n}+1\right)\left(p_{n}+2\right) \cdots n 12 \cdots\left(p_{n}-1\right)$ we can apply a direct mapping of these symbols to $123 \cdots n-1$ to obtain $p_{1} p_{2} \cdots p_{n-1}$. Pseudocode that follows this approach is given in Algorithm 1. Since the work, not counting the recursive call, is $O(n)$, the permutation \mathbf{p} at position rank in the listing $\operatorname{Min}(123 \cdots n)$ can be computed using $O\left(n^{2}\right)$ basic operations.

```
Algorithm 1 Computing the permutation at position rank in the listing \(\operatorname{Min}(123 \cdots n), n \geq 1\)
    function \(\operatorname{UNRANK}(r a n k, n)\) returns permutation
        if \(n=1\) then return 1
        \(x \leftarrow\left\lfloor\frac{\operatorname{rank}-1}{(n-1)!}\right\rfloor\)
        \(q_{1} q_{2} \cdots q_{n-1} \leftarrow \operatorname{UnRANK}(r a n k-x(n-1)!, n-1)\)
        \(p_{n} \leftarrow n-x\)
        for \(j \leftarrow 1\) to \(n-1\) do \(p_{j} \leftarrow 1+\left(q_{j}+p_{n}-1\right) \bmod n\)
        return \(p_{1} p_{2} p_{3} \cdots p_{n}\)
```

As an example, we determine the permutation $p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}$ at rank 435 in the listing $\operatorname{Min}(123456)$. First, compute $x=\left\lfloor\frac{435-1}{120}\right\rfloor=3$, which means that $p_{6}=6-3=3$. Recursively, the permutation at rank $435-3(120)=75$ in $\operatorname{Min}(12345)$ is found to be $q_{1} q_{2} q_{3} q_{4} q_{5}=53412$. However, from the recurrence in (1), the first permutation ending with $p_{6}=3$ will start with 45612 (and not the 12345 solved for recursively). Thus, we map $1 \rightarrow 4,2 \rightarrow 5,3 \rightarrow 6,4 \rightarrow 1$ and $5 \rightarrow 2$ to obtain $p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}=261453$.

4. Minimum Flips for Signed Permutations

The results in this section for signed permutations mirror the results for unsigned permutations. Again, we begin by looking at an example, this time considering the greedy listing MinGreedy (123). The length of the flip to go from one signed permutation to the next is given in parentheses after each signed permutation.

Example 4.1. $\overline{\operatorname{MinGreedy}}(123)$ (read down, then left to right):

23 (1)	$\overline{3} 12{ }_{\text {(1) }}$	$\overline{2} \overline{3} 1$ (1)	$\overline{1} \overline{2} \overline{3}{ }_{\text {(1) }}$	$3 \overline{1} \overline{2}{ }_{\text {(1) }}$	-1 (1)
$\overline{1} 23$ (2)	312 (2)	$2 \overline{3} 1$ (2)	$1 \overline{2} \overline{3}$	$\overline{3} \overline{1} \overline{2}{ }_{\text {(2) }}$	$\overline{2} 3 \overline{1}{ }_{\text {(2) }}$
$\overline{2} 13{ }_{\text {(1) }}$	$\overline{1} \overline{3} 2{ }_{\text {(1) }}$	$3 \overline{2} 1$ (1)	$2 \overline{1} \overline{3}$ (1)	$13 \overline{2}$ (1)	$\overline{3} 2 \overline{1}{ }_{\text {(1) }}$
213 (2)	$1 \overline{3} 2$	$\overline{3} \overline{2} 1$ (2)	$\overline{2} \overline{1} \overline{3}$ (2)	$\overline{1} 3 \overline{2}{ }_{\text {(2) }}$	$32 \overline{1}^{(2)}$
$\overline{1} \overline{2} 3$ (1)	$3 \overline{1} 2$ (1)	231 (1)	$12 \overline{3}$	$\overline{3} 1 \overline{2}{ }_{(1)}$	$\overline{2} \overline{3} \overline{1}{ }_{\text {(1) }}$
$1 \overline{2} 3$ (2)	$\overline{3} \overline{1} 2{ }_{\text {(2) }}$	$\overline{2} 31$ (2)	$\overline{1} 2 \overline{3}{ }_{(2)}$	$31 \overline{2}$ (2)	$2 \overline{3} \overline{1}{ }_{\text {(2) }}$
$2 \overline{1} 3$ (1)	132 (1)	$\overline{3} 21$ (1)	$\overline{2} 1 \overline{3}{ }_{\text {(1) }}$	$\overline{1} \overline{3} \overline{2}{ }_{\text {(1) }}$	$3 \overline{2} \overline{1}$ (1)
$\overline{2} \overline{1} 3$ (3)	$\overline{1} 32$ (3)	321 (3)	$21 \overline{3}$ (3)	$1 \overline{3} \overline{2}$	$\overline{3} \overline{2} \overline{1}$ (3)

In each column of this example, note that the last element of each signed permutation is the same. Additionally, each column has the same flip-sequence. If we ignore the final flip to return to the initial signed permutation, then we will prove that the following flip-sequence $\bar{\sigma}_{n}$ is the same sequence used by $\overline{\text { MinGreedy }}(\mathbf{p})$:

$$
\bar{\sigma}_{n}= \begin{cases}1 & \text { if } n=1 \\ \left(\bar{\sigma}_{n-1}, n\right)^{2 n-1}, \bar{\sigma}_{n-1} & \text { if } n>1\end{cases}
$$

However, to formally prove that this flip-sequence is the one used by $\overline{\operatorname{MinGreedy}}(\mathbf{p})$, we need to further understand the ordering of signed permutations produced.

Fortunately, by studying the greedy listing from the example and using the recurrence $\bar{\sigma}_{n}$, we can deduce a simple recurrence to list all signed permutations. Let $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n}$ denote a signed permutation of an arbitrary n-set \mathbf{S}. Recall the notation from Section 2 for $1 \leq i \leq n$:

- $\mathbf{p}^{\prime}(i)=\bar{p}_{i+1} \cdots \bar{p}_{n} p_{1} p_{2} \cdots p_{i-1}$, and
- $\overline{\mathbf{p}}(i)=\mathrm{flipSign}\left(\mathbf{p}^{\prime}(i)\right) p_{i+1} \cdots p_{n} \bar{p}_{1} \bar{p}_{2} \cdots \bar{p}_{i-1}$.

We will show that following recurrence for $\overline{\operatorname{Min}}(\mathbf{p})$ produces the same listing as $\overline{\operatorname{MinGreedy}}(n)$:

$$
\overline{\operatorname{Min}}(\mathbf{p})= \begin{cases}p_{1}, \overline{p_{1}} & \text { if } n=1 \tag{2}\\ \overline{\operatorname{Min}}\left(\mathbf{p}^{\prime}(n)\right) \cdot p_{n}, \overline{\operatorname{Min}}\left(\mathbf{p}^{\prime}(n-1)\right) \cdot p_{n-1}, \ldots, \overline{\operatorname{Min}}\left(\mathbf{p}^{\prime}(1)\right) \cdot p_{1}, & \text { if } n \geq 2 \\ \overline{\operatorname{Min}}(\overline{\mathbf{p}}(n)) \cdot \bar{p}_{n}, \overline{\overline{\operatorname{Min}}(\overline{\mathbf{p}}(n-1)) \cdot \bar{p}_{n-1}, \ldots, \overline{\operatorname{Min}}(\overline{\mathbf{p}}(1)) \cdot \bar{p}_{1}}\end{cases}
$$

As an example:

$$
\overline{\operatorname{Min}}(123)=\overline{\operatorname{Min}}(12) \cdot 3, \overline{\operatorname{Min}}(\overline{3} 1) \cdot 2, \overline{\operatorname{Min}}(\overline{2} \overline{3}) \cdot 1, \overline{\operatorname{Min}}(\overline{1} \overline{2}) \cdot \overline{3}, \overline{\operatorname{Min}}(3 \overline{1}) \cdot \overline{2}, \overline{\operatorname{Min}}(23) \cdot \overline{1} .
$$

4.1. Ranking

In this subsection we provide a ranking algorithm for the listing $\overline{\operatorname{Min}}(123 \cdots n)$. The rank of a signed permutation $\mathbf{p}=p_{1} p_{2} \cdots p_{n}$ in the listing $\overline{\operatorname{Min}}(123 \cdots n)$ follows directly from the recurrence given in (2), and is similar in spirit to the approach used in Section 3.1.

$$
\overline{\operatorname{Rank}}\left(p_{1} p_{2} \cdots p_{n}\right)= \begin{cases}1 & \text { if } n=1 \text { and } p_{1}=1 \\ 2 & \text { if } n=1 \text { and } p_{1}=\overline{1} \\ \left(n-p_{n}\right) \cdot 2^{n-1}(n-1)!+\overline{\operatorname{Rank}}\left(q_{1} q_{2} \cdots q_{n-1}\right) & \text { if } n>1 \text { and } p_{n}>0 \\ \left(2 n-\left|p_{n}\right|\right) \cdot 2^{n-1}(n-1)!+\overline{\operatorname{Rank}}\left(q_{1} q_{2} \cdots q_{n-1}\right) & \text { if } n>1 \text { and } p_{n}<0\end{cases}
$$

where $\left|q_{i}\right|=\left(\left|p_{i}\right|-\left|p_{n}\right|\right) \bmod n$ and the sign of q_{i} is negative if and only if (1) the sign of p_{i} is the same as the sign of p_{n} and $\left|p_{n}\right|<\left|p_{i}\right|$ or (2) the sign of p_{i} is different from the sign of p_{n} and $\left|p_{n}\right|>\left|p_{i}\right|$. Since $q_{1} q_{2} \cdots q_{n-1}$ can easily be computed using $O(n)$ operations, a straightforward implementation of this recurrence allows the rank to be computed using $O\left(n^{2}\right)$ operations.

The mapping of p_{i} to q_{i} is perhaps best understood with an example. Consider $p_{1} p_{2} \cdots p_{6}=1 \overline{4} 3 \overline{6} 52$ and the following map table constructed given that $p_{6}=2$:

$$
\begin{array}{c|cccccccccccc}
p_{i} & \overline{1} & \overline{2} & \overline{3} & \overline{4} & \overline{5} & \overline{6} & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline q_{i} & \overline{5} & - & 1 & 2 & 3 & 4 & 5 & - & \overline{1} & \overline{2} & \overline{3} & \overline{4}
\end{array}
$$

From this table: $p_{1}=1$ implies $q_{1}=5, p_{2}=\overline{4}$ implies $q_{2}=2, p_{3}=3$ implies $q_{3}=\overline{1}, p_{4}=\overline{6}$ implies $q_{4}=4$, and $p_{5}=5$ implies $q_{5}=\overline{3}$.

As a full example of the recursive ranking process, we consider the recursive decomposition for computing the rank of $1 \overline{4} 3 \overline{6} 52$ in the ordering $\overline{\operatorname{Min}}(123456)$:

$$
\begin{aligned}
\overline{\operatorname{Rank}}(1 \overline{4} 3 \overline{6} 52) & =4 \cdot 2^{5} \cdot 5!+\overline{\operatorname{Rank}}(52 \overline{1} 4 \overline{3}) \\
& =4 \cdot 2^{5} \cdot 5!+7 \cdot 2^{4} \cdot 4!+\overline{\operatorname{Rank}}(2 \overline{4} 31) \\
& =4 \cdot 2^{5} \cdot 5!+7 \cdot 2^{4} \cdot 4!+3 \cdot 2^{3} \cdot 3!+\overline{\operatorname{Rank}}(\overline{1} 3 \overline{2}) \\
& =4 \cdot 2^{5} \cdot 5!+7 \cdot 2^{4} \cdot 4!+3 \cdot 2^{3} \cdot 3!+4 \cdot 2^{2} \cdot 2!+\overline{\operatorname{Rank}}(21) \\
& =4 \cdot 2^{5} \cdot 5!+7 \cdot 2^{4} \cdot 4!+3 \cdot 2^{3} \cdot 3!+4 \cdot 2^{2} \cdot 2!+1 \cdot 2^{1} \cdot 1!+\overline{\operatorname{Rank}}(\overline{1}) \\
& =15360+2688+144+32+2+2=18228 .
\end{aligned}
$$

4.2. Unranking

Finding the signed permutation $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n}$ at rank rank in the listing $\overline{\operatorname{Min}}(123 \cdots n)$ follows a similar approach as the unsigned case. The first step is to determine the value of the last element p_{n} in the signed permutation. Let $x=\left\lfloor\frac{r a n k-1}{2^{n-1}(n-1)!}\right\rfloor$. Then based on the recurrence in (2), if $x<n$ then $p_{n}=n-x$ and otherwise $p_{n}=-(2 n-x)$. Then recursion is applied to find the signed permutation $q_{1} q_{2} q_{3} \ldots q_{n-1}$ at rank rank $-x 2^{n-1}(n-1)$! in $\overline{\operatorname{Min}}(123 \cdots n-1)$. Observe that the first signed permutation that ends with p_{n} in $\overline{\operatorname{Min}}(123 \cdots n)$ is $\overline{\left(p_{n}+1\right)} \overline{\left(p_{n}+2\right)} \cdots \bar{n} 12 \cdots\left(p_{n}-1\right)$ if $p_{n}>0$ and is $\left(p_{n}+1\right)\left(p_{n}+2\right) \cdots n \overline{1} \overline{2} \cdots \overline{\left(p_{n}-1\right)}$ if $p_{n}<0$. Thus, by applying an appropriate mapping of these symbols to $123 \cdots n$ (and the corresponding $\overline{1} \overline{2} \overline{3} \cdots \bar{n}$), we obtain $p_{1} p_{2} p_{3} \cdots p_{n-1}$ from the string returned by the recursive call. Pseudocode that follows this approach is given in Algorithm 2. The function $\operatorname{SIGN}(x)$ returns 1 if x is positive and 0 otherwise. Since the work, not counting the recursive call, is $O(n)$, the signed permutation \mathbf{p} at position rank in the listing $\overline{\operatorname{Min}}(123 \cdots n)$ can be computed using $O\left(n^{2}\right)$ operations.

```
Algorithm 2 Computing the signed permutation at position rank in the listing \(\overline{\operatorname{Min}}(12 \cdots n), n \geq 1\)
    function \(\overline{\operatorname{UNRANK}}(r a n k, n)\) returns signed permutation
        if \(n=1\) and \(\operatorname{rank}=1\) then return 1
        if \(n=1\) and rank \(=2\) then return -1
        \(x \leftarrow\left\lfloor\frac{\operatorname{rank-1}}{2^{n-1}(n-1)!}\right\rfloor\)
        \(q_{1} q_{2} \cdots q_{n-1} \leftarrow \overline{\text { UNRANK }}\left(\right.\) rank \(\left.-x 2^{n-1}(n-1)!, n-1\right)\)
        if \(x<n\) then \(p_{n} \leftarrow n-x\)
        else \(p_{n} \leftarrow-(2 n-x)\)
        for \(j \leftarrow 1\) to \(n-1\) do
            \(p_{j} \leftarrow 1+\left(\left|q_{j}\right|+\left|p_{n}\right|-1\right) \bmod n\)
            if \(\left(\operatorname{SIGN}\left(p_{n}\right)=\operatorname{SIGN}\left(q_{j}\right)\right.\) and \(\left.p_{j}>p_{n}\right)\) or \(\left(\operatorname{SIGN}\left(p_{n}\right) \neq \operatorname{SIGN}\left(q_{j}\right)\right.\) and \(\left.p_{j}<p_{n}\right)\) then \(p_{j} \leftarrow-p_{j}\)
        return \(p_{1} p_{2} \cdots p_{n}\)
```

As an example, we determine the signed permutation $p_{1} p_{2} \cdots p_{6}$ at rank 18228 in the listing $\overline{\operatorname{Min}}(123456)$. First, we compute $x=\left\lfloor\frac{18228-1}{32 \cdot 120}\right\rfloor=4$, which means that $p_{6}=6-4=2$. Recursively, the signed permutation at rank $18228-4(3840)=2868$ in $\overline{\operatorname{Min}}(12345)$ is found to be $52 \overline{1} 4 \overline{3}$. However, from the recurrence in (2), the first signed permutation ending with $p_{6}=2$ will start with $\overline{3} \overline{4} \overline{5} \overline{6} 1$ (and not the 12345 solved for recursively). Thus, we map:

$$
1 \rightarrow \overline{3}, \quad 2 \rightarrow \overline{4}, \quad 3 \rightarrow \overline{5}, \quad 4 \rightarrow \overline{6}, \quad 5 \rightarrow 1
$$

and similarly we would map

$$
\overline{1} \rightarrow 3, \quad \overline{2} \rightarrow 4, \quad \overline{3} \rightarrow 5, \quad \overline{4} \rightarrow 6, \quad \overline{5} \rightarrow \overline{1} .
$$

Applying these symbol mappings to $52 \overline{1} 4 \overline{3}$ we obtain $p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}=1 \overline{4} 3 \overline{6} 52$.

5. Maximum Flips for Permutations

In this section we study the maximum flip greedy algorithm and prove that it exhaustively lists all unsigned permutations by deriving an equivalent recursive formulation. We begin by looking at the greedy listings MaxGreedy (1234) and MaxGreedy (12345). The length of the flip to go from one permutation to the next is given in parentheses after each permutation.

Example 5.1. MaxGreedy (1234) (read down, then left to right):

$1234_{(4)}$	$2314_{(4)}$	$3124_{(4)}$		
$4321_{(3)}$	$4132_{(3)}$	$4213_{(3)}$		
$2341_{(4)}$	$3142_{(4)}$	$1243_{(4)}$		
$1432_{(3)}$	$2413_{(3)}$	$3421_{(3)}$		
$3412_{(4)}$	$1423_{(4)}$	2431	${ }_{(4)}$	
2143	(3)	$3241_{(3)}$	1342	(3)
$4123_{(4)}$	$4231_{(4)}$	$4312_{(4)}$		
$3214_{(2)}$	$1324_{(2)}$	$2134_{(2)}$		

Example 5.2. MaxGreedy(12345) (read down, then left to right):

```
12345 (5) 23415 (5) 34125 (5) 41235 (5) 23145 (5) 31425 (5) 14235 (5) 42315 (5) 31245 (5) 12435 (5) 24315 (5) 43125 (5)
54321 (4) 51432 (4) 52143 (4) 53214 (4) 54132 (4) 52413 (4) 53241 (4) 51324 (4) 54213 (4) 53421 (4) 51342 (4) 52134 (4)
23451(5) 34152(5) 41253 (5) 12354 (5) 31452 (5) 14253(5) 42351 (5) 23154 (5) 12453 (5) 24351 (5) 43152 (5) 31254 (5)
15432 (4) 25143 (4) 35214 (4) 45321 (4) 25413 (4) 35241 (4) 15324 (4) 45132 (4) 35421 (4) 15342 (4) 25134 (4) 45213 (4)
34512 (5) 41523 (5) 12534 (5) 23541 (5) 14523 (5) 42531 (5) 23514 (5) 31542 (5) 24531 (5) 43512 (5) 31524 (5) 12543 (5)
21543 (4) 32514 (4) 43521 (4)14532 (4) 32541 (4) 13524 (4) 41532 (4) 24513 (4) 13542 (4) 21534 (4) 42513 (4) 34521 (4)
45123 (5) 15234 (5) 25341 (5) 35412 (5) 45231 (5) 25314 (5) 35142 (5) 15423 (5) 45312 (5) 35124 (5) 15243 (5) 25431 (5)
32154 (4) 43251 (4) 14352 (4) 21453 (4) 13254 (4) 41352 (4) 24153 (4) 32451 (4) 21354 (4) 42153 (4) 34251 (4) 13452 (4)
51234 (5) 52341 (5) 53412 (5) 54123 (5) 52314 (5) 53142 (5) 51423 (5) 54231 (5) 53124 (5) 51243 (5) 52431 (5) 54312 (5)
43215 (3) 14325 (3) 21435 (3) 32145 (2) 41325 (3) 24135 (3) 32415 (3) 13245 (2) 42135 (3) 34215 (3) 13425 (3) 21345 (2)
```

In each example, observe that every second flip has length n. Thus, when deriving a recurrence for the sequence of flips required to generate the greedy maximum-flip listing, we start by deriving a recurrence for the length of every second flip. To derive this recurrence, the important flip to consider is the one happening at the bottom of each column in the examples. Observe that the flip lengths at the bottom of each column in the example for MaxGreedy (12345) correspond to every second flip length in the example for MaxGreedy (1234). Letting $\tau_{n}^{\prime}=t_{n, 1}, t_{n, 2}, \ldots, t_{n, j}$ consider the following recurrence:

$$
\tau_{n+1}^{\prime}= \begin{cases}2,2 & \text { if } n+1=3 \\ n^{n}, t_{n, 1}, n^{n}, t_{n, 2}, \ldots, n^{n}, t_{n, j}, n^{n} & \text { if } n+1>3\end{cases}
$$

Lemma 5.3. For $n \geq 3$, the number of elements in the sequence τ_{n}^{\prime} is $\frac{n!}{2}-1$.

Proof. By induction. In the base case when $n=3, \tau_{n}^{\prime}$ has 2 elements and $\frac{3!}{2}-1=2$. Inductively, it is easy to see that the number of elements in τ_{n+1}^{\prime} is $(n+1) \cdot\left(\frac{(n)!}{2}-1\right)+n=\frac{(n+1)!}{2}-1$.
Using τ_{n}^{\prime}, we will show that the sequence of flips used to create $\operatorname{MaxGreedy}(\mathbf{p})$ is given by σ_{n}^{\prime} which is defined as follows:

$$
\sigma_{n}^{\prime}= \begin{cases}2 & \text { if } n=2 \\ n, t_{n, 1}, n, t_{n, 2}, \ldots, n, t_{n, m}, n & \text { if } n>2\end{cases}
$$

Before we can prove this claim, we need to better understand the permutation ordering. Again, by considering the examples for MaxGreedy (1234) and MaxGreedy (12345), observe that the permutations in each column are closed under rotation and reversal: they form a bracelet class. The rotation effect is easily observed since:
\triangleright applying flip ${ }_{n}$ followed by flip ${ }_{n-1}$ rotates a permutation one position to the left and
\triangleright applying flip ${ }_{n-1}$ followed by flip ${ }_{n}$ rotates a permutation one position to the right.
These bracelet sequences form the crux of a recursive formulation for $\operatorname{MaxGreedy}(\mathbf{p})$. Define the bracelet sequence of permutation $\mathbf{p}_{\mathbf{1}}=p_{1} p_{2} p_{3} \cdots p_{n}$, where $n \geq 3$ as:

$$
\operatorname{brace}\left(\mathbf{p}_{\mathbf{1}}\right)=\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \ldots, \mathbf{p}_{\mathbf{2}} \text { such that } \mathbf{p}_{\mathbf{i}}= \begin{cases}\operatorname{flip}_{n}\left(\mathbf{p}_{\mathbf{i}-\mathbf{1}}\right) & \text { if } i \text { is even } \\ \operatorname{flip}_{n-1}\left(\mathbf{p}_{\mathbf{i}-\mathbf{1}}\right) & \text { if } i>1 \text { is odd }\end{cases}
$$

The permutation p_{1} is called the representative of the bracelet sequence brace $\left(\mathbf{p}_{1}\right)$. Since the order alternates flips of lengths n and $n-1$, the odd permutations $\mathbf{p}_{1}, \mathbf{p}_{3}, \mathbf{p}_{5}, \ldots, \mathbf{p}_{2 n-1}$ are all rotations of \mathbf{p}_{1} and the even permutations $\mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{4}}, \mathbf{p}_{6}, \ldots, \mathbf{p}_{\mathbf{2}}$ are all rotations of the reversal of \mathbf{p}_{1} which is flip $_{n}\left(\mathbf{p}_{\mathbf{1}}\right)=\mathbf{p}_{\mathbf{2}}$. Thus, the permutations in each bracelet sequence form a bracelet class.

5.1. Ranking

Observe that in every bracelet sequence generated by $\operatorname{Max}(123 \cdots n)$, the position of n in each permutation follows the sequence:

$$
n, 1, n-1,2, n-2,3, \ldots 3, n-2,2, n-1,1, n .
$$

Thus, given permutation $\mathbf{p}=p_{1} p_{2} \cdots p_{n}$, where $p_{j}=n$, by rotating \mathbf{p} to the right by $n-j$ positions to get $q_{1} q_{2} \cdots q_{n}$, we obtain either the first or last permutation in its bracelet sequence. By recursively finding the rank x of $q_{1} q_{2} \cdots q_{n-1}$, we can determine which it is: if x is odd, then $q_{1} q_{2} \cdots q_{n}$ is the first permutation; otherwise it is the last permutation. In either case, \mathbf{p} will be at a distance of $d=2 n-2 j$ from $q_{1} q_{2} \cdots q_{n}$. Based on these observations, the recurrence for $\operatorname{Max}(\mathbf{p})$ and Remark ??, we obtain the simple ranking procedure given in Algorithm 3. It is easy to see that this procedure requires $O\left(n^{2}\right)$ operations.

As an example, consider the rank of the permutation $\mathbf{p}=p_{1} p_{2} p_{3} p_{4} p_{5}=32451$ in the listing $\operatorname{Max}(12345)$. To rotate $n=5$ into the rightmost position we rotate \mathbf{p} to the right $n-j=5-4=1$ positions to get $q_{1} q_{2} q_{3} q_{4} q_{5}=13245$. Recursively, $q_{1} q_{2} q_{3} q_{4}$ has rank 16 in the listing $\operatorname{Max}(1234)$. Since 16 is even, \mathbf{p} will be $d=10-8=2$ positions from the end of its bracelet sequence and hence has rank $n x-d=5(16)-2=78$.

5.2. Unranking

By applying the same recursive ideas as the corresponding ranking algorithm, Algorithm 4 returns the permutation \mathbf{p} at position $r a n k$ in the listing $\operatorname{Max}(123 \cdots n)$. If the rank is even, then the al-

```
Algorithm 3 Computing the rank of a permutation in \(\operatorname{Max}(123 \cdots n), n \geq 2\)
    function MAXRANK \(\left(\mathbf{p}=p_{1} p_{2} \cdots p_{n}\right)\) returns integer
        if \(\mathbf{p}=12\) then return 1
        if \(\mathbf{p}=21\) then return 2
        \(d \leftarrow 2 n-2 j \quad\) (where \(p_{j}=n\) )
        \(q_{1} q_{2} \cdots q_{n} \leftarrow \operatorname{rotRight}(\mathbf{p}, n-j)\)
        \(x \leftarrow \operatorname{MAXRANK}\left(q_{1} q_{2} \cdots q_{n-1}\right)\)
        if \(x\) is EVEN then return \(n x-d\)
        else return \(n(x-1)+d+1\)
```

gorithm finds the last permutation $\mathbf{p}^{\prime}=p_{1} p_{2} p_{3} \cdots p_{n}$ in the bracelet sequence containing \mathbf{p}. Based on the recursive definition of the listing $\operatorname{Max}(\mathbf{p}), \mathbf{p}^{\prime}$ will be the permutation at rank $2\left\lfloor\frac{\text { rank-1 }}{2 n}\right\rfloor+2$ in $\operatorname{Max}\left(p_{1} p_{2} p_{3} \cdots p_{n-1}\right)$, with the final element n concatenated to the end. From the discussion in the corresponding ranking algorithm, \mathbf{p} will be at a distance $d=2 n-(\operatorname{rank} \bmod 2 n)$ from \mathbf{p}^{\prime}; thus \mathbf{p} can be obtained by rotating \mathbf{p}^{\prime} to left by $d / 2$ positions. A similar argument applies when rank is odd. It is easy to verify that this procedure requires $O\left(n^{2}\right)$ operations.

```
Algorithm 4 Computing the permutation at position rank in the listing \(\operatorname{Max}(123 \cdots n), n \geq 2\)
    function MAXUNRANK (rank, \(n\) ) returns permutation
        if \(n=2\) and rank \(=1\) then return 12
        if \(n=2\) and rank \(=2\) then return 21
        if \(r a n k\) is EVEN then
            \(p_{1} p_{2} \cdots p_{n-1} \leftarrow \operatorname{MAXUNRANK}\left(2\left\lfloor\frac{\text { rank-1 }}{2 n}\right\rfloor+2, n-1\right)\)
            \(d \leftarrow 2 n-(r a n k \bmod 2 n)\)
        else
            \(p_{1} p_{2} \cdots p_{n-1} \leftarrow\) MAXUNRANK \(\left(2\left\lfloor\frac{\text { rank-1 }}{2 n}\right\rfloor+1, n-1\right)\)
            \(d \leftarrow(\operatorname{rank}-1) \bmod 2 n\)
        return rotLeft \(\left(p_{1} p_{2} \cdots p_{n-1} n, d / 2\right)\)
```

As an example, we find the permutation at rank 78 in the listing $\operatorname{Max}(12345)$. The first step is to find the permutation at the end of its bracelet sequence in the listing, since 78 is even. This permutation will be at position $2\left\lfloor\frac{78-1}{10}\right\rfloor+2=16$ in the listing $\operatorname{Max}(1234)$. Recursively, we find this permutation to be 1324. Adding $n=5$ to this permutation we obtain the permutation 13245 which will be $d=10-8=2$ positions after our target permutation in the listing (and corresponding bracelet sequence). Finally, by rotating this permutation $d / 2=1$ position to the left we obtain the permutation 32451 at rank 78 .

6. Maximum Flips for Signed Permutations

In this section we study the maximum flip greedy algorithm and prove that it exhaustively lists all signed permutations by deriving an equivalent recursive formulation. We begin by looking at the greedy listing MaxGreedy (123). The length of the flip to go from one signed permutation to the next is given in parentheses after each signed permutation.

Example 6.1. $\overline{M a x G r e e d y}(123)$ (read down, then left to right):

123 (3)	$2 \overline{1} 3$ (3)	$\overline{1} \overline{2} 3{ }^{(3)}$	$\overline{2} 13$ (3)
$\overline{3} \overline{2} \overline{1}$ (2)	$\overline{3} 1 \overline{2}{ }_{\text {(2) }}$	$\overline{3} 21$ (2)	$\overline{3} 12{ }^{(2)}$
$23 \overline{1}{ }^{(3)}$	$\overline{1} 3 \overline{2}{ }^{(3)}$	$\overline{2} 31$ (3)	132 (3)
$1 \overline{3} \overline{2}{ }_{(2)}$	$2 \overline{3} 1$ (2)	$\overline{1} \overline{3} 2{ }_{\text {(2) }}$	$\overline{2} \overline{3} \overline{1}$ (2)
$3 \overline{1} \overline{2}^{(3)}$	$3 \overline{2} 1$ (3)	312 (3)	$32 \overline{1}$ (3)
$21 \overline{3}{ }_{(2)}$	$\overline{1} 2 \overline{3}{ }_{(2)}$	$\overline{2} \overline{1} \overline{3}$ (2)	$1 \overline{2} \overline{3}$ (2)
$\overline{1} \overline{2} \overline{3}{ }_{(3)}$	$\overline{2} 1 \overline{3}{ }^{(3)}$	$12 \overline{3}{ }^{(3)}$	$2 \overline{1} \overline{3}$ (3)
321 (2)	$3 \overline{1} 2$ (2)	$3 \overline{2} \overline{1}$ (2)	$31 \overline{2}$ (2)
$\overline{2} \overline{3} 1{ }^{(3)}$	$1 \overline{3} 2$ (3)	$2 \overline{3} \overline{1}{ }^{(3)}$	$\overline{1} \overline{3} \overline{2}{ }_{\text {(3) }}$
$\overline{1} 32$ (2)	$\overline{2} 3 \overline{1}$ (2)	$13 \overline{2}$ (2)	231 (2)
$\overline{3} 12$ (3)	$\overline{3} 2 \overline{1}$ (3)	$\overline{3} \overline{1} \overline{2}$ (3)	$\overline{3} \overline{2} 1$ (3)
$\overline{2} \overline{1} 3$ (1)	$1 \overline{2} 3$ (1)	213 (1)	$\overline{123}$ (1)

As with the maximum flip greedy algorithm for unsigned permutations, observe that every second flip (starting from the first signed permutation) has length n. Thus, we start by deriving a recurrence for the length of every second flip, starting from the second signed permutation in the ordering. To derive this recurrence, the important flip to consider is the one happening at the bottom of each column in the examples. The flip lengths at the bottom of each column in the example for $\overline{M a x G r e e d y}(123)$ correspond to every second flip in the sequence for $\overline{M a x G r e e d y}(12)$ which is given by $2, \mathbf{1}, 2, \mathbf{1}, 2, \mathbf{1}, 2,1$ when considered circularly.

Let $\overline{\tau^{\prime}}{ }_{n}=t_{n, 1}, t_{n, 2}, \ldots, t_{n, m}$ and consider the following recurrence:

$$
{\overline{\tau^{\prime}}}^{\prime}{ }_{n+1}= \begin{cases}1,1,1 & \text { if } n+1=2 \\ n^{2 n+1}, t_{n, 1}, n^{2 n+1}, t_{n, 2}, \ldots, n^{2 n+1}, t_{n, m}, n^{2 n+1} & \text { if } n+1>2\end{cases}
$$

Lemma 6.2. For $n \geq 2$, the number of elements in the sequence $\overline{\tau^{\prime}}{ }_{n}$ is $2^{n-1} n!-1$.
Proof. By induction. In the base case when $n=2, \overline{\tau^{\prime}}{ }_{n}$ has 3 elements and $2^{1} 2!-1=3$. Inductively, it is easy to see that the number of elements in $\overline{\tau^{\prime}}{ }_{n+1}$ is $(2 n+2) \cdot\left(2^{n-1} n!-1\right)+2 n+1=2^{n}(n+1)!-1$.

Using $\overline{\tau^{\prime}}{ }_{n}$, we will show that the sequence of flips used to create $\overline{\operatorname{MaxGreedy}}(\mathbf{p})$ is given by $\overline{\sigma^{\prime}}{ }_{n}$ which is defined as follows:

$$
{\overline{\sigma^{\prime}}}_{n}= \begin{cases}1 & \text { if } n=1 \\ n, t_{n, 1}, n, t_{n, 2}, \ldots, n, t_{n, j}, n & \text { if } n>1\end{cases}
$$

Before we can prove this claim, we need to better understand the signed permutation ordering. Observe that each column in the example for $\overline{M a x G r e e d y}(123)$ has signed groupings similar to the unsigned case, but of size $4 n$ compared to $2 n$ in the unsigned case. Define the signed bracelet sequence of a signed permutation $\mathbf{p}_{\mathbf{1}}=p_{1} p_{2} p_{3} \cdots p_{n}$, where $n \geq 2$ as:

$$
\overline{\operatorname{brace}}\left(\mathbf{p}_{\mathbf{1}}\right)=\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \ldots, \mathbf{p}_{\mathbf{4 n}} \text { such that } \mathbf{p}_{\mathbf{i}}= \begin{cases}\overline{\operatorname{flp}}_{n}\left(\mathbf{p}_{\mathbf{i}-\mathbf{1}}\right) & \text { if } i \text { is even } \\ \overline{\operatorname{fli}}_{n-1}\left(\mathbf{p}_{\mathbf{i}-\mathbf{1}}\right) & \text { if } i>1 \text { is odd. }\end{cases}
$$

As with the unsigned case, the signed permutation \mathbf{p}_{1} is called the representative of the signed bracelet sequence brace $\left(\mathbf{p}_{\mathbf{1}}\right)$. Observe that applying a flip of size n followed by a flip of size $n-1$ to any signed permutation rotates the values one position to the left, changing the sign of the element that moved to the end. Repeating such a rotation n times, we obtain the original signed permutation with all the signs flipped. Repeating such a rotation $2 n$ times returns us to the original starting signed permutation. From these observations we make the following remarks.

Remark 6.3. The last signed permutation in a signed bracelet sequence $\overline{\operatorname{brace}}\left(\mathbf{p}_{1}\right)$ is $\overline{\operatorname{flip}}_{n-1}\left(\mathbf{p}_{1}\right)$.
Lemma 6.4. If $\overline{\operatorname{brace}}\left(\mathbf{p}_{\mathbf{1}}\right)=\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}, \ldots, \mathbf{p}_{4 \mathbf{n}}$ where $n \geq 2$ then $\operatorname{flipSign}\left(\mathbf{p}_{\mathbf{i}}\right)=\mathbf{p}_{\mathbf{2 n + \mathbf { i }}}$ for $1 \leq i \leq 2 n$.
Proof. Consider a signed permutation $\mathbf{p}=p_{1} p_{2} \cdots p_{n}$. The result of applying a flip of size n followed by a flip of size $n-1$ is $p_{2} p_{3} \cdots p_{n} \bar{p}_{1}$ which is a rotation of \mathbf{p} to the left and flipping the sign of the new last element. By repeatedly applying these two successive operations n times, the resulting permutation is $\bar{p}_{1} \bar{p}_{2} \cdots \bar{p}_{n}$. Thus, by the definition of a signed bracelet sequence, when i is odd, flipSign $\left(\mathbf{p}_{\mathbf{i}}\right)=\mathbf{p}_{\mathbf{2 n}+\mathbf{i}}$ for $1 \leq i \leq 2 n$.

The result of applying a flip of size $n-1$ followed by a flip of size n is $\bar{p}_{n} p_{1} p_{2} \cdots p_{n-1}$ which is a rotation of \mathbf{p} to the right and flipping the sign of the new first element. By repeatedly applying these two successive operations n times, the resulting permutation is $\bar{p}_{1} \bar{p}_{2} \cdots \bar{p}_{n}$. Thus, by the definition of a signed bracelet sequence, when i is even, flipSign $\left(\mathbf{p}_{\mathbf{i}}\right)=\mathbf{p}_{2 \mathbf{n}+\mathbf{i}}$ for $1 \leq i \leq 2 n$.

Remark 6.5. There are exactly two signed permutations in $\overline{\operatorname{brace}}\left(p_{1} p_{2} p_{3} \cdots p_{n}\right)$ that end with p_{n}, namely $p_{1} p_{2} p_{3} \cdots p_{n}$ and $\bar{p}_{n-1} \cdots \bar{p}_{3} \bar{p}_{2} \bar{p}_{1} p_{n}$, and they differ by flip $_{n-1}$.

Using the definition for signed bracelet sequences, we arrive at a recurrence for the sequence $\overline{\operatorname{Max}}(\mathbf{p})$ similar to the one for the unsigned case. If $\mathbf{p}=p_{1} p_{2} p_{3} \cdots p_{n}$ is a signed permutation, then:

$$
\overline{\operatorname{Max}}(\mathbf{p})= \begin{cases}p_{1}, \overline{p_{1}} & \text { if } n=1 \tag{3}\\ \overline{\operatorname{brace}}\left(\mathbf{q}_{\mathbf{1}} \cdot p_{n}\right), \overline{\operatorname{brace}}\left(\mathbf{q}_{\mathbf{3}} \cdot p_{n}\right), \overline{\operatorname{brace}}\left(\mathbf{q}_{5} \cdot p_{n}\right), \ldots, \overline{\operatorname{brace}}\left(\mathbf{q}_{\mathbf{m}-\mathbf{1}} \cdot p_{n}\right) & \text { if } n \geq 2\end{cases}
$$

where $\overline{\operatorname{Max}}\left(p_{1} p_{2} p_{3} \cdots p_{n-1}\right)=\mathbf{q}_{\mathbf{1}}, \mathbf{q}_{\mathbf{2}}, \ldots, \mathbf{q}_{\mathbf{m}}$. The following lemma shows that $\mathbf{m}=2^{n-1}(n-1)!$.
Lemma 6.6. The number of elements in the sequence $\overline{\operatorname{Max}}\left(p_{1} p_{2} p_{3} \cdots p_{n}\right)$ is $2^{n} n$!.
Proof. By induction. The base case is clearly satisfied for $n=1$. Inductive Hypothesis: For $n \geq 1$, assume the claim is true. Consider $\overline{\operatorname{Max}}\left(p_{1} p_{2} p_{3} \cdots p_{n+1}\right)$. By the inductive hypothesis $\overline{\operatorname{Max}}\left(p_{1} p_{2} p_{3} \cdots p_{n}\right)$ has $2^{n} n$! elements which is an even number since $n \geq 1$. Thus, from the recursive definition, $\overline{\operatorname{Max}}\left(p_{1} p_{2} p_{3} \cdots p_{n+1}\right)$ is the concatenation of $2^{n-1} n$! signed bracelet sequences of length $4(n+1)$. Thus, the total number of signed permutations in the sequence $\overline{\operatorname{Max}}\left(p_{1} p_{2} p_{3} \cdots p_{n+1}\right)$ is $2^{n+1}(n+1)$!.

Our goal is to show that $\overline{\operatorname{MaxGreedy}}(\mathbf{p})$ and $\overline{\operatorname{Max}}(\mathbf{p})$ are equivalent flip Gray code listings for signed permutations.

6.1. Ranking

The ranking strategy for a signed permutation $\mathbf{p}=p_{1} \cdots p_{n}$ is similar to the unsigned case: determine the distance from \mathbf{p} to either the first or last signed permutation in its signed bracelet sequence. However, for the signed case, there are two main differences:

1. The $2 n-2 j$ operations required to shift the symbol p_{j} whose absolute value is n to the last position correspond to a right rotation of length $n-j$ and a flipping of the signs for the first $n-j$ symbols in the resulting rotated signed permutation.
2. If the symbol p_{j} is $-n$, then we need to perform an additional n right rotations (which corresponds to flipping the signs of each symbol) to obtain either the first or last signed permutation in the signed bracelet sequence.
With these two modifications and applying the recurrence for $\overline{\operatorname{Max}}(\mathbf{p})$, we obtain the ranking procedure given in Algorithm 5. This algorithm requires $O\left(n^{2}\right)$ basic operations.
```
Algorithm 5 Computing the rank of a signed permutation in \(\overline{\operatorname{Max}}(123 \cdots n), n \geq 1\)
    function \(\overline{\operatorname{MAXRANK}}\left(\mathbf{p}=p_{1} p_{2} \cdots p_{n}\right)\) returns integer
        if \(\mathbf{p}=1\) then return 1
        if \(\mathbf{p}=-1\) then return 2
        \(d \leftarrow 2 n-2 j \quad \triangleright\) where \(p_{j}=n\)
        \(q_{1} q_{2} \cdots q_{n} \leftarrow \operatorname{rotRight}(\mathbf{p}, n-j)\)
        flipSign \(\left(q_{1} q_{2} \cdots q_{n-j}\right)\)
        if \(p_{j}<0\) then
            flipSign \(\left(q_{1} q_{2} \cdots q_{n}\right)\)
            \(d \leftarrow d+2 n\)
        \(x \leftarrow \overline{\text { MAXRANK }}\left(q_{1} q_{2} \cdots q_{n-1}\right)\)
        if \(x\) is EVEN then return \(2 n x-d\)
        else return \(2 n(x-1)+d+1\)
```

As an example, consider the rank of the signed permutation $\mathbf{p}=p_{1} p_{2} p_{3} p_{4}=\overline{1} 3 \overline{4} 2$ in the ordering $\overline{\operatorname{Max}}(1234)$. To shift the element p_{j}, such that $\left|p_{j}\right|=n=4$, into the right most position we perform a right rotation $n-j=4-3=1$ positions and flip the sign of the first $n-j=1$ positions. The resulting signed permutation $q_{1} q_{2} q_{3} q_{4}=\overline{2} 13 \overline{4}$ will be $d=2 n-2 j=2$ from the original signed permutation. The signed permutation $\overline{2} \overline{1} 3 \overline{4}$, in turn, will be $2 n$ additional positions away from its corresponding signed permutation with all its signs flipped, namely $21 \overline{3} 4$. This latter signed permutation will be either the first or last signed permutation in a signed bracelet sequence used by the recurrence for $\operatorname{Max}(1234)$. Recursively, $21 \overline{3}$ has rank $x=6$ in the listing $\overline{\operatorname{Max}}(123)$. Since 6 is even, \mathbf{p} will be $d=2 n-2 j+2 n=$ 10 positions from the end of its bracelet sequence and hence has rank $2 n x-d=8(6)-10=38$.

6.2. Unranking

By applying the same recursive ideas as the corresponding ranking algorithm, Algorithm 6 returns the signed permutation \mathbf{p} at position rank in the listing $\overline{\operatorname{Max}}(123 \cdots n)$. By computing the distance $d=(\operatorname{rank}-1) \bmod 4 n$ that \mathbf{p} must be from its signed bracelet sequence representative, consider two cases:

1. If $d \geq 2 n$ recursively find the last signed permutation in its signed bracelet sequence which is the signed permutation at rank $2\left\lfloor\frac{r a n k-1}{4 n}\right\rfloor+2$ in the listing $\overline{\operatorname{Max}}(n-1)$ with the symbol n appended to the last position. The target signed permutation \mathbf{p} will then be at distance of $4 n-d-1$ before this signed permutation in the corresponding signed bracelet sequence.
2. If $d<2 n$ recursively find the representative signed permutation in the signed bracelet sequence which is the signed permutation at rank $2\left\lfloor\frac{r a n k-1}{4 n}\right\rfloor+1$ in the listing $\overline{\operatorname{Max}}(n-1)$ with the symbol n appended to the last position.

Based on the definition of a signed bracelet sequence, it is easy to simulate the operations from the first (or last) signed permutation in the class to obtain the target signed permutation \mathbf{p} as is illustrated in Algorithm 6. This algorithm uses $O\left(n^{2}\right)$ basic operations.

```
Algorithm 6 Computing the signed permutation at position rank in the listing \(\overline{\operatorname{Max}}(123 \cdots n), n \geq 1\)
    function MAXUNRANK \((r a n k, n)\) returns signed permutation
        if \(n=1\) and \(r a n k=1\) then return 1
        if \(n=1\) and rank \(=2\) then return - 1
        \(d \leftarrow(\operatorname{rank}-1) \bmod 4 n\)
        if \(d \geq 2 n\) then
            \(d \leftarrow 4 n-d-1\)
            \(p_{1} p_{2} \cdots p_{n-1} \leftarrow \overline{\text { MAXUNRANK }}\left(2\left\lfloor\frac{\text { rank-1 }}{4 n}\right\rfloor+2, n-1\right)\)
        else
            \(p_{1} p_{2} \cdots p_{n-1} \leftarrow \overline{\text { MAXUNRANK }}\left(2\left\lfloor\frac{\text { rank-1 }}{4 n}\right\rfloor+1, n-1\right)\)
        if \(d\) is EVEN then
            \(p_{1} p_{2} \cdots p_{d / 2} \leftarrow \operatorname{flipSign}\left(p_{1} p_{2} \cdots p_{d / 2}\right)\)
            return rotLeft \(\left(p_{1} p_{2} \cdots p_{n-1} n, d / 2\right)\)
        else
            \(p_{1} p_{2} \cdots p_{n} \leftarrow \operatorname{rotRight}\left(\overline{\operatorname{flip}}_{n}\left(p_{1} p_{2} \cdots p_{n-1} n\right),\lfloor d / 2\rfloor\right)\)
            \(p_{1} p_{2} \cdots p_{\lfloor d / 2\rfloor} \leftarrow\) flipSign \(\left(p_{1} p_{2} \cdots p_{\lfloor d / 2\rfloor}\right)\)
            return \(p_{1} p_{2} \cdots p_{n}\)
```

As an example, we find the signed permutation $\mathbf{p}=p_{1} p_{2} p_{3} p_{4}$ at rank 38 in $\overline{\operatorname{Max}}(1234)$. Since each signed bracelet sequence for $n=4$ has $4 n=16$ elements, the signed permutation we are looking for will be $d=(38-1) \bmod 16=5$ positions from the first permutation in its corresponding signed bracelet sequence which is at rank 33 . Since this is the 3 rd bracelet sequence in the recurrence for $\overline{\operatorname{Max}}(1234)$, we recursively find the 5th signed permutation in $\overline{\operatorname{Max}}(123)$ which is $3 \overline{1} \overline{2}$. Thus, \mathbf{p} will be $d=5$ permutations after $3 \overline{1} \overline{2} 4$ in its signed bracelet sequenceing. This permutation is obtained by performing a signed flip of size n to get $\overline{4} 21 \overline{3}$ followed by a right rotation of $\lfloor d / 2\rfloor=2$ positions to get $1 \overline{3} \overline{4} 2$. Finally, we flip the sign of the first $\lfloor d / 2\rfloor=2$ elements to obtain $\mathbf{p}=\overline{1} 3 \overline{4} 2$.

7. Efficient Generation

In this section we present efficient implementations of the minimum-flip and maximum-flip greedy Gray codes for both signed and unsigned permutations. Algorithm 7 outlines a simple iterative procedure that will generate the specified Gray code provided there is an iterative function NEXT- σ that will produce the next flip in the corresponding flip-sequence. When the sequence is exhausted, the function NEXT- σ is assumed to return 0 .

```
Algorithm 7 Iterative approach to list \(\operatorname{Min}(\mathbf{p}), \overline{\operatorname{Min}}(\mathbf{p}), \operatorname{Max}(\mathbf{p})\), or \(\overline{\operatorname{Max}}(\mathbf{p})\)
    procedure IterativeGen(p)
        repeat
            \(\operatorname{Visit}(\mathbf{p})\)
            \(j \leftarrow\) Next \(-\sigma\)
            \(\mathbf{p} \leftarrow \mathrm{flip}_{j}(\mathbf{p}) \quad \triangleright\) use \(\overline{\text { flip }}_{j}(\mathbf{p})\) for the signed case
        until \(j=0\)
```

The loop-free functions for NeXt- σ, outlined in Algorithm 8, can be used to produce the flipsequences σ_{n} for each Gray code discussed in the previous four sections. Each function uses an array of counters $c_{0}, c_{1}, \ldots, c_{n+1}$ initialized to 0 , and an array of flip lengths $f_{0}, f_{1}, \ldots, f_{n+1}$ with each f_{i} initialized to i. A formal proof of correctness for the minimum-flip case for permutations is provided in [3].

Similar techniques can be used to prove the correctness for the other three sequences, and are omitted from this paper. A complete C implementation for these algorithms (including the ranking and unranking algorithms) is provided in the appendix.

```
Algorithm 8 Iterative approaches for producing the sequences \(\sigma_{n}, \bar{\sigma}_{n}, \sigma_{n}^{\prime}\), and \(\bar{\sigma}_{n}^{\prime}\),
    function NEXT- \(\sigma\) returns integer \(\triangleright\) for \(\sigma_{n} \quad\) 1: function NEXT- \(\sigma\) returns integer \(\triangleright\) for \(\bar{\sigma}_{n}\)
        \(x \leftarrow f_{2} \quad\) 2: \(\quad x \leftarrow f_{1}\)
        \(f_{2} \leftarrow 2 \quad 3: \quad f_{1} \leftarrow 1\)
        \(c_{x} \leftarrow c_{x}+1 \quad\) 4: \(\quad c_{x} \leftarrow c_{x}+1\)
        if \(x=2\) or \(c_{x}=x-1\) then \(\quad 5: \quad\) if \(x=1\) or \(c_{x}=2 x-1\) then
            \(c_{x} \leftarrow 0\)
            \(f_{x} \leftarrow f_{x+1}\)
            \(f_{x+1} \leftarrow x+1\)
        if \(x=n\) then return 0
        return \(x\)
                \(x \leftarrow 0\)
                \({ }_{x+1}\)
                \(f_{x+1} \leftarrow x+1\)
        if \(x=n\) then return 0
        return \(x\)
    function NеХт- \(\sigma\) returns integer \(\triangleright\) for \(\sigma_{n}^{\prime}\)
    function NEXT- \(\sigma\) returns integer \(\triangleright\) for \(\overline{\sigma^{\prime}}{ }_{n}\)
        \(x \leftarrow f_{n}\)
        \(x \leftarrow f_{n}\)
        \(f_{n} \leftarrow n\)
        \(c_{x} \leftarrow c_{x}+1\)
        \(f_{n} \leftarrow n\)
        \(c_{x} \leftarrow c_{x}+1\)
        if \(x=n\) or \(c_{x}=x\) then
        if \(x=n\) or \(c_{x}=2 x+1\) then
            \(c_{x} \leftarrow 0\)
            \(c_{x} \leftarrow 0\)
            \(f_{x} \leftarrow f_{x-1}\)
            \(f_{x-1} \leftarrow x-1\)
                \(f_{x} \leftarrow f_{x-1}\)
                \(f_{x-1} \leftarrow x-1\)
        if \(x=1\) then return 0
        if \(x=0\) then return 0
        return \(x\)
        return \(x\)
```

Using a standard array representation for the permutation, this framework will result in a CAT algorithm for the minimum-flip algorithms, since the average flip length is constant.

Theorem 7.1. The listing $\operatorname{Min}(\mathbf{p})$ can be generated in constant amortized time.
Theorem 7.2. The listing $\overline{\operatorname{Min}}(\mathbf{p})$ can be generated in constant amortized time.
The average flip length is $O(n)$ in the maximum-flip algorithms, so the corresponding generation algorithms will run in $O(n)$ amortized time using the standard array representation. However, we can achieve CAT generation algorithms by using two doubly linked lists to represent the (signed) permutations. To explain how this is done for permutations, recall that applying the operations flip ${ }_{n}$ and flip ${ }_{n-1}$ successively to a permutation is equivalent to a left rotation. Similarly, applying the operations flip ${ }_{n-1}$ and flip_{n} corresponds to a right rotation. Thus, a bracelet sequence $\mathbf{p}_{1}, \mathbf{p}_{\mathbf{2}}, \ldots, \mathbf{p}_{2 \mathrm{n}}$ satisfies the following:

$$
\mathbf{p}_{\mathbf{2 i}+\mathbf{1}}=\operatorname{rotLeft}\left(\mathbf{p}_{2 \mathbf{i}-\mathbf{1}}, 1\right) \text { and } \mathbf{p}_{\mathbf{2 i + 2}}=\operatorname{rotRight}\left(\mathbf{p}_{2 \mathbf{i}}, 1\right) \text { for all } 1 \leq i<n .
$$

By maintaining pointers to the first and last elements, each of the individual rotations can be implemented in constant time. Thus, by maintaining two linked lists initialized to $\mathbf{p}_{\mathbf{1}}$ and $\mathbf{p}_{\mathbf{2}}$ and a pointer to indicate the current list, we can generate each bracelet sequence in constant amortized time. To complete the $\operatorname{Max}(\mathbf{p})$ generation algorithm, we must consider how to transition between bracelet classes. These transitions can trivially be done in linear time; however, since it is only required for every $2 n$ permutations, the overall algorithm will be CAT.

Theorem 7.3. The listing $\operatorname{Max}(\mathbf{p})$ can be generated in constant amortized time using two linked lists.
The same approach works for signed permutations. The only difference is that left and right rotations require the sign of the last and first symbols to be complemented in the resulting permutations, respectively.

Theorem 7.4. The listing $\overline{\operatorname{Max}}(\mathbf{p})$ can be generated in constant amortized time using two linked lists.

8. Concluding Remarks

To do. (Mention FUN journal paper with successor rules.)

References

[1] Sawada, J., Williams, A.: Greedy flipping of pancakes and burnt pancakes. Discrete Applied Mathematics accepted (2016)
[2] Siegel, J.: Interconnection Networks for Large-Scale Parallel Processing: Theory and Case Studies. McGraw-Hill (1990)
[3] Zaks, S.: A new algorithm for generation of permutations. BIT Numerical Mathematics 24(2), 196204 (1984)

9. Appendix

```
// GENERATING (SIGNED) PERMUTATIONS BY MIN or MAX FLIPS
// Research by: Aaron Williams, Joe Sawada
#include <stdio.h>
#include <stdlib.h>
#define MAX_N 21
int MAX=0, MIN=0, SIGNED=0, GEN=0, RANK=0, UNRANK=0;
int n, type, a[MAX_N], sign[MAX_N], f[MAX_N], c[MAX_N];
long long int rank, total, pow2[MAX_N], factorial[MAX_N];
void Input() {
int i;
printf(" ------------------------\n");
printf(" Permutation Generation \n");
printf(" ----------------------\n");
printf(" 1. Max Flip \n");
printf(" 2. Min Flip\n");
printf(" 3. Max Flip (Signed) \n");
printf(" 4. Min Flip (Signed) \n");
printf("\n");
printf(" ----------------------\n");
printf(" Permutation Ranking \n");
printf(" ----------------------\n");
printf(" 5. Max Flip \n");
printf(" 6. Min Flip\n");
printf(" 7. Max Flip (Signed) \n");
printf(" 8. Min Flip (Signed) \n");
printf("\n");
printf(" ---------------------------------
```

```
    printf(" Permutation UnRanking \n");
    printf(" ----------------------\n");
    printf(" 9. Max Flip \n");
    printf(" 10. Min Flip\n");
    printf(" 11. Max Flip (Signed) \n");
    printf(" 12. Min Flip (Signed) \n");
    printf("\n ENTER selection #: "); scanf("%d", &type);
    if (type < 0 || type > 12) {
        printf("\n INVALID ENTRY\n\n");
        exit(0);
    }
    // long int constraints: MAX n seems to be 20 or 16 (Signed)
    printf(" ENTER length n: ");
    scanf("%d", &n);
    if (type % 4 == 0 || type %4 == 3) SIGNED = 1;
    if (type % 4 == 1 | type %4 == 3) MAX = 1;
    if (type % 4 == 0 | | type %4 == 2) MIN = 1;
    if (type >= 1 && type <= 4) GEN = 1;
    else if (type >=5 && type <= 8) {
        RANK = 1;
        printf(" ENTER permutation (separated by spaces): ");
        for (i=1; i<=n; i++) scanf("%d", &a[i]);
        for (i=1; i<=n; i++) {
            if (a[i] < 0) {
                a[i] = -a[i];
                sign[i] = 1;
            }
            else sign[i] = 0;
        }
    }
    else if (type >=9 && type <= 12) {
        UNRANK = 1;
        if (SIGNED == 0) rank = factorial[n];
        else rank = factorial[n] * pow2[n];
        printf(" ENTER rank (between 1 and %lld): ", rank);
        scanf("%lld", &rank);
    }
    printf("\n");
}
void Init() {
    int j;
    //===============
    // INITIAL PERM
    //================
    for (j=1; j<=n; j++) a[j] = j;
    for (j=1; j<=n; j++) sign[j] = 0;
    //============
    // INIT NEXT
    //============
    for (j=0; j<=n+1; j++) c[j] = 0;
    for (j=0; j<=n+1; j++) f[j] = j;
}
//------------------------------------------------
void Print() {
int i;
    for (i=1; i<=n; i++) {
        if (sign[i] == 0 || !SIGNED) printf(" %d ", a[i]);
        else printf("-%d ", a[i]);
    }
    if (!RANK) printf("\n");
    total++;
}
```

```
//----------------------------------------------------------
// OPERATIONS ON PERMUTATIONS
void RotateRight(int t, int j) {
int i, b[MAX_N];
    for (i=1; i<=t-j; i++) b[i+j] = a[i];
    for (i=1; i<=j; i++) b[i] = a[t-j+i];
    for (i=1; i<=t; i++) a[i] = b[i];
    for (i=1; i<=t-j; i++) b[i+j] = sign[i];
    for (i=1; i<=j; i++) b[i] = sign[t-j+i];
    for (i=1; i<=t; i++) sign[i] = b[i];
}
void RotateLeft(int t, int j) {
int i, b[MAX_N];
    for (i=j+1; i<=t; i++) b[i-j] = a[i];
    for (i=1; i<=j; i++) b[t-j+i] = a[i];
    for (i=1; i<=t; i++) a[i] = b[i];
    for (i=j+1; i<=t; i++) b[i-j] = sign[i];
    for (i=1; i<=j; i++) b[t-j+i] = sign[i];
    for (i=1; i<=t; i++) sign[i] = b[i];
}
void Flip(int t) {
int i, b[MAX_N];
    for (i=1; i<=t; i++) b[i] = a[t-i+1];
    for (i=1; i<=t; i++) a[i] = b[i];
    //============================
    // Flip Signs for Signed case
    //============================
    for (i=1; i<=t; i++) b[i] = sign[t-i+1];
    for (i=1; i<=t; i++) sign[i] = (b[i]+1) % 2;
}
//------------------------------------------------------------
void FlipSign(int t) {
int i;
    for (i=1; i<=t; i++) sign[i] = (sign[i]+1)%2;
}
//--------------------------------------------------
// UNRANKING
//------------------------------------------------
void UnRankMin(long long int rank, int t) {
int j,x;
    if (t == 1) { a[1] = 1; return; }
    x = (rank-1) / factorial[t-1];
    rank = rank - x * factorial[t-1];
    UnRankMin(rank, t-1);
    a[t] = t - x;
    for (j=1; j<t; j++) a[j] = 1 + (a[j] + a[t] - 1) % t;
}
void UnRankMinSigned(long long int rank, int t) {
int j,x;
    if (t == 1) {
        a[1] = 1;
        if (rank == 2) sign[1] = 1;
        else sign[1] = 0;
        return;
    }
```

```
    x = (rank-1) / (factorial[t-1] * pow2[t-1]);
    rank = rank - x * factorial[t-1] * pow2[t-1];
    if (x < t) {
        a[t] = t-x;
        sign[t] = 0;
    }
    else {
        a[t] = 2*t -x;
        sign[t] = 1;
    }
    UnRankMinSigned(rank, t-1);
    for (j=1; j<t; j++) {
        x = 1 + (a[j] + a[t] - 1) % t;
        if ((sign[t] == sign[j] && x > a[t]) || (sign[t] != sign[j] && x < a[t])) sign[j] = 1;
        else sign[j] = 0;
        a[j] = x;
    }
}
void UnRankMax(long long int rank, int t) {
int d;
    //===========
    // BASE CASE
    //============
    if (t == 2) {
        if(rank == 1) { a[1] = 1; a[2] = 2;}
        if(rank == 2) {a[1] = 2;a[2] = 1;}
        return;
    }
    a[t] = t;
    if (rank % 2 == 0) {
        UnRankMax( 2*((rank-1)/(2*t)) + 2, t-1);
        d = 2*t - (rank % (2*t));
    }
    else {
        UnRankMax( 2*((rank-1)/(2*t)) + 1, t-1);
        d = (rank-1) % (2*t);
    }
    RotateLeft(t,d/2);
}
void UnRankMaxSigned(long long int rank, int t) {
int d;
```

```
a[t] = t; sign[t] = 0;
```

a[t] = t; sign[t] = 0;
//============
//============
// BASE CASE
// BASE CASE
//============
//============
if (t == 1) {
if (t == 1) {
if (rank == 2) sign[1] = 1;
if (rank == 2) sign[1] = 1;
return;
return;
}
}
d = (rank-1) % (4*t);
d = (rank-1) % (4*t);
if (d >= 2*t) {
if (d >= 2*t) {
d = 4*t - d - 1;
d = 4*t - d - 1;
UnRankMaxSigned(2*((rank-1)/(4*t)) + 2, t-1);
UnRankMaxSigned(2*((rank-1)/(4*t)) + 2, t-1);
}
}
else UnRankMaxSigned(2*((rank-1)/(4*t)) + 1, t-1);
else UnRankMaxSigned(2*((rank-1)/(4*t)) + 1, t-1);
if (d % 2 == 0) {
if (d % 2 == 0) {
FlipSign(d/2);
FlipSign(d/2);
RotateLeft(t,d/2);
RotateLeft(t,d/2);
}
}
else {

```
else {
```

```
        Flip(t);
        RotateRight(t,d/2);
        FlipSign(d/2);
    }
}
//--------------------------------------------
// RANKING
long long int RankMin(int t) {
int j;
    if (t == 1) return 1;
    for (j=1; j<t; j++) a[j] = (a[j] - a[t] + t) % t;
    return ((t-a[t]) * factorial[t-1] + RankMin(t-1));
}
//-----------------------------------------
long long int RankMinSigned(int t) {
int j;
    if (t == 1 && sign[1] == 0) return 1;
    if (t == 1 && sign[1] == 1) return 2;
    for (j=1; j<t; j++) {
        if ((sign[t] == sign[j] && a[t] < a[j]) || (sign[t] != sign[j] && a[t] > a[j])) sign[j] = 1;
        else sign[j] = 0;
        a[j] = (a[j] - a[t] + t) % t;
    }
    if (sign[t] == 0) return ((t-a[t]) * factorial[t-1] * pow2[t-1] + RankMinSigned(t-1));
    else return ((2*t - a[t]) * factorial[t-1] * pow2[t-1] + RankMinSigned(t-1));
}
```

long long int RankMax (int t) \{
long long int i, d, x, p;
//===========
// BASE CASES
//===========
if $(t==2 \& \& a[1]==1)$ return 1 ;
if $(t==2 \& \& a[1]==2)$ return 2;
//======================================12
// Determine position of largest value
//=======================================
for ($i=1$; $i<=t$; $i++$) if (a[i] == t) $p=i$;
//==1
// Rotate to either the first or last permutation in the bracelet class
//===2
$\mathrm{d}=2$ * (t-p);
RotateRight ($t, t-p$);
$1 /===$
// The parity indicates whether or not the rotate perm is first or last in the class

$\mathrm{x}=\operatorname{RankMax}(\mathrm{t}-1)$;
if $(x \% 2==0)$ return ($t * x-d$);
else return $(t *(x-1)+d+1)$;
\}

long long int RankMaxSigned(int t) \{
long long int i, d, x, p;

```
//===========
// BASE CASE
//============
if (t == 1 && sign[1] == 0) return 1;
if (t == 1 && sign[1] == 1) return 2;
//========================================
// Determine position of largest value
//=======================================
```

```
    for (i=1; i<=t; i++) if (a[i] == t) p = i;
    //==================================================================================
    // Rotate/Flip to either the first or last permutation in the bracelet class
    //====================================================================================
    d = 2*(t-p);
    RotateRight(t,t-p);
    FlipSign(t-p);
    if (sign[t] == 1) {
        FlipSign(t);
        d += 2*t;
    }
    //========================================================================================
    // The parity indicates whether or not the rotate perm is first or last in the class
    //===========================================================================================
    x = RankMaxSigned(t-1);
    if (x % 2 == 0) return (2*t*x - d);
    else return (2*t* (x-1) + d+1);
}
//------------------------------------------
// flip-sequence GENERATION
//-----------------------------------------
int NextMin() {
int j;
    j = f[2];
    f[2] = 2;
    c[j]++;
    if (c[j] == j-1 || j == 2) {
        c[j] = 0;
        f[j] = f[j+1];
        f[j+1] = j+1;
    }
    if (j == n+1) return(0)
    return(j);
}
int NextMinSigned() {
int j;
    j = f[1];
    f[1] = 1;
    c[j]++;
    if (c[j] == 2*j-1 || j == 1) {
            c[j] = 0;
            f[j] = f[j+1];
            f[j+1] = j+1;
    }
    if (j == n+1) return(0);
    return(j);
}
//---------------------------------------------
int NextMax() {
int j;
    j = f[n];
    f[n] = n;
    c[j]++;
    if (c[j] == j || j == n) {
            c[j] = 0;
            f[j] = f[j-1];
            f[j-1] = j-1;
    }
    if (j == 1) return(0);
    return(j);
}
//--------------------------------------------------
int NextMaxSigned() {
int j;
```

```
    j = f[n];
    f[n] = n;
    c[j]++;
    if (c[j] == 2*j+1 || j == n) {
        c[j] = 0;
        f[j] = f[j-1];
        f[j-1] = j-1;
    }
    if (j == 0) return(0);
    return(j);
}
//----------------------------------------------
void Gen() {
int j;
    do
        Print();
        if (MIN && !SIGNED) j= NextMin();
        if (MIN && SIGNED) j= NextMinSigned();
        if (MAX && !SIGNED) j= NextMax();
        if (MAX && SIGNED) j= NextMaxSigned();
            Flip(j);
        while (j>0);
    printf("Total = %lld\n\n", total);
}
ノ-----------------------------------
int main() {
int j;
    factorial[0] = 1;
    for (j=1; j<=MAX_N; j++) factorial[j] = factorial[j-1] * j;;
    pow2[0] = 1;
    for (j=1; j<=MAX_N; j++) pow2[j] = pow2[j-1] * 2;
    Input();
    if (GEN) {
        Init();
        Gen();
    }
    if (RANK) {
        printf("The rank of permutation ");
        Print();
        if (MIN && !SIGNED) rank = RankMin(n);
        if (MIN && SIGNED) rank = RankMinSigned(n);
        if (MAX && !SIGNED) rank = RankMax(n);
        if (MAX && SIGNED) rank = RankMaxSigned(n);
        printf(" is: %lld\n\n", rank);
    }
    if (UNRANK) {
        if (MIN && !SIGNED) UnRankMin(rank,n);
        if (MIN && SIGNED) UnRankMinSigned(rank,n);
        if (MAX && !SIGNED) UnRankMax(rank,n);
        if (MAX && SIGNED) UnRankMaxSigned(rank,n);
        printf("The permutation of rank %lld is: ", rank);
        Print();
    }
}
```


[^0]: Email addresses: jsawada@uoguelph.ca (Joe Sawada), haron@uvic.ca (Aaron Williams)

