
Efficient Algorithms for Ranking, Unranking, and Generating Stacks of
Pancakes and Burnt Pancakes

Joe Sawadaa, Aaron Williamsb

a

School of Computer Science, University of Guelph, Canada. Research supported by NSERC.

b

Department of Mathematics and Statistics, McGill University, Canada.

Abstract

Stacks of pancakes and burnt pancakes can be modeled by permutations and signed permutations, with
the ’flip’ operation corresponding to prefix-reversal and complementing prefix-reversal, respectively. Re-
cently it was shown that stacks can be rearranged in all possible ways with successive stacks differing by
a single flip by greedily flipping the minimum or maximum number of pancakes (Sawada and Williams,
Greedy Flipping of Pancakes and Burnt Pancakes, Discrete Applied Mathematics, 2016). This article
translates the four Gray code orders into efficient algorithms for ranking, unranking, and generating
the underlying permutations and signed permutations. This builds on the results of Zaks who provided
these results for pancakes using the minimum-flip strategy (Zaks, A New Algorithm for Generation of

Permutations, BIT Numerical Mathematics, 1984).

Keywords: Gray code, permutations, signed permutations, prefix-reversal, ranking, unranking

1. Introduction

In this paper we investigate two orders for the n! permutations of {1, 2, . . . , n} and two orders for the
2

nn! signed permutations of {1, 2, . . . , n}. A signed permutation is a permutation in which each symbol
x is either positive or negative, which are denoted x and x̄, respectively. We write both permutations and
signed permutations using one-line notation.

The four orders originate from a recent article [1] and are illustrated below on the left for n = 4:

1234, 2134, 3124, 1324, 2314, 3214, 4123, . . . 2, 3, 2, 3, 2, 3, 4, . . .

1234, 4321, 2341, 1432, 3412, 2143, 4123, 3214, 2314, . . . 4, 3, 4, 3, 4, 3, 4, 2, . . .

1234, ¯1234, ¯2134, 2134, ¯1¯234, 1¯234, 2¯134, ¯2¯134, ¯3124, . . . 1, 2, 1, 2, 1, 2, 1, 3, . . .

1234, ¯4¯3¯2¯1, 234¯1, 1¯4¯3¯2, 34¯1¯2, 21¯4¯3, 4¯1¯2¯3, 321¯4, ¯1¯2¯3¯4, 4321, . . . 4, 3, 4, 3, 4, 3, 4, 3, 4, . . .

The significance of the four orders is they are all flip Gray codes. This means that each successive
(signed) permutation is obtained from the previous (signed) permutation by an operation known as a
‘flip’. When applied to a permutation a flip of length k reverses the order of first k symbols, and in
addition when it is applied to a signed permutation the sign of these symbols is also reversed. The
specific flips that are used to create the four orders are illustrated above on the right.

The flip terminology comes from the representation of permutations and signed permutations as
stacks of pancakes and burnt pancakes, respectively. In this analogy, flip of length k corresponds to
taking a spatula, and flipping over the top k pancakes, thereby reversing their order, and their up/down

Email addresses: jsawada@uoguelph.ca (Joe Sawada), haron@uvic.ca (Aaron Williams)

Preprint submitted to Journal of Discrete Algorithms February 23, 2016

orientation in the case of burnt pancakes which are burnt on one side. This analogy is illustrated below
for a permutation and its stack of pancakes (left), and for a signed permutation and its stack of burnt
pancakes (right).

5

!
5

!

632514 152364

¯

63

¯

2514

¯

1

¯

52

¯

364

The beauty of the four orders is that they can all be generated by simple greedy algorithms. In
particular, the first order is obtained by greedily flipping the smallest number of symbols that produces a
new permutation. To explain one step of this process in more detail, observe that the order begins 1234,
2134, 3124, 1324, 2314, 3214. At this stage the algorithm examines the last permutation 3214 and tries
to determine the smallest flip that will create a permutation that does not already appear in the list. The
algorithm does not flip the first two symbols, since 2314 already appears in the list. Similarly, it does not
flip the first three symbols, since 1234 already appears in the list. Thus, the algorithm considers flipping
the first four symbols, and this time it succeeds since 4123 has not already appeared in the list. The new
permutation 4123 is added to the end of the list and the algorithm continues by trying to flip the smallest
number of symbols in it. Amazingly, this process does not get stuck until all n! permutations are created.
The resulting order of permutations was first discovered by Zaks [3].

We refer to the algorithm that produces Zaks’s order as the minimum flip order for permutations. The
recent article by Sawada and Williams [1] showed that the greedy strategy also works when using the
largest number of possible flips, and moreover, both strategies also work for signed permutations. In
fact, the three other orders illustrated above are the maximum flip order for permutations, the minimum

flip order for signed permutations, and the maximum flip order for signed permutations, respectively.
Although the greedy algorithms are elegant, they are not efficient since all previous (signed) permu-

tations must be stored. The purpose of this article is to translate the four orders into efficient algorithms.
More specifically we provide three efficient algorithms for each of the orders:

• Generation. These algorithms are used for creating one (signed) permutation after another as
quickly as possible and with little additional memory.

• Ranking. These algorithms determine the rank (ie position) of each (signed) permutation in the
list.

• Unranking. These algorithms determine the (signed) permutation that has a particular rank.

Prior to this article Zaks provided all three algorithms for the minimum flip order for permutations [3].
Collectively, the provided algorithms help bolster the value of the corresponding orders in the context
of interconnection networks, where both the pancake network and burnt pancake network are popular in
applications. See Siegel [2] for further discussion of interconnection networks.

The remainder of this document is organized as follows. Section 2 introduces notation. Then Section
3 discusses the ranking and unranking algorithms for the minimum flip order of permutations originally
given by Zaks. Sections 5, 4, and 6 repeat these results for the three other orders. Section 7 provides
efficient generation algorithms for all four orders. Finally, Section 8 summarizes our results. Full imple-
mentations are provided in C in the Appendix.

2. Notation

In this paper we are concerned with providing Gray code listings for the permutations and signed
permutations for the set S = {1, 2, 3, . . . , n}. However, for the proofs we must consider arbitrary sets

2

of n elements. For example the six permutations of S = {1, 2, 4} are {124, 142, 214, 241, 412, 421} and
the eight signed permutations of S = {1, 4} are {14, 41, ¯14, 4¯1, 1¯4, ¯41, ¯1¯4, ¯4¯1} where p̄ denotes �p.

Let the set of (unsigned) permutations of an n-set be denoted by P(n). Given p = p1p2p3 · · · pn 2
P(n), we will use the following notation for 1 j n:

• flip

j

(p) = p
j

p
j�1 · · · p1pj+1 · · · pn denotes a flip (prefix-reversal) of length j, and

• p(j) = p
j+1 · · · pnp1 · · · pj�1 denotes a full rotation to the left by j positions followed by the

removal of the element p
j

.

Let the set of signed permutations of an n-set be denoted by P(n). Given p = p1p2p3 · · · pn 2 P(n), we
will use the following notation for 1 j n:

• flip

j

(p) = p̄
j

p̄
j�1 · · · p̄1pj+1 · · · pn denotes a flip (complemented prefix reversal) of length j, and

• flipSign(p) = p̄1p̄2p̄3 · · · p̄n flips the sign of every element.

• p

0
(j) = p̄

j+1 · · · p̄np1p2 · · · pj�1, and

• p̄(j) = p
j+1 · · · pnp̄1p̄2 · · · p̄j�1 = flipSign(p

0
(i)).

For both signed and unsigned permutations we will use the following notation for a permutation p:

• p · n denotes the concatenation of the symbol n to the permutation p.

• rotLeft(p, j) = p
j+1 · · · pnp1 · · · pj denotes a full rotation to the left by j positions,

• rotRight(p, j) = p
n�j+1 · · · pnp1 · · · pn�j

denotes a full rotation to the right by j positions,

Consider a sequence of unsigned permutations ⇢ = p1,p2, . . . ,pm

and an integer sequence � =

f1, f2, . . . fm�1 for some m > 1. We say that � is the flip-sequence for ⇢ if p
i+1 = flip

fi
(p

i

) for 1 i
m�1. Similarly, if ⇢ = p1,p2, . . . ,pm

is a sequence of m signed permutations then � = f1, f2, . . . fm�1

is said to be the flip-sequence for ⇢ if p
i+1 = flip

fi
(p

i

) for 1 i m� 1.
When describing sequences, we let xk denote k repeated concatenations of the sequence x. For

example (1, 3)4 = 1, 3, 1, 3, 1, 3, 1, 3.

3. Minimum Flips for Permutations

In [1], the following cyclic prefix-reversal Gray code for permutations is presented. It is equivalent
to one that was initially discovered by Zaks [3], except that we use prefix-reversals as opposed to suffix-
reversals.

Let p = p1p2p3 · · · pn 2 P(n). Let p(i) = p
i+1 · · · pnp1 · · · pi�1 where 1 i n. Then Min(p),

defined below, produces a prefix-reversal Gray code for permutations:

Min(p) =

(
p if n = 1

Min(p(n)) · p
n

, Min(p(n� 1)) · p
n�1, . . . , Min(p(1)) · p1 if n � 2.

(1)

Example 3.1. Min(1234) = Min(123)·4, Min(412)·3, Min(341)·2, Min(234)·1. The full listing is

given below (read down, then left to right). The length of the prefix-reversal to go from one permutation

to the next is given in parentheses after each permutation.

3

1 2 3 4 (2) 4 1 2 3 (2) 3 4 1 2 (2) 2 3 4 1 (2)

2 1 3 4 (3) 1 4 2 3 (3) 4 3 1 2 (3) 3 2 4 1 (3)

3 1 2 4 (2) 2 4 1 3 (2) 1 3 4 2 (2) 4 2 3 1 (2)

1 3 2 4 (3) 4 2 1 3 (3) 3 1 4 2 (3) 2 4 3 1 (3)

2 3 1 4 (2) 1 2 4 3 (2) 4 1 3 2 (2) 3 4 2 1 (2)

3 2 1 4 (4) 2 1 4 3 (4) 1 4 3 2 (4) 4 3 2 1 (4)

The permutations at the top of each column in this example are equivalent under rotation and each
column has the same flip-sequence. If we ignore the final flip to return to the initial permutation, then
the sequence �

n

given by Zaks [3] is the flip-sequence for Min(p):

�
n

=

(
2 if n = 2

(�
n�1, n)

n�1, �
n�1 if n > 2.

3.1. Ranking

In this subsection we provide a ranking algorithm for the listing Min(123 · · ·n). The algorithm
corresponds to the one described by Zaks in [3] which uses suffix-reversals instead of prefix-reversals.
We provide a similar presentation here. Similar ideas will be applied when we discuss the minimum flip
approach for signed permutations.

Let Rank(p1p2p3 · · · pn) denote the position of the permutation p = p1p2p3 · · · pn in the listing
Min(123 · · ·n). Observe from the recurrence in (1) that all (n � p

n

)(n � 1)! permutations ending
with one of n, n � 1, n � 2, . . . , p

n

+ 1 will precede p in the ordering. So the crux of the problem is to
determine the position of p among permutations ending with p

n

. From Lemma ?? we can deduce that
the first permutation ending with p

n

is (p
n

+1)(p
n

+2) · · ·n12 · · · (p
n

�1). Notice that by subtracting p
n

from each element in this permutation (modulo n) we obtain 123 · · ·n � 1. Thus, we can reduce our
problem to recursively solving for Rank(q1q2q3 · · · qn�1) where q

i

= (p
i

� p
n

) mod n. This leads to the
following algorithm:

Rank(p1p2p3 · · · pn) =
(
1 if n = 1

(n� p
n

)(n� 1)! + Rank(q1q2q3 · · · qn�1) if n > 1,

where q
i

= (p
i

� p
n

) mod n.
As an example, we consider the recursive decomposition for computing the rank of 261453 in the

ordering Min(123456):

Rank(261453) = 3 · 5! + Rank(53412)

= 3 · 5! + 3 · 4! + Rank(3124)

= 3 · 5! + 3 · 4! + 0 · 3! + Rank(312)

= 3 · 5! + 3 · 4! + 0 · 3! + 1 · 2! + Rank(12)

= 3 · 5! + 3 · 4! + 0 · 3! + 1 · 2! + 0 · 1! + Rank(1)

= 360 + 72 + 0 + 2 + 0 + 1 = 435.

3.2. Unranking

Finding the permutation p = p1p2p3 · · · pn at rank rank in the listing Min(123 · · ·n) also follows
from the discussion in [3]. The first step is to determine the value of the last element p

n

in the permuta-
tion. Based on the recurrence in (1) we have p

n

= n� x where x = b rank�1
(n�1)! c. Then recursion is applied

4

to find the permutation q1q2q3 . . . qn�1 at rank rank�x(n�1)! in Min(123 · · ·n�1). By observing that
the first permutation that ends with p

n

in Min(123 · · ·n) is given by (p
n

+1)(p
n

+2) · · ·n12 · · · (p
n

�1)
we can apply a direct mapping of these symbols to 123 · · ·n�1 to obtain p1p2 · · · pn�1. Pseudocode that
follows this approach is given in Algorithm 1. Since the work, not counting the recursive call, is O(n),
the permutation p at position rank in the listing Min(123 · · ·n) can be computed using O(n2

) basic
operations.

Algorithm 1 Computing the permutation at position rank in the listing Min(123 · · ·n) , n � 1

1: function UNRANK(rank, n) returns permutation
2: if n = 1 then return 1
3: x b rank�1

(n�1)! c
4: q1q2 · · · qn�1 UNRANK(rank � x(n� 1)!, n� 1)
5: p

n

 n� x

6: for j 1 to n� 1 do p

j

 1 + (q

j

+ p

n

� 1) mod n

7: return p1p2p3 · · · pn

As an example, we determine the permutation p1p2p3p4p5p6 at rank 435 in the listing Min(123456).
First, compute x = b435�1

120 c = 3, which means that p6 = 6� 3 = 3. Recursively, the permutation at rank
435 � 3(120) = 75 in Min(12345) is found to be q1q2q3q4q5 = 53412. However, from the recurrence
in (1), the first permutation ending with p6 = 3 will start with 45612 (and not the 12345 solved for
recursively). Thus, we map 1! 4, 2! 5, 3! 6 , 4! 1 and 5! 2 to obtain p1p2p3p4p5p6 = 261453.

4. Minimum Flips for Signed Permutations

The results in this section for signed permutations mirror the results for unsigned permutations.
Again, we begin by looking at an example, this time considering the greedy listing MinGreedy(123).
The length of the flip to go from one signed permutation to the next is given in parentheses after each
signed permutation.

Example 4.1. MinGreedy(123) (read down, then left to right):

1 2 3 (1) ¯

3 1 2 (1) ¯

2

¯

3 1 (1) ¯

1

¯

2

¯

3 (1) 3 ¯

1

¯

2 (1) 2 3 ¯

1 (1)
¯

1 2 3 (2) 3 1 2 (2) 2 ¯

3 1 (2) 1 ¯

2

¯

3 (2) ¯

3

¯

1

¯

2 (2) ¯

2 3 ¯

1 (2)
¯

2 1 3 (1) ¯

1

¯

3 2 (1) 3 ¯

2 1 (1) 2 ¯

1

¯

3 (1) 1 3 ¯

2 (1) ¯

3 2 ¯

1 (1)

2 1 3 (2) 1 ¯

3 2 (2) ¯

3

¯

2 1 (2) ¯

2

¯

1

¯

3 (2) ¯

1 3 ¯

2 (2) 3 2 ¯

1 (2)
¯

1

¯

2 3 (1) 3 ¯

1 2 (1) 2 3 1 (1) 1 2 ¯

3 (1) ¯

3 1 ¯

2 (1) ¯

2

¯

3

¯

1 (1)

1 ¯

2 3 (2) ¯

3

¯

1 2 (2) ¯

2 3 1 (2) ¯

1 2 ¯

3 (2) 3 1 ¯

2 (2) 2 ¯

3

¯

1 (2)

2 ¯

1 3 (1) 1 3 2 (1) ¯

3 2 1 (1) ¯

2 1 ¯

3 (1) ¯

1

¯

3

¯

2 (1) 3 ¯

2

¯

1 (1)
¯

2

¯

1 3 (3) ¯

1 3 2 (3) 3 2 1 (3) 2 1 ¯

3 (3) 1 ¯

3

¯

2 (3) ¯

3

¯

2

¯

1 (3)

In each column of this example, note that the last element of each signed permutation is the same.
Additionally, each column has the same flip-sequence. If we ignore the final flip to return to the initial
signed permutation, then we will prove that the following flip-sequence �

n

is the same sequence used by
MinGreedy(p):

�
n

=

(
1 if n = 1

(�
n�1, n)

2n�1, �
n�1 if n > 1.

5

However, to formally prove that this flip-sequence is the one used by MinGreedy(p), we need to further
understand the ordering of signed permutations produced.

Fortunately, by studying the greedy listing from the example and using the recurrence �
n

, we can
deduce a simple recurrence to list all signed permutations. Let p = p1p2p3 · · · pn denote a signed permu-
tation of an arbitrary n-set S. Recall the notation from Section 2 for 1 i n:

• p

0
(i) = p̄

i+1 · · · p̄np1p2 · · · pi�1, and

• p̄(i) = flipSign(p

0
(i))p

i+1 · · · pnp̄1p̄2 · · · p̄i�1.

We will show that following recurrence for Min(p) produces the same listing as MinGreedy(n):

Min(p) =

8
>>><

>>>:

p1, p̄1 if n = 1

Min(p

0
(n)) · p

n

, Min(p

0
(n� 1)) · p

n�1, . . . , Min(p

0
(1)) · p1, if n � 2.

Min(p̄(n)) · p̄
n

, Min(p̄(n� 1)) · p̄
n�1, . . . , Min(p̄(1)) · p̄1

(2)

As an example:

Min(123) = Min(12) · 3, Min(

¯

31) · 2, Min(

¯

2

¯

3) · 1, Min(

¯

1

¯

2) · ¯3, Min(3

¯

1) · ¯2, Min(23) · ¯1.

4.1. Ranking

In this subsection we provide a ranking algorithm for the listing Min(123 · · ·n). The rank of a
signed permutation p = p1p2 · · · pn in the listing Min(123 · · ·n) follows directly from the recurrence
given in (2), and is similar in spirit to the approach used in Section 3.1.

Rank(p1p2 · · · pn) =

8
>>><

>>>:

1 if n = 1 and p1 = 1

2 if n = 1 and p1 = ¯

1

(n� p
n

) · 2n�1
(n� 1)! + Rank(q1q2 · · · qn�1) if n > 1 and p

n

> 0

(2n� |p
n

|) · 2n�1
(n� 1)! + Rank(q1q2 · · · qn�1) if n > 1 and p

n

< 0,

where |q
i

| = (|p
i

|� |p
n

|) mod n and the sign of q
i

is negative if and only if (1) the sign of p
i

is the same
as the sign of p

n

and |p
n

| < |p
i

| or (2) the sign of p
i

is different from the sign of p
n

and |p
n

| > |p
i

|.
Since q1q2 · · · qn�1 can easily be computed using O(n) operations, a straightforward implementation of
this recurrence allows the rank to be computed using O(n2

) operations.
The mapping of p

i

to q
i

is perhaps best understood with an example. Consider p1p2 · · · p6 = 1

¯

43

¯

652

and the following map table constructed given that p6 = 2:

p
i

¯

1

¯

2

¯

3

¯

4

¯

5

¯

6 1 2 3 4 5 6
q
i

¯

5 - 1 2 3 4 5 - ¯

1

¯

2

¯

3

¯

4

From this table: p1 = 1 implies q1 = 5, p2 =

¯

4 implies q2 = 2, p3 = 3 implies q3 =

¯

1, p4 =

¯

6 implies
q4 = 4, and p5 = 5 implies q5 = ¯

3.

6

As a full example of the recursive ranking process, we consider the recursive decomposition for
computing the rank of 1¯43¯652 in the ordering Min(123456):

Rank(1

¯

43

¯

652) = 4 · 25 · 5! + Rank(52

¯

14

¯

3)

= 4 · 25 · 5! + 7 · 24 · 4! + Rank(2

¯

431)

= 4 · 25 · 5! + 7 · 24 · 4! + 3 · 23 · 3! + Rank(

¯

13

¯

2)

= 4 · 25 · 5! + 7 · 24 · 4! + 3 · 23 · 3! + 4 · 22 · 2! + Rank(21)

= 4 · 25 · 5! + 7 · 24 · 4! + 3 · 23 · 3! + 4 · 22 · 2! + 1 · 21 · 1! + Rank(

¯

1)

= 15360 + 2688 + 144 + 32 + 2 + 2 = 18228.

4.2. Unranking

Finding the signed permutation p = p1p2p3 · · · pn at rank rank in the listing Min(123 · · ·n) follows
a similar approach as the unsigned case. The first step is to determine the value of the last element p

n

in the signed permutation. Let x = b rank�1
2n�1(n�1)!c. Then based on the recurrence in (2), if x < n then

p
n

= n � x and otherwise p
n

= �(2n � x). Then recursion is applied to find the signed permutation
q1q2q3 . . . qn�1 at rank rank � x2n�1

(n � 1)! in Min(123 · · ·n � 1). Observe that the first signed
permutation that ends with p

n

in Min(123 · · ·n) is (p
n

+1) (p
n

+2) · · · n̄12 · · · (p
n

�1) if p
n

> 0 and is
(p

n

+1)(p
n

+2) · · ·n¯1¯2 · · · (p
n

�1) if p
n

< 0. Thus, by applying an appropriate mapping of these symbols
to 123 · · ·n (and the corresponding ¯

1

¯

2

¯

3 · · · n̄), we obtain p1p2p3 · · · pn�1 from the string returned by the
recursive call. Pseudocode that follows this approach is given in Algorithm 2. The function SIGN(x)
returns 1 if x is positive and 0 otherwise. Since the work, not counting the recursive call, is O(n),
the signed permutation p at position rank in the listing Min(123 · · ·n) can be computed using O(n2

)

operations.

Algorithm 2 Computing the signed permutation at position rank in the listing Min(12 · · ·n) , n � 1

1: function UNRANK(rank, n) returns signed permutation
2: if n = 1 and rank = 1 then return 1
3: if n = 1 and rank = 2 then return �1
4: x b rank�1

2n�1(n�1)!c
5: q1q2 · · · qn�1 UNRANK(rank � x2

n�1
(n� 1)!, n� 1)

6: if x < n then p

n

 n� x

7: else p

n

 �(2n� x)

8: for j 1 to n� 1 do

9: p

j

 1 + (|q
j

|+ |p
n

|� 1) mod n

10: if (SIGN(p
n

) = SIGN(q
j

) and p

j

> p

n

) or (SIGN(p
n

) 6= SIGN(q
j

) and p

j

< p

n

) then p

j

 �p
j

11: return p1p2 · · · pn

As an example, we determine the signed permutation p1p2 · · · p6 at rank 18228 in the listing Min(123456).
First, we compute x = b18228�1

32·120 c = 4, which means that p6 = 6 � 4 = 2. Recursively, the signed per-
mutation at rank 18228 � 4(3840) = 2868 in Min(12345) is found to be 52

¯

14

¯

3. However, from the
recurrence in (2), the first signed permutation ending with p6 = 2 will start with ¯

3

¯

4

¯

5

¯

61 (and not the
12345 solved for recursively). Thus, we map:

1! ¯

3, 2! ¯

4, 3! ¯

5, 4! ¯

6, 5! 1

7

and similarly we would map

¯

1! 3, ¯

2! 4, ¯

3! 5, ¯

4! 6, ¯

5! ¯

1.

Applying these symbol mappings to 52

¯

14

¯

3 we obtain p1p2p3p4p5p6 = 1

¯

43

¯

652.

5. Maximum Flips for Permutations

In this section we study the maximum flip greedy algorithm and prove that it exhaustively lists all un-
signed permutations by deriving an equivalent recursive formulation. We begin by looking at the greedy
listings MaxGreedy(1234) and MaxGreedy(12345). The length of the flip to go from one permutation to
the next is given in parentheses after each permutation.

Example 5.1. MaxGreedy(1234) (read down, then left to right):

1234 (4) 2314 (4) 3124 (4)

4321 (3) 4132 (3) 4213 (3)

2341 (4) 3142 (4) 1243 (4)

1432 (3) 2413 (3) 3421 (3)

3412 (4) 1423 (4) 2431 (4)

2143 (3) 3241 (3) 1342 (3)

4123 (4) 4231 (4) 4312 (4)

3214 (2) 1324 (2) 2134 (2)

Example 5.2. MaxGreedy(12345) (read down, then left to right):

12345 (5) 23415 (5) 34125 (5) 41235 (5) 23145 (5) 31425 (5) 14235 (5) 42315 (5) 31245 (5) 12435 (5) 24315 (5) 43125 (5)
54321 (4) 51432 (4) 52143 (4) 53214 (4) 54132 (4) 52413 (4) 53241 (4) 51324 (4) 54213 (4) 53421 (4) 51342 (4) 52134 (4)
23451 (5) 34152 (5) 41253 (5) 12354 (5) 31452 (5) 14253 (5) 42351 (5) 23154 (5) 12453 (5) 24351 (5) 43152 (5) 31254 (5)
15432 (4) 25143 (4) 35214 (4) 45321 (4) 25413 (4) 35241 (4) 15324 (4) 45132 (4) 35421 (4) 15342 (4) 25134 (4) 45213 (4)
34512 (5) 41523 (5) 12534 (5) 23541 (5) 14523 (5) 42531 (5) 23514 (5) 31542 (5) 24531 (5) 43512 (5) 31524 (5) 12543 (5)
21543 (4) 32514 (4) 43521 (4) 14532 (4) 32541 (4) 13524 (4) 41532 (4) 24513 (4) 13542 (4) 21534 (4) 42513 (4) 34521 (4)
45123 (5) 15234 (5) 25341 (5) 35412 (5) 45231 (5) 25314 (5) 35142 (5) 15423 (5) 45312 (5) 35124 (5) 15243 (5) 25431 (5)
32154 (4) 43251 (4) 14352 (4) 21453 (4) 13254 (4) 41352 (4) 24153 (4) 32451 (4) 21354 (4) 42153 (4) 34251 (4) 13452 (4)
51234 (5) 52341 (5) 53412 (5) 54123 (5) 52314 (5) 53142 (5) 51423 (5) 54231 (5) 53124 (5) 51243 (5) 52431 (5) 54312 (5)
43215 (3) 14325 (3) 21435 (3) 32145 (2) 41325 (3) 24135 (3) 32415 (3) 13245 (2) 42135 (3) 34215 (3) 13425 (3) 21345 (2)

In each example, observe that every second flip has length n. Thus, when deriving a recurrence
for the sequence of flips required to generate the greedy maximum-flip listing, we start by deriving a
recurrence for the length of every second flip. To derive this recurrence, the important flip to consider
is the one happening at the bottom of each column in the examples. Observe that the flip lengths at the
bottom of each column in the example for MaxGreedy(12345) correspond to every second flip length in
the example for MaxGreedy(1234). Letting ⌧ 0

n

= t
n,1, tn,2, . . . , tn,j consider the following recurrence:

⌧ 0
n+1 =

(
2, 2 if n+ 1 = 3

nn, t
n,1, n

n, t
n,2, . . . , n

n, t
n,j

, nn if n+ 1 > 3.

Lemma 5.3. For n � 3, the number of elements in the sequence ⌧ 0
n

is

n!
2 � 1.

8

Proof. By induction. In the base case when n = 3, ⌧ 0
n

has 2 elements and 3!
2 � 1 = 2. Inductively, it is

easy to see that the number of elements in ⌧ 0
n+1 is (n+ 1) · ((n)!2 � 1) + n =

(n+1)!
2 � 1. ⇤

Using ⌧ 0
n

, we will show that the sequence of flips used to create MaxGreedy(p) is given by �0
n

which is
defined as follows:

�0
n

=

(
2 if n = 2

n, t
n,1, n, tn,2, . . . , n, tn,m, n if n > 2.

Before we can prove this claim, we need to better understand the permutation ordering. Again, by
considering the examples for MaxGreedy(1234) and MaxGreedy(12345), observe that the permutations
in each column are closed under rotation and reversal: they form a bracelet class. The rotation effect is
easily observed since:

. applying flip

n

followed by flip

n�1 rotates a permutation one position to the left and
. applying flip

n�1 followed by flip

n

rotates a permutation one position to the right.
These bracelet sequences form the crux of a recursive formulation for MaxGreedy(p). Define the bracelet

sequence of permutation p1 = p1p2p3 · · · pn, where n � 3 as:

brace(p1) = p1,p2,p3, . . . ,p2n such that pi =

(
flip

n

(pi�1) if i is even
flip

n�1(pi�1) if i > 1 is odd.

The permutation p1 is called the representative of the bracelet sequence brace(p1). Since the order
alternates flips of lengths n and n � 1, the odd permutations p1,p3,p5, . . . ,p2n�1 are all rotations
of p1 and the even permutations p2,p4,p6, . . . ,p2n are all rotations of the reversal of p1 which is
flip

n

(p1) = p2. Thus, the permutations in each bracelet sequence form a bracelet class.

5.1. Ranking

Observe that in every bracelet sequence generated by Max(123 · · ·n), the position of n in each
permutation follows the sequence:

n, 1, n� 1, 2, n� 2, 3, . . . 3, n� 2, 2, n� 1, 1, n.

Thus, given permutation p = p1p2 · · · pn, where p
j

= n, by rotating p to the right by n � j positions
to get q1q2 · · · qn, we obtain either the first or last permutation in its bracelet sequence. By recursively
finding the rank x of q1q2 · · · qn�1, we can determine which it is: if x is odd, then q1q2 · · · qn is the first
permutation; otherwise it is the last permutation. In either case, p will be at a distance of d = 2n � 2j
from q1q2 · · · qn. Based on these observations, the recurrence for Max(p) and Remark ??, we obtain
the simple ranking procedure given in Algorithm 3. It is easy to see that this procedure requires O(n2

)

operations.
As an example, consider the rank of the permutation p = p1p2p3p4p5 = 32451 in the listing

Max(12345). To rotate n = 5 into the rightmost position we rotate p to the right n � j = 5 � 4 = 1

positions to get q1q2q3q4q5 = 13245. Recursively, q1q2q3q4 has rank 16 in the listing Max(1234). Since
16 is even, p will be d = 10� 8 = 2 positions from the end of its bracelet sequence and hence has rank
nx� d = 5(16)� 2 = 78.

5.2. Unranking

By applying the same recursive ideas as the corresponding ranking algorithm, Algorithm 4 returns
the permutation p at position rank in the listing Max(123 · · ·n). If the rank is even, then the al-

9

Algorithm 3 Computing the rank of a permutation in Max(123 · · ·n), n � 2

1: function MAXRANK(p = p1p2 · · · pn) returns integer
2: if p = 12 then return 1
3: if p = 21 then return 2
4: d 2n� 2j (where p

j

= n)
5: q1q2 · · · qn rotRight(p, n� j)

6: x MAXRANK(q1q2 · · · qn�1)
7: if x is EVEN then return nx� d

8: else return n(x� 1) + d+ 1

gorithm finds the last permutation p

0
= p1p2p3 · · · pn in the bracelet sequence containing p. Based

on the recursive definition of the listing Max(p), p0 will be the permutation at rank 2b rank�1
2n c + 2 in

Max(p1p2p3 · · · pn�1), with the final element n concatenated to the end. From the discussion in the
corresponding ranking algorithm, p will be at a distance d = 2n � (rank mod 2n) from p

0; thus p can
be obtained by rotating p

0 to left by d/2 positions. A similar argument applies when rank is odd. It is
easy to verify that this procedure requires O(n2

) operations.

Algorithm 4 Computing the permutation at position rank in the listing Max(123 · · ·n), n � 2

1: function MAXUNRANK(rank, n) returns permutation
2: if n = 2 and rank = 1 then return 12
3: if n = 2 and rank = 2 then return 21
4: if rank is EVEN then

5: p1p2 · · · pn�1 MAXUNRANK(2b rank�1
2n c+ 2, n� 1)

6: d 2n� (rank mod 2n)

7: else

8: p1p2 · · · pn�1 MAXUNRANK(2b rank�1
2n c+ 1, n� 1)

9: d (rank � 1) mod 2n

10: return rotLeft(p1p2 · · · pn�1n , d/2)

As an example, we find the permutation at rank 78 in the listing Max(12345). The first step is to find
the permutation at the end of its bracelet sequence in the listing, since 78 is even. This permutation will
be at position 2b78�1

10 c + 2 = 16 in the listing Max(1234). Recursively, we find this permutation to be
1324. Adding n = 5 to this permutation we obtain the permutation 13245 which will be d = 10� 8 = 2

positions after our target permutation in the listing (and corresponding bracelet sequence). Finally, by
rotating this permutation d/2 = 1 position to the left we obtain the permutation 32451 at rank 78.

6. Maximum Flips for Signed Permutations

In this section we study the maximum flip greedy algorithm and prove that it exhaustively lists all
signed permutations by deriving an equivalent recursive formulation. We begin by looking at the greedy
listing MaxGreedy(123). The length of the flip to go from one signed permutation to the next is given in
parentheses after each signed permutation.

Example 6.1. MaxGreedy(123) (read down, then left to right):

10

123 (3) 2

¯

13 (3) ¯

1

¯

23 (3) ¯

213 (3)
¯

3

¯

2

¯

1 (2) ¯

31

¯

2 (2) ¯

321 (2) ¯

3

¯

12 (2)

23

¯

1 (3) ¯

13

¯

2 (3) ¯

231 (3) 132 (3)

1

¯

3

¯

2 (2) 2

¯

31 (2) ¯

1

¯

32 (2) ¯

2

¯

3

¯

1 (2)

3

¯

1

¯

2 (3) 3

¯

21 (3) 312 (3) 32

¯

1 (3)

21

¯

3 (2) ¯

12

¯

3 (2) ¯

2

¯

1

¯

3 (2) 1

¯

2

¯

3 (2)
¯

1

¯

2

¯

3 (3) ¯

21

¯

3 (3) 12

¯

3 (3) 2

¯

1

¯

3 (3)

321 (2) 3

¯

12 (2) 3

¯

2

¯

1 (2) 31

¯

2 (2)
¯

2

¯

31 (3) 1

¯

32 (3) 2

¯

3

¯

1 (3) ¯

1

¯

3

¯

2 (3)
¯

132 (2) ¯

23

¯

1 (2) 13

¯

2 (2) 231 (2)
¯

312 (3) ¯

32

¯

1 (3) ¯

3

¯

1

¯

2 (3) ¯

3

¯

21 (3)
¯

2

¯

13 (1) 1

¯

23 (1) 213 (1) ¯

123 (1)

As with the maximum flip greedy algorithm for unsigned permutations, observe that every second
flip (starting from the first signed permutation) has length n. Thus, we start by deriving a recurrence
for the length of every second flip, starting from the second signed permutation in the ordering. To
derive this recurrence, the important flip to consider is the one happening at the bottom of each column
in the examples. The flip lengths at the bottom of each column in the example for MaxGreedy(123)

correspond to every second flip in the sequence for MaxGreedy(12) which is given by 2,1,2,1,2,1,2,1
when considered circularly.

Let ⌧ 0
n

= t
n,1, tn,2, . . . , tn,m and consider the following recurrence:

⌧ 0
n+1 =

(
1, 1, 1 if n+ 1 = 2

n2n+1, t
n,1, n

2n+1, t
n,2, . . . , n

2n+1, t
n,m

, n2n+1 if n+ 1 > 2.

Lemma 6.2. For n � 2, the number of elements in the sequence ⌧ 0
n

is 2

n�1n!� 1.

Proof. By induction. In the base case when n = 2, ⌧ 0
n

has 3 elements and 2

1
2!� 1 = 3. Inductively, it is

easy to see that the number of elements in ⌧ 0
n+1 is (2n+2) · (2n�1n!� 1)+ 2n+1 = 2

n

(n+1)!� 1. ⇤

Using ⌧ 0
n

, we will show that the sequence of flips used to create MaxGreedy(p) is given by �0
n

which is
defined as follows:

�0
n

=

(
1 if n = 1

n, t
n,1, n, tn,2, . . . , n, tn,j, n if n > 1.

Before we can prove this claim, we need to better understand the signed permutation ordering. Observe
that each column in the example for MaxGreedy(123) has signed groupings similar to the unsigned case,
but of size 4n compared to 2n in the unsigned case. Define the signed bracelet sequence of a signed
permutation p1 = p1p2p3 · · · pn, where n � 2 as:

brace(p1) = p1,p2,p3, . . . ,p4n such that pi =

(
flip

n

(pi�1) if i is even
flip

n�1(pi�1) if i > 1 is odd.

As with the unsigned case, the signed permutation p1 is called the representative of the signed bracelet
sequence brace(p1). Observe that applying a flip of size n followed by a flip of size n� 1 to any signed
permutation rotates the values one position to the left, changing the sign of the element that moved to
the end. Repeating such a rotation n times, we obtain the original signed permutation with all the signs
flipped. Repeating such a rotation 2n times returns us to the original starting signed permutation. From
these observations we make the following remarks.

11

Remark 6.3. The last signed permutation in a signed bracelet sequence brace(p1) is flip

n�1(p1).

Lemma 6.4. If brace(p1) = p1,p2,p3, . . . ,p4n where n � 2 then flipSign(pi) = p2n+i for 1 i 2n.

Proof. Consider a signed permutation p = p1p2 · · · pn. The result of applying a flip of size n followed
by a flip of size n� 1 is p2p3 · · · pnp̄1 which is a rotation of p to the left and flipping the sign of the new
last element. By repeatedly applying these two successive operations n times, the resulting permutation
is p̄1p̄2 · · · p̄n. Thus, by the definition of a signed bracelet sequence, when i is odd, flipSign(pi) = p2n+i

for 1 i 2n.
The result of applying a flip of size n � 1 followed by a flip of size n is p̄

n

p1p2 · · · pn�1 which is a
rotation of p to the right and flipping the sign of the new first element. By repeatedly applying these
two successive operations n times, the resulting permutation is p̄1p̄2 · · · p̄n. Thus, by the definition of a
signed bracelet sequence, when i is even, flipSign(pi) = p2n+i for 1 i 2n. ⇤

Remark 6.5. There are exactly two signed permutations in brace(p1p2p3 · · · pn) that end with p
n

, namely

p1p2p3 · · · pn and p̄
n�1 · · · p̄3p̄2p̄1pn, and they differ by flip

n�1.

Using the definition for signed bracelet sequences, we arrive at a recurrence for the sequence Max(p)

similar to the one for the unsigned case. If p = p1p2p3 · · · pn is a signed permutation, then:

Max(p) =

(
p1, p̄1 if n = 1

brace(q1 · pn), brace(q3 · pn), brace(q5 · pn), . . . , brace(qm�1 · pn) if n � 2,
(3)

where Max(p1p2p3 · · · pn�1) = q1,q2, . . . ,qm. The following lemma shows that m = 2

n�1
(n� 1)!.

Lemma 6.6. The number of elements in the sequence Max(p1p2p3 · · · pn) is 2

nn!.

Proof. By induction. The base case is clearly satisfied for n = 1. Inductive Hypothesis: For
n � 1, assume the claim is true. Consider Max(p1p2p3 · · · pn+1). By the inductive hypothesis
Max(p1p2p3 · · · pn) has 2

nn! elements which is an even number since n � 1. Thus, from the re-
cursive definition, Max(p1p2p3 · · · pn+1) is the concatenation of 2

n�1n! signed bracelet sequences of
length 4(n + 1). Thus, the total number of signed permutations in the sequence Max(p1p2p3 · · · pn+1)

is 2n+1
(n+ 1)!. ⇤

Our goal is to show that MaxGreedy(p) and Max(p) are equivalent flip Gray code listings for signed
permutations.

6.1. Ranking

The ranking strategy for a signed permutation p = p1 · · · pn is similar to the unsigned case: determine
the distance from p to either the first or last signed permutation in its signed bracelet sequence. However,
for the signed case, there are two main differences:

1. The 2n�2j operations required to shift the symbol p
j

whose absolute value is n to the last position
correspond to a right rotation of length n� j and a flipping of the signs for the first n� j symbols
in the resulting rotated signed permutation.

12

2. If the symbol p
j

is�n, then we need to perform an additional n right rotations (which corresponds
to flipping the signs of each symbol) to obtain either the first or last signed permutation in the
signed bracelet sequence.

With these two modifications and applying the recurrence for Max(p), we obtain the ranking proce-
dure given in Algorithm 5. This algorithm requires O(n2

) basic operations.

Algorithm 5 Computing the rank of a signed permutation in Max(123 · · ·n), n � 1

1: function MAXRANK(p = p1p2 · · · pn) returns integer
2: if p = 1 then return 1
3: if p = �1 then return 2
4: d 2n� 2j . where p

j

= n

5: q1q2 · · · qn rotRight(p, n� j)

6: flipSign(q1q2 · · · qn�j

)

7: if p

j

< 0 then

8: flipSign(q1q2 · · · qn)
9: d d+ 2n

10: x MAXRANK(q1q2 · · · qn�1)
11: if x is EVEN then return 2nx� d

12: else return 2n(x� 1) + d+ 1

As an example, consider the rank of the signed permutation p = p1p2p3p4 =

¯

13

¯

42 in the ordering
Max(1234). To shift the element p

j

, such that |p
j

| = n = 4, into the right most position we perform a
right rotation n� j = 4� 3 = 1 positions and flip the sign of the first n� j = 1 positions. The resulting
signed permutation q1q2q3q4 = ¯

2

¯

13

¯

4 will be d = 2n� 2j = 2 from the original signed permutation. The
signed permutation ¯

2

¯

13

¯

4, in turn, will be 2n additional positions away from its corresponding signed
permutation with all its signs flipped, namely 21

¯

34. This latter signed permutation will be either the
first or last signed permutation in a signed bracelet sequence used by the recurrence for Max(1234).
Recursively, 21¯3 has rank x = 6 in the listing Max(123). Since 6 is even, p will be d = 2n� 2j+2n =

10 positions from the end of its bracelet sequence and hence has rank 2nx� d = 8(6)� 10 = 38.

6.2. Unranking

By applying the same recursive ideas as the corresponding ranking algorithm, Algorithm 6 returns
the signed permutation p at position rank in the listing Max(123 · · ·n). By computing the distance
d = (rank � 1) mod 4n that p must be from its signed bracelet sequence representative, consider two
cases:

1. If d � 2n recursively find the last signed permutation in its signed bracelet sequence which is the
signed permutation at rank 2b rank�1

4n c+ 2 in the listing Max(n� 1) with the symbol n appended
to the last position. The target signed permutation p will then be at distance of 4n� d� 1 before
this signed permutation in the corresponding signed bracelet sequence.

2. If d < 2n recursively find the representative signed permutation in the signed bracelet sequence
which is the signed permutation at rank 2b rank�1

4n c+ 1 in the listing Max(n� 1) with the symbol
n appended to the last position.

Based on the definition of a signed bracelet sequence, it is easy to simulate the operations from the first
(or last) signed permutation in the class to obtain the target signed permutation p as is illustrated in
Algorithm 6. This algorithm uses O(n2

) basic operations.

13

Algorithm 6 Computing the signed permutation at position rank in the listing Max(123 · · ·n), n � 1

1: function MAXUNRANK(rank, n) returns signed permutation
2: if n = 1 and rank = 1 then return 1
3: if n = 1 and rank = 2 then return -1
4: d (rank � 1) mod 4n

5: if d � 2n then

6: d 4n� d� 1

7: p1p2 · · · pn�1 MAXUNRANK(2b rank�1
4n c+ 2, n� 1)

8: else

9: p1p2 · · · pn�1 MAXUNRANK(2b rank�1
4n c+ 1, n� 1)

10: if d is EVEN then

11: p1p2 · · · p
d/2 flipSign(p1p2 · · · p

d/2)

12: return rotLeft(p1p2 · · · pn�1n , d/2)

13: else

14: p1p2 · · · pn rotRight(flip

n

(p1p2 · · · pn�1n) , bd/2c)
15: p1p2 · · · pbd/2c flipSign(p1p2 · · · pbd/2c)
16: return p1p2 · · · pn

As an example, we find the signed permutation p = p1p2p3p4 at rank 38 in Max(1234). Since each
signed bracelet sequence for n = 4 has 4n = 16 elements, the signed permutation we are looking for will
be d = (38 � 1) mod 16 = 5 positions from the first permutation in its corresponding signed bracelet
sequence which is at rank 33. Since this is the 3rd bracelet sequence in the recurrence for Max(1234),
we recursively find the 5th signed permutation in Max(123) which is 3

¯

1

¯

2. Thus, p will be d = 5

permutations after 3¯1¯24 in its signed bracelet sequenceing. This permutation is obtained by performing a
signed flip of size n to get ¯421¯3 followed by a right rotation of bd/2c = 2 positions to get 1¯3¯42. Finally,
we flip the sign of the first bd/2c = 2 elements to obtain p =

¯

13

¯

42.

7. Efficient Generation

In this section we present efficient implementations of the minimum-flip and maximum-flip greedy
Gray codes for both signed and unsigned permutations. Algorithm 7 outlines a simple iterative procedure
that will generate the specified Gray code provided there is an iterative function NEXT-� that will produce
the next flip in the corresponding flip-sequence. When the sequence is exhausted, the function NEXT-�
is assumed to return 0.

Algorithm 7 Iterative approach to list Min(p), Min(p), Max(p), or Max(p)

1: procedure ITERATIVEGEN(p)
2: repeat

3: VISIT(p)
4: j NEXT-�
5: p flip

j

(p) . use flip

j

(p) for the signed case
6: until j = 0

The loop-free functions for NEXT-�, outlined in Algorithm 8, can be used to produce the flip-
sequences �

n

for each Gray code discussed in the previous four sections. Each function uses an array of
counters c0, c1, . . . , cn+1 initialized to 0, and an array of flip lengths f0, f1, . . . , fn+1 with each f

i

initial-
ized to i. A formal proof of correctness for the minimum-flip case for permutations is provided in [3].

14

Similar techniques can be used to prove the correctness for the other three sequences, and are omitted
from this paper. A complete C implementation for these algorithms (including the ranking and unranking
algorithms) is provided in the appendix.

Algorithm 8 Iterative approaches for producing the sequences �
n

, �
n

, �0
n

, and �0
n

,
1: function NEXT-� returns integer . for �

n

2: x f2

3: f2 2

4: c

x

 c

x

+ 1

5: if x = 2 or c

x

= x�1 then

6: c

x

 0

7: f

x

 f

x+1

8: f

x+1 x+ 1

9: if x = n then return 0
10: return x

1: function NEXT-� returns integer . for �
n

2: x f1

3: f1 1

4: c

x

 c

x

+ 1

5: if x = 1 or c

x

= 2x�1 then

6: c

x

 0

7: f

x

 f

x+1

8: f

x+1 x+ 1

9: if x = n then return 0
10: return x

1: function NEXT-� returns integer . for �0
n

2: x f

n

3: f

n

 n

4: c

x

 c

x

+ 1

5: if x = n or c

x

= x then

6: c

x

 0

7: f

x

 f

x�1

8: f

x�1 x� 1

9: if x = 1 then return 0
10: return x

1: function NEXT-� returns integer . for �0
n

2: x f

n

3: f

n

 n

4: c

x

 c

x

+ 1

5: if x = n or c

x

= 2x+1 then

6: c

x

 0

7: f

x

 f

x�1

8: f

x�1 x� 1

9: if x = 0 then return 0
10: return x

Using a standard array representation for the permutation, this framework will result in a CAT algo-
rithm for the minimum-flip algorithms, since the average flip length is constant.

Theorem 7.1. The listing Min(p) can be generated in constant amortized time.

Theorem 7.2. The listing Min(p) can be generated in constant amortized time.

The average flip length is O(n) in the maximum-flip algorithms, so the corresponding generation
algorithms will run in O(n) amortized time using the standard array representation. However, we can
achieve CAT generation algorithms by using two doubly linked lists to represent the (signed) permuta-
tions. To explain how this is done for permutations, recall that applying the operations flip

n

and flip

n�1

successively to a permutation is equivalent to a left rotation. Similarly, applying the operations flip

n�1

and flip

n

corresponds to a right rotation. Thus, a bracelet sequence p1,p2, . . . ,p2n satisfies the follow-
ing:

p2i+1 = rotLeft(p2i�1, 1) and p2i+2 = rotRight(p2i, 1) for all 1 i < n.

By maintaining pointers to the first and last elements, each of the individual rotations can be implemented
in constant time. Thus, by maintaining two linked lists initialized to p1 and p2 and a pointer to indicate
the current list, we can generate each bracelet sequence in constant amortized time. To complete the
Max(p) generation algorithm, we must consider how to transition between bracelet classes. These tran-
sitions can trivially be done in linear time; however, since it is only required for every 2n permutations,
the overall algorithm will be CAT.

15

Theorem 7.3. The listing Max(p) can be generated in constant amortized time using two linked lists.

The same approach works for signed permutations. The only difference is that left and right rota-
tions require the sign of the last and first symbols to be complemented in the resulting permutations,
respectively.

Theorem 7.4. The listing Max(p) can be generated in constant amortized time using two linked lists.

8. Concluding Remarks

To do. (Mention FUN journal paper with successor rules.)

References

[1] Sawada, J., Williams, A.: Greedy flipping of pancakes and burnt pancakes. Discrete Applied Math-
ematics accepted (2016)

[2] Siegel, J.: Interconnection Networks for Large-Scale Parallel Processing: Theory and Case Studies.
McGraw-Hill (1990)

[3] Zaks, S.: A new algorithm for generation of permutations. BIT Numerical Mathematics 24(2), 196–
204 (1984)

9. Appendix

//--
// GENERATING (SIGNED) PERMUTATIONS BY MIN or MAX FLIPS
// Research by: Aaron Williams, Joe Sawada
//--
#include <stdio.h>

#include <stdlib.h>

#define MAX_N 21

int MAX=0, MIN=0, SIGNED=0, GEN=0, RANK=0, UNRANK=0;

int n, type, a[MAX_N], sign[MAX_N], f[MAX_N], c[MAX_N];

long long int rank, total, pow2[MAX_N], factorial[MAX_N];

//---
void Input() {

int i;

printf(" ----------------------\n");

printf(" Permutation Generation \n");

printf(" ----------------------\n");

printf(" 1. Max Flip \n");

printf(" 2. Min Flip\n");

printf(" 3. Max Flip (Signed) \n");

printf(" 4. Min Flip (Signed) \n");

printf("\n");

printf(" ----------------------\n");

printf(" Permutation Ranking \n");

printf(" ----------------------\n");

printf(" 5. Max Flip \n");

printf(" 6. Min Flip\n");

printf(" 7. Max Flip (Signed) \n");

printf(" 8. Min Flip (Signed) \n");

printf("\n");

printf(" ----------------------\n");

16

printf(" Permutation UnRanking \n");

printf(" ----------------------\n");

printf(" 9. Max Flip \n");

printf(" 10. Min Flip\n");

printf(" 11. Max Flip (Signed) \n");

printf(" 12. Min Flip (Signed) \n");

printf("\n ENTER selection #: "); scanf("%d", &type);

if (type < 0 || type > 12) {

printf("\n INVALID ENTRY\n\n");

exit(0);

}

// long int constraints: MAX n seems to be 20 or 16 (Signed)
printf(" ENTER length n: ");

scanf("%d", &n);

if (type % 4 == 0 || type %4 == 3) SIGNED = 1;

if (type % 4 == 1 || type %4 == 3) MAX = 1;

if (type % 4 == 0 || type %4 == 2) MIN = 1;

if (type >= 1 && type <= 4) GEN = 1;

else if (type >=5 && type <= 8) {

RANK = 1;

printf(" ENTER permutation (separated by spaces): ");

for (i=1; i<=n; i++) scanf("%d", &a[i]);

for (i=1; i<=n; i++) {

if (a[i] < 0) {

a[i] = -a[i];

sign[i] = 1;

}

else sign[i] = 0;

}

}

else if (type >=9 && type <= 12) {

UNRANK = 1;

if (SIGNED == 0) rank = factorial[n];

else rank = factorial[n]

*

pow2[n];

printf(" ENTER rank (between 1 and %lld): ", rank);

scanf("%lld", &rank);

}

printf("\n");

}

//--
void Init() {

int j;

//==============
// INITIAL PERM
//==============
for (j=1; j<=n; j++) a[j] = j;

for (j=1; j<=n; j++) sign[j] = 0;

//===========
// INIT NEXT
//===========
for (j=0; j<=n+1; j++) c[j] = 0;

for (j=0; j<=n+1; j++) f[j] = j;

}

//--
void Print() {

int i;

for (i=1; i<=n; i++) {

if (sign[i] == 0 || !SIGNED) printf(" %d ", a[i]);

else printf("-%d ", a[i]);

}

if (!RANK) printf("\n");

total++;

}

17

//---
// OPERATIONS ON PERMUTATIONS
//---
void RotateRight(int t, int j) {

int i, b[MAX_N];

for (i=1; i<=t-j; i++) b[i+j] = a[i];

for (i=1; i<=j; i++) b[i] = a[t-j+i];

for (i=1; i<=t; i++) a[i] = b[i];

for (i=1; i<=t-j; i++) b[i+j] = sign[i];

for (i=1; i<=j; i++) b[i] = sign[t-j+i];

for (i=1; i<=t; i++) sign[i] = b[i];

}

//---
void RotateLeft(int t, int j) {

int i, b[MAX_N];

for (i=j+1; i<=t; i++) b[i-j] = a[i];

for (i=1; i<=j; i++) b[t-j+i] = a[i];

for (i=1; i<=t; i++) a[i] = b[i];

for (i=j+1; i<=t; i++) b[i-j] = sign[i];

for (i=1; i<=j; i++) b[t-j+i] = sign[i];

for (i=1; i<=t; i++) sign[i] = b[i];

}

//---
void Flip(int t) {

int i, b[MAX_N];

for (i=1; i<=t; i++) b[i] = a[t-i+1];

for (i=1; i<=t; i++) a[i] = b[i];

//===========================
// Flip Signs for Signed case
//===========================
for (i=1; i<=t; i++) b[i] = sign[t-i+1];

for (i=1; i<=t; i++) sign[i] = (b[i]+1) % 2;

}

//---
void FlipSign(int t) {

int i;

for (i=1; i<=t; i++) sign[i] = (sign[i]+1)%2;

}

//--
// UNRANKING
//--
void UnRankMin(long long int rank, int t){

int j,x;

if (t == 1) { a[1] = 1; return; }

x = (rank-1) / factorial[t-1];

rank = rank - x

*

factorial[t-1];

UnRankMin(rank, t-1);

a[t] = t - x;

for (j=1; j<t; j++) a[j] = 1 + (a[j] + a[t] - 1) % t;

}

//--
void UnRankMinSigned(long long int rank, int t){

int j,x;

if (t == 1) {

a[1] = 1;

if (rank == 2) sign[1] = 1;

else sign[1] = 0;

return;

}

18

x = (rank-1) / (factorial[t-1]

*

pow2[t-1]);

rank = rank - x

*

factorial[t-1]

*

pow2[t-1];

if (x < t) {

a[t] = t-x;

sign[t] = 0;

}

else {

a[t] = 2

*

t -x;

sign[t] = 1;

}

UnRankMinSigned(rank, t-1);

for (j=1; j<t; j++) {

x = 1 + (a[j] + a[t] - 1) % t;

if ((sign[t] == sign[j] && x > a[t]) || (sign[t] != sign[j] && x < a[t])) sign[j] = 1;

else sign[j] = 0;

a[j] = x;

}

}

//--
void UnRankMax(long long int rank, int t) {

int d;

//===========
// BASE CASE
//===========
if (t == 2) {

if(rank == 1) { a[1] = 1; a[2] = 2;}

if(rank == 2) { a[1] = 2; a[2] = 1;}

return;

}

a[t] = t;

if (rank % 2 == 0) {

UnRankMax(2

*

((rank-1)/(2

*

t)) + 2, t-1);

d = 2

*

t - (rank % (2

*

t));

}

else {

UnRankMax(2

*

((rank-1)/(2

*

t)) + 1, t-1);

d = (rank-1) % (2

*

t);

}

RotateLeft(t,d/2);

}

//--
void UnRankMaxSigned(long long int rank, int t) {

int d;

a[t] = t; sign[t] = 0;

//===========
// BASE CASE
//===========
if (t == 1) {

if (rank == 2) sign[1] = 1;

return;

}

d = (rank-1) % (4

*

t);

if (d >= 2

*

t) {

d = 4

*

t - d - 1;

UnRankMaxSigned(2

*

((rank-1)/(4

*

t)) + 2, t-1);

}

else UnRankMaxSigned(2

*

((rank-1)/(4

*

t)) + 1, t-1);

if (d % 2 == 0) {

FlipSign(d/2);

RotateLeft(t,d/2);

}

else {

19

Flip(t);

RotateRight(t,d/2);

FlipSign(d/2);

}

}

//--
// RANKING
//--
long long int RankMin(int t){

int j;

if (t == 1) return 1;

for (j=1; j<t; j++) a[j] = (a[j] - a[t] + t) % t;

return ((t-a[t])

*

factorial[t-1] + RankMin(t-1));

}

//--
long long int RankMinSigned(int t){

int j;

if (t == 1 && sign[1] == 0) return 1;

if (t == 1 && sign[1] == 1) return 2;

for (j=1; j<t; j++) {

if ((sign[t] == sign[j] && a[t] < a[j]) || (sign[t] != sign[j] && a[t] > a[j])) sign[j] = 1;

else sign[j] = 0;

a[j] = (a[j] - a[t] + t) % t;

}

if (sign[t] == 0) return ((t-a[t])

*

factorial[t-1]

*

pow2[t-1] + RankMinSigned(t-1));

else return ((2

*

t - a[t])

*

factorial[t-1]

*

pow2[t-1] + RankMinSigned(t-1));

}

//--
long long int RankMax(int t) {

long long int i,d,x,p;

//===========
// BASE CASES
//===========
if (t == 2 && a[1] ==1) return 1;

if (t == 2 && a[1] ==2) return 2;

//=====================================
// Determine position of largest value
//=====================================
for (i=1; i<=t; i++) if (a[i] == t) p = i;

//==
// Rotate to either the first or last permutation in the bracelet class
//==
d = 2

*

(t-p);

RotateRight(t,t-p);

//==
// The parity indicates whether or not the rotate perm is first or last in the class
//==
x = RankMax(t-1);

if (x % 2 == 0) return (t

*

x - d);

else return (t

*

(x-1) + d+1);

}

//--
long long int RankMaxSigned(int t) {

long long int i,d,x,p;

//===========
// BASE CASE
//===========
if (t == 1 && sign[1] == 0) return 1;

if (t == 1 && sign[1] == 1) return 2;

//=====================================
// Determine position of largest value
//=====================================

20

for (i=1; i<=t; i++) if (a[i] == t) p = i;

//===
// Rotate/Flip to either the first or last permutation in the bracelet class
//===
d = 2

*

(t-p);

RotateRight(t,t-p);

FlipSign(t-p);

if (sign[t] == 1) {

FlipSign(t);

d += 2

*

t;

}

//==
// The parity indicates whether or not the rotate perm is first or last in the class
//==
x = RankMaxSigned(t-1);

if (x % 2 == 0) return (2

*

t

*

x - d);

else return (2

*

t

*

(x-1) + d+1);

}

//--
// flip-sequence GENERATION
//--
int NextMin() {

int j;

j = f[2];

f[2] = 2;

c[j]++;

if (c[j] == j-1 || j == 2) {

c[j] = 0;

f[j] = f[j+1];

f[j+1] = j+1;

}

if (j == n+1) return(0);

return(j);

}

//--
int NextMinSigned() {

int j;

j = f[1];

f[1] = 1;

c[j]++;

if (c[j] == 2

*

j-1 || j == 1) {

c[j] = 0;

f[j] = f[j+1];

f[j+1] = j+1;

}

if (j == n+1) return(0);

return(j);

}

//--
int NextMax() {

int j;

j = f[n];

f[n] = n;

c[j]++;

if (c[j] == j || j == n) {

c[j] = 0;

f[j] = f[j-1];

f[j-1] = j-1;

}

if (j == 1) return(0);

return(j);

}

//--
int NextMaxSigned() {

int j;

21

j = f[n];

f[n] = n;

c[j]++;

if (c[j] == 2

*

j+1 || j == n) {

c[j] = 0;

f[j] = f[j-1];

f[j-1] = j-1;

}

if (j == 0) return(0);

return(j);

}

//--
void Gen() {

int j;

do {

Print();

if (MIN && !SIGNED) j= NextMin();

if (MIN && SIGNED) j= NextMinSigned();

if (MAX && !SIGNED) j= NextMax();

if (MAX && SIGNED) j= NextMaxSigned();

Flip(j);

} while (j>0);

printf("Total = %lld\n\n", total);

}

//--
int main() {

int j;

factorial[0] = 1;

for (j=1; j<=MAX_N; j++) factorial[j] = factorial[j-1]

*

j;;

pow2[0] = 1;

for (j=1; j<=MAX_N; j++) pow2[j] = pow2[j-1]

*

2;

Input();

if (GEN) {

Init();

Gen();

}

if (RANK) {

printf("The rank of permutation ");

Print();

if (MIN && !SIGNED) rank = RankMin(n);

if (MIN && SIGNED) rank = RankMinSigned(n);

if (MAX && !SIGNED) rank = RankMax(n);

if (MAX && SIGNED) rank = RankMaxSigned(n);

printf(" is: %lld\n\n", rank);

}

if (UNRANK) {

if (MIN && !SIGNED) UnRankMin(rank,n);

if (MIN && SIGNED) UnRankMinSigned(rank,n);

if (MAX && !SIGNED) UnRankMax(rank,n);

if (MAX && SIGNED) UnRankMaxSigned(rank,n);

printf("The permutation of rank %lld is: ", rank);

Print();

}

}

22

