
The Harassed Waitress Problem

Harrah Essed Wei Therese

Italian House of Pancakes

Abstract. It is known that a stack of n pancakes can be rearranged
in all n! ways by a sequence of n!−1 flips, and that a stack of n ‘burnt’
pancakes can be rearranged in all 2nn! ways by a sequence of 2nn!−1 flips.
Unfortunately, the known algorithms are too difficult to be used by the
waitstaff of a busy restaurant. How can humans can determine the next
flip from the current stack and no extra information? We provide such
successor rules that run in O(n)-time using no memory. More broadly,
we discuss how iteration and computational complexity provide helpful
constraints when solving Hamilton cycle problems in highly symmetric
graphs, and how simple greedy algorithms can produce globally optimal
Gray codes.

Keywords: pancake sorting, greedy algorithm, Gray code, permutations, prefix-
reversal, symmetric group, Cayley graph, Hamilton cycle

1 Introduction

Jacob Goodman, writing under the name Harry Dweighter (“harried waiter”),
introduced the original pancake problem: Given a stack of n pancakes of vari-
ous sizes, what is the minimum number of flips required to sort the pancakes
from smallest to largest? In this problem, the individual pancakes are numbered
1, 2, . . . , n by increasing size; a stack of pancakes can be represented by a per-
mutation in one-line notation. Each ‘flip’ of the topmost i pancakes corresponds
to a prefix-reversal of length i in the permutation. For example, the following
illustration shows how the stack 632514 can be sorted in 5 flips:

6
→

2
→

3
→

5
→

3
→

632514 415236 145236 541236 321456 123456

A well-studied variation features ‘burnt’ pancakes, which have two distinct
sides. In this problem, a stack is represented by a signed permutation in one-line
notation, with i and ī being used when the burnt side of pancake i is facing
down or up, respectively. Each ‘flip’ of the topmost i pancakes corresponds to a
sign-complementing prefix-reversal in the signed permutation. For example, the
following illustration shows how the stack 3̄ 2̄ 1̄ can be sorted in 7 flips:

2
→

1
→

2
→

1
→

3
→

1
→

3
→

1̄ 2̄ 3̄ 2 1 3̄ 2̄ 1 3̄ 1̄ 2 3̄ 1 2 3̄ 3 2̄ 1̄ 3̄ 2̄ 1̄ 1 2 3

2

Recently it was shown that Goodman’s original harried waiter problem is NP-
hard to solve in general [2] while the complexity of the burnt variation is un-
known. If arbitrary substacks are allowed to be flipped, then the unburnt sort-
ing problem is APX-hard [1] and the burnt sorting problem can be solved in
polynomial-time [4].

Research on pancake sorting had humble beginnings — Goodman formulated
the problem while sorting a stack of towels — but has a number of interesting
applications including genomics (see Fertin et al [3]) and in vivo computing (see
Haynes [5] for an introduction to the ‘e.Hop’ restaurant), and has been discussed
by the media (see Singh [9]).

1.1 The Harassed Waitress Problem

Zaks [16] asked the following question: Can a stack of n pancakes be rearranged
in all n! ways by a sequence of n! − 1 flips? To differentiate this problem from
Goodman’s, we refer to it as the harassed waitress problem. The following passage
from [16] explains its relevant results:

Using our algorithms the poor waiter waitress will be able to generate, in
n! such steps, all possible n! stacks (returning to the original one) . . . in
(k− 1)/k! of them he will reverse the top k pancakes, which amounts to
less than 2.8 pancakes reversed on the average.

For example, Zaks’s solution for n = 3 is as follows:

2
→

3
→

2
→

3
→

2
→

3
→

123 213 312 132 231 321

Zaks’s result is a Gray code of permutations using prefix-reversals, and the Gray
code is cyclic since the first and last stacks differ by a prefix-reversal. Equiv-
alently, Zaks’s solution gives a Hamilton cycle in the pancake network, whose
vertices are the permutations of n with adjacencies between those that differ by
a prefix-reversal. The simplicity of Zaks’s solution is interesting given the fact
that the shortest path problem in this graph is NP-hard.

As with Goodman’s problem, there is also a natural ‘burnt’ variation. The
underlying graph is the burnt pancake network, and successful orders are Gray
codes of signed permutations using sign-complementing prefix-reversals.

The aforementioned solutions can be generated one stack at a time by efficient
algorithms. Unfortunately, the algorithms are designed for computers. We would
like to have a simple successor rule that maps each stack to the next stack in a
particular solution. More specifically, we are interested in the following question:

How efficiently can we compute the next flip from the current
stack with no additional information given?

To motivate this question it is helpful to focus on the harassed waitress. We
suppose that our heroine is working at a busy restaurant and may need to stop

3

Fig. 1. The most important question for solving the harassed waitress problem.

and restart her task many times. These interruptions do not afford her the luxury
of recalling the context of the previous flips made – she has no memory!

Another issue one may consider is the total number of pancakes that the
waitress must flip throughout a given solution. In particular, we are interested in
solutions that flip either the minimum or maximum possible number of pancakes
overall (or equivalently the average number of pancakes in each flip). Un-fun-
tunately, we do not have the space to address this issue.

1.2 New Results

We provide four results (assume worst-case analysis unless specified).

1. With a minimum-flip strategy, our waitress can determine how many pancakes
to flip at each step in O(n)-time. On average, she uses O(1)-time.

2. With a minimum-flip strategy, our waitress can determine how many burnt
pancakes to flip at each step in O(n)-time. On average, she uses O(1)-time.

3. With a maximum-flip strategy, our waitress can determine how many pan-
cakes to flip at each step in O(n)-time. On average, she uses O(1)-time if she
considers two flips at a time.

4. With a maximum-flip strategy, our waitress can determine how many burnt
pancakes to flip at each step in O(n)-time. On average, she uses O(1)-time if
she considers two flips at a time.

Our results are focused on the complexity of determining the next flip and
not performing the flip in a data structure (see [12] for a fun O(1)-time imple-
mentation of prefix-reversals). The results are based on four greedy algorithms
given by Sawada and Williams [8, 7]. The algorithms build a list of stacks one
at a time, starting from 1 2 · · · n. The next stack is created by taking the last
stack in the list and applying the ‘best’ flip that creates a ‘new’ stack. In this

4

context ‘new’ means that the stack is not already in the list, and ‘best’ means
minimum or maximum depending on the algorithm. The new stack is appended
to the list, and the algorithm terminates when a new stack cannot be created.
For example, let us illustrate one step of the minimum flip algorithm when n = 4
starting from the following list:

2
→

3
→

2
→

3
→

2
→

?
→ ?

1234 2134 3124 1324 2314 3214

We cannot flip the top two pancakes of 3214 since 2314 is already in the list.
Similarly, we cannot flip the top three pancakes since 1234 is already in the list.
However, we can flip the top four pancakes, and so the resulting new stack 4123
is added to the list. Eventually, this approach lists all stacks. All four greedy
algorithms are illustrated by Table 1 in the Appendix. While these greedy de-
scriptions are simple, they are only practical for waitresses with photographic
memories! Just for fun, we implemented our successor algorithms in C and in-
cluded them in the Appendix.

2 Successor Rules For Four Greedy Flip Strategies

For each of the greedy flip strategies to list stacks of (burnt) pancakes, we recall
the recursive definitions provided in [7]. These recursive definitions are used to
prove the correctness of the successor rules. First, some notation is required.

Let P(n) denote the set of permutations of {1, 2, . . . , n} and let P(n) de-
note the set of signed permutations of {1, 2, . . . , n}. For example, P(3) =
{123, 132, 213, 231, 312, 321} and P(2) = {12, 21, 1̄2, 21̄, 12̄, 2̄1, 1̄2̄, 2̄1̄}. Given a
(signed) permutation p = p1p2 · · · pn, we will use the following notation:

– flipj(p) = pjpj−1 · · · p1pj+1 · · · pn, a flip (prefix reversal) of length j,

– flipj(p) = p̄j p̄j−1 · · · p̄1pj+1 · · · pn, a signed flip (prefix reversal) of length j,
– p · n denotes the concatenation of the symbol n to the permutation p.

2.1 Minimum flip for permutations

Given p = p1p2 · · · pn ∈ P(n), let qi = pi+1 · · · pnp1 · · · pi−1 denote a rotation of
the permutation p with the element pi removed. Consider the following defini-
tion:

Min(p) = Min(qn) · pn, Min(qn−1) · pn−1, . . . , Min(q1) · p1, (1)

with base case Min(p1) = p1 when n = 1. This recursive listing corresponds
to a greedy minimum flip strategy [7] for permutations, where the first and
last strings differ by flipn. It is used to prove the correctness of the upcoming
successor rule.

A permutation p ∈ P(n) is increasing if it corresponds to a rotation of the
word 12 · · ·n. It is decreasing if it is a reversal of an increasing permutation.
Specifically, the set of all n increasing permutations is:

{12 · · ·n, 23 · · ·n1, 34 · · ·n12, . . . , n12 · · ·n−1}.

5

A k-permutation is any string of length k over the set {1, 2, 3, . . . , n} with no re-
peating symbols. A k-permutation is increasing (decreasing) if it is a subsequence
of an increasing (decreasing) permutation. For instance, 5124 is increasing, but
5127 is not.

Remark 1. If p is increasing (decreasing) then both flipn−1(p) and flipn(p) are
decreasing (increasing).

Given a permutation p′, let succ(p′) denote the successor of p′ in Min(p)
when the listing is considered to be circular.

Lemma 1. Let p′ = p′1p
′
2 · · · p′n be a permutation in the (circular) listing Min(p),

where p = p1p2 · · · pn is increasing. Then:

succ(p′) = flipj(p
′),where p′1p

′
2 · · · p′j is the longest prefix of p′ that is decreasing.

Proof. We focus on the permutations whose successor is the result of a flip of
size n and then apply induction (the base case when n = 2 is easily verified).
Consider the recursive definition for Min(p) in (1). Given a permutation p′, its
successor will be flipn(p′) if and only if it is the last permutation in one of the
recursive listings of the form Min(qi) · pi. Clearly, at most one permutation in
each recursive listing can be decreasing. By showing that the last permutation
in each listing is the one that is decreasing, we verify the successor rule for flips
of size n.

We are given that the initial permutation is increasing. Also, note that the
last permutation in Min(qn) · pn is flipn−1(p). Thus, by Remark 1 this last
permutation is decreasing. By applying the flip of size n to this last permutation,
Remark 1 implies that the resulting permutation, which is the first permutation
of Min(qn−1)·pn−1, will be increasing. Repeating this argument for i = n−1, n−
2, . . . , 1 verifies our claim that the last permutation in each recursive listing is
decreasing; it is true for the final recursive listing since the last permutation in
Min(p) differs from the first by a flip of size n.

Thus, the successor rule is correct for all permutations whose successor is the
result of a flip of size n. For all other permutations whose successor is not a flip
of size n, the successor rule follows from induction. ut
As an example, consider the permutation 3764512 with respect to the listing
Min(12 · · ·n). The prefix 3764 is the longest one that is decreasing, thus j = 4
and the next permutation in the listing is flip4(3764512). Determining the value
j in this successor rule can easily be determined in O(n) time by applying the
pseudocode given in Algorithm 1.

Theorem 1. Successor(p) returns the size of the flip required to obtain the
successor of p in the (circular) listing Min(12 · · ·n) in O(n) time.

This function runs in expected O(1) time when the permutation is passed by
reference because the average flip size is bounded above by the constant e [7].
Thus, by repeatedly applying this successor rule, our waitress can iterate through
all n! stacks of pancakes in constant amortized time starting from p = 12 . . . n.
She will return to the initial stack after she completes a flip of size n and the
top pancake p1 = 1.

6

Algorithm 1 Computing the successor of p in the listing Min(12 · · ·n)

1: function Successor(p)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if pj < pj+1 then incr ← incr + 1

5: if incr = 2 or (incr = 1 and pj+1 < p1) then return j

6: return n

2.2 Minimum Flips for Signed Permutations

A recursive formulation for signed permutations is similar to the formulation for
the non-signed case with a minor change to some notation. Let q = q1q2 · · · q2n =
p̄1p̄2 · · · p̄np1p2 · · · pn be a circular string of length 2n. Let qi denote the length
n−1 subword ending with qi−1. For instance, q3 = p4p5 · · · pnp̄1p̄2. Consider the
following recursive definition:

Min(p) = Min(q2n) · q2n, Min(q2n−1) · q2n−1, . . . , Min(q1) · q1, (2)

where Min(p1) = p1, p̄1. This listing corresponds to a greedy minimum flip strat-
egy [7] for signed permutations, where the first and last strings differ by a flip
of size n.

We say a signed permutation p ∈ P(n) is increasing if it corresponds to a
length n subword of the circular string 1̄2̄ · · · n̄12 · · ·n. It is decreasing if it is a
reversal of an increasing permutation. For example, the set of all 2n increasing
signed permutations is

{1̄2̄3̄ · · · n̄, 2̄3̄ · · · n̄1, 3̄4̄ · · · n̄12, . . . , n1̄ · · ·n−1}.

A signed k-permutation is any string of length k over the set
{1, 2, . . . , n, 1̄, 2̄, . . . n̄} with no repeating symbols when taking absolute
value. A signed k-permutation is increasing (decreasing) if it is a subsequence of
an increasing (decreasing) signed permutation. For example, 5672̄4̄ is increasing,
but 4̄567 is not.

Remark 2. If a signed permutation p is increasing (decreasing) then both flipn−1(p)

and flipn(p) are decreasing (increasing).

Given a signed permutation p′, let succ(p′) denote the successor of p′ in
Min(p) when the listing is considered to be circular. A proof of the following
lemma uses Remark 2 and follows the exact same inductive style as the proof
for Lemma 1.

Lemma 2. Let p′ = p′1p
′
2 · · · p′n be a signed permutation in the (circular) listing

Min(p), where p = p1p2 · · · pn is increasing. Then:

succ(p′) = flipj(p
′),where p′1p

′
2 · · · p′j is the longest prefix of p′ that is decreasing.

Pseudocode for such a successor function is given in Algorithm 2.

7

Algorithm 2 Computing the successor of p in the listing Min(12 · · ·n)

1: function Successor(p)
2: incr ← 0
3: for j ← 1 to n− 1 do
4: if |pj | < |pj+1| then incr ← incr + 1

5: if incr = 2 or (incr = 1 and |pj+1| < |p1|) then return j

6: if |pj | < |pj+1| and sign(pj) = sign(pj+1) then return j

7: if |pj | > |pj+1| and sign(pj) 6= sign(pj+1) then return j

8: return n

Theorem 2. Successor(p) returns the size of the flip required to obtain the
successor of p in the listing Min(12 · · ·n) in O(n) time.

Observe that this function runs in expected O(1) time when the permutation
is passed by reference because the average flip size is bounded above by the
constant

√
e [7]. Thus, by repeatedly applying this successor rule, our waitress

can iterate through all 2nn! stacks of burnt pancakes in constant amortized time
starting from p = 12 . . . n. She will return to the initial stack after she completes
a flip of size n and the top pancake p1 = 1.

2.3 Maximum Flips for Permutations

Define the bracelet order of permutation p1 ∈ P(n) as:

brace(p1) = p1,p2, . . . ,p2n such that pi =

{
flipn(pi−1) if i is even

flipn−1(pi−1) if i > 1 is odd.

The last string in brace(p1) is flipn−1(p1). A bracelet class is a set containing
the strings in a bracelet order brace(p1). The following lemma is proved in [7]:

Lemma 3. If p1 and p2 are distinct permutations in P(n−1), then p1 · n and
p2 · n are in the same bracelet class if and only if p2 = flipn−1(p1).

We now give a recursive definition to list P(n):

Max(n) = brace(q1 · n), brace(q3 · n), brace(q5 · n), . . . , brace(qm−1 · n), (3)

where Max(n − 1) = q1,q2, . . . ,qm and Max(1) = 1. This listing corresponds
to a greedy maximum flip strategy [7] for permutations, where the first and last
strings differ by a flip of size 2. The recursive definition is used to prove the
correctness of the upcoming successor rule.

Given a permutation p = p1p2 · · · pn, let succ(p) denote the successor of p
in Max(n). One may observe that every second permutation in Max(n), starting
with the first, contains the subsequence 123, 231, or 312; or in other words, they
contain the subsequence 123 when p is considered circularly. If a permutation

contains such a subsequence we say it has property
−→
123.

8

Lemma 4. For n ≥ 3:

succ(p) =

{
flipn(p) if p has property

−→
123

flipmax(j−1,2)(p) otherwise,
(4)

where j is the largest index such that pj 6= j.

Proof. This successor rule is easy to verify for n = 3. By induction, assume the
successor rule is correct for Max(n−1), where n > 3. Additionally, by induction,
assume the rule is correct when applied to the first r−1 permutations in Max(n).
We must show that the successor of permutation p = p1p2 · · · pn at rank r is
given by (4). Observe that the first r permutations will alternately have, and

not have the property
−→
123. This is because (4) always flips at least two of the

values 1,2, and 3. Thus, p has property
−→
123 if and only if r is odd. We consider

two cases depending on whether r is odd or even.

If r is odd, we have established that p has property
−→
123. By (3) and the

definition of a bracelet class, succ(p) = flipn(p), which verifies (4).

If r is even, we have established that p does not have property
−→
123. Consider

two cases depending on the last element pn. If pn 6= n, then by Lemma 3, p
will not be the last permutation in a bracelet class from (3) and thus succ(p) =
flipn−1(p), which verifies (4). If pn = n, then r being even implies that p is the
last permutation in a bracelet class from (3) by Lemma 3. Thus, succ(p) will
correspond to succ(p1p2 · · · pn−1) in Max(n−1) with n appended to the end. Since

p1p2 · · · pn−1 does not have property
−→
123, by induction succ(p1p2 · · · pn−1) =

flipmax(j−1,2)(p1p2 · · · pn−1) where j is the largest index such that pj 6= j. Thus,
since pn = n, succ(p) is equal to flipmax(j−1,2)(p) where j is the largest index
such that pj 6= j, satisfying (4). ut

Pseudocode for a successor rule based on this lemma is given in Algorithm 3.

Algorithm 3 Computing the successor of p in the listing Max(n)

1: function Successor(p)
2: for j ← 1 to n do
3: if pj = 1 then pos1 ← j

4: if pj = 2 then pos2 ← j

5: if pj = 3 then pos3 ← j

6: if (pos1 < pos2 < pos3) or (pos2 < pos3 < pos1) or (pos3 < pos1 < pos2)
then return n

7: j ← n
8: while pj = j and j > 3 do j ← j − 1

9: return j − 1

Theorem 3. Successor(p) returns the successor of the permutation p in the
listing Max(n) in O(n) time.

9

By applying the observations from this successor rule, our waitress can apply
a very simple and elegant algorithm to generate Max(n). The main idea is to
visit two permutations at a time; pseudocode is given in Algorithm 4. Since the
average flip length approaches n− 1

2 , the while loop iterates less than once on
average. Thus, this simple algorithm runs in constant amortized time per flip.

Algorithm 4 Exhaustive algorithm to list the ordering Max(n) of P(n)

1: procedure Gen
2: p← 12 · · ·n
3: repeat
4: Visit(p)
5: p← flipn(p)
6: Visit(p)
7: j ← n
8: while pj = j do j ← j − 1

9: p← flipj−1(p)
10: until j = 2

2.4 Maximum Flips for Signed Permutations

Define the signed bracelet order of permutation p1 ∈ P(n) as:

brace(p1) = p1,p2, . . . ,p4n such that pi =

{
flipn(pi−1) if i is even

flipn−1(pi−1) if i > 1 is odd.

Using this definition, we arrive at a similar recurrence to list P(n) as the unsigned
case in the previous section:

Max(n) = brace(q1 · n), brace(q3 · n), brace(q5 · n), . . . , brace(qm−1 · n), (5)

where Max(n− 1) = q1,q2, . . . ,qm and Max(1) = 1, 1̄. This listing corresponds
to a greedy maximum flip strategy [7] for signed permutations, where the first
and last strings differ by a flip of size 1.

Given a permutation p = p1p2 · · · pn, let succ(p) denote the successor of p
in Max(n). To find an efficient successor rule for this listing, observe that every
second permutation, starting with the first, contains the subsequence 12, 21̄, 1̄2̄,

or 2̄1. If a permutation contains such a subsequence we say it has property
−→
12.

Lemma 5. For n ≥ 2:

succ(p) =

{
flipn(p) if p has property

−→
12

flipmax(j−1,1)(p) otherwise,
(6)

where j is the largest index such that pj 6= j.

10

Algorithm 5 Computing the successor of p in the listing Max(n)

1: function Successor(p)
2: for j ← 1 to n do
3: if |pj | = 1 then pos1 ← j

4: if |pj | = 2 then pos2 ← j

5: if pos1 < pos2 and sign(ppos1) = sign(ppos2) then return n

6: if pos1 > pos2 and sign(ppos1) 6= sign(ppos2) then return n

7: j ← n
8: while pj = j and j > 2 do j ← j − 1

9: return j − 1

A proof of this lemma is similar to the one for Lemma 4. Pseudocode for a
successor rule based on this lemma is given in Algorithm 5.

Theorem 4. Successor(p) returns the successor of the permutation p in the
listing Max(n) in O(n) time.

By applying the observations from this successor rule, our waitress can apply
a simple and elegant algorithm to generate Max(n). The main idea is to consider
two consecutive pancake stacks; pseudocode is given in Algorithm 6. Since the
average flip length approaches n− 1

2 , the while loop iterates less than once on
average. Thus, this simple algorithm runs in constant amortized time per flip.

Algorithm 6 Exhaustive algorithm to list the ordering Max(n) of P(n)

1: procedure Gen
2: p← 12 · · ·n
3: repeat
4: Visit(p)
5: p← flipn(p)
6: Visit(p)
7: j ← n
8: while pj = j do j ← j − 1

9: p← flipj−1(p)
10: until j = 1

3 The Bigger Picture

A classic conjecture attributed to Lovász is the following: Every connected vertex-
transitive graph has a Hamilton path. Several well-known variations of this con-
jecture exist including the following: Every connected Cayley graph has a Hamil-
ton cycle. Despite significant attention, these conjectures have proven to be quite
stubborn. For this reason, there is value in developing novel approaches. One such

11

approach to develop a suitable successor rule as the first step. For example, our
heroine could create a rule for modifying a stack of pancakes, and then determine
if it creates all possible stacks. Although this approach involves trial and error,
and equal parts of art and science, it has lead to a number of recent successes:

1. Cool-lex order. The following rule uses rotations to cyclically create all
(
n
w

)
binary strings of length n and weight w: Rotate the shortest prefix ending in
010 or 011 one position to the right (or the entire string if there is no such
prefix). The rule runs in amortized O(1)-time with no additional storage, and
O(1)-time with O(log n) bits of memory that can be recomputed in amor-
tized O(1)-time or worst-case O(n)-time. This result has led to applications
involving computer words, binary strings, multiset permutations, k-ary trees,
necklaces and Lyndon words, fixed-weight de Bruijn sequences, and bubble
languages. For a ’fun’ introduction see Stevens and Williams [10, 11].

2. The sigma-tau Gray code. A simple generating set for the symmetric group
Sn is the rotation σ = (1 2 · · · n) and the swap of the first two symbols
τ = (1 2). The directed Cayley graph does not contain a Hamilton cycle for
odd values of n and the remaining Hamiltonicity problems were open for forty
years (see Problem 6 in [6]). Williams [14] recently solved the problems with
successor rules that can be applied in worst-case O(n)-time with no additional
storage, or worst-case O(1)-time with O(log n) bits of memory that can be
recomputed in worst-case O(n)-time.

3. A new de Bruijn sequence. k-ary de Bruijn sequences are in one-to-one cor-
respondence with Eulerian cycles in the k-ary de Bruijn graph. Equivalently,
they are in one-to-one correspondence with Hamilton cycles in the correspond-
ing line graph. Recently, Wong discovered a simple successor rule for creating
such a Hamilton cycle when k = 2 [15]: Given a current string b1b2 · · · bn the
next string is b2b3 · · · bnb1 if b2b3 · · · bn1 is a necklace, and otherwise the next
vertex is the rotation b2b3 · · · bnb1. The successor rule can be generalized to
arbitrary k, and the result generates each symbol of a new de Bruijn sequence
in O(n)-time using no additional memory.

Solving mathematical problems often reduces to choosing the right type of con-
straints. A key ingredient to developing the above results was computational
complexity. More specifically, the authors considered aggressive measures of effi-
ciency to ensure that only the simplest possible successor rules were considered.
For example, we have mentioned several successor rules for permutations that
run in O(1)-time and use O(log n) bits of additional memory. This is significant
because the rules cannot uniquely determine the permutation they are being
applied to! Thus, the rule must implicitly group the permutations into non-
trivial equivalence classes, and must exploit symmetries in the graph to function
properly. More generally, the authors’ underlying assumption is the following:

If a Hamilton graph has ‘simple’ description, then at least one of its
Hamilton paths or cycles has a ‘simple’ successor rule.

To investigate this assumption it will be helpful to build a catalogue of successor
rules and their computational complexities. The entries given by this article are

12

particularly interesting because the associated shortest path problem is NP-hard,
the Gray codes are conjectured to unique in a greedy sense [7], and the fun story
helps us focus on the importance of simplicity. Eventually, the authors believe
that theorems of the following form will be developed: If a graph is of type X,
then it has a Hamiltonian successor rule with computational complexity Y .

References

1. P. Berman and M. Karpinski. On some tighter inapproximability results. Lecture
Notes in Computer Science (ICALP 1999), 1644:200–209, 1999.

2. L. Bulteau, G. Fertin, and I. Rusu. Pancake flipping is hard. In B. Rovan, V. Sas-
sone, and P. Widmayer, editors, Mathematical Foundations of Computer Science
2012, volume 7464 of Lecture Notes in Computer Science, pages 247–258. Springer
Berlin Heidelberg, 2012.

3. G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of
Genome Rearrangements. MIT Press, August 2009.

4. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polyno-
mial algorithm for sorting signed permutations by reversals. Journal of the ACM,
46(1):1–27, 1999.

5. K. A. Haynes. We Flip Them For You! E. coli House of Pancakes.
6. A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Academic Press, New York,

1st edition edition, 1975.
7. J. Sawada and A. Williams. Greedy flipping of pancakes and burnt pancakes.

submitted manuscript, 2013.
8. J. Sawada and A. Williams. Greedy pancake flipping. Electronic Notes in Discrete

Mathematics (LAGOS, 2013), 44(5):357–362, 2013.
9. S. Singh. Flipping pancakes with mathematics. The Guardian, 2013.

10. B. Stevens and A. Williams. The coolest order of binary strings. In FUN ’12: Sixth
International Conference on FUN with Algorithms, volume 7288 of Lecture Notes
in Computer Science, pages 322–333. 2012.

11. B. Stevens and A. Williams. The coolest way to generate binary strings. Theory
of Computing Systems, DOI: 10.1007/s00224-013-9486-8:28 pages, 2014.

12. A. Williams. O(1)-time unsorting by prefix-reversals in a boustrophedon linked
list. In FUN ’10: Fifth International Conference on FUN with Algorithms, volume
6099 of Lecture Notes in Computer Science, pages 368–379. 2010.

13. A. Williams. The greedy gray code algorithm. In WADS ’13: The Thirteenth
Workshop on Algorithms and Data Structures, volume 6037 of Lecture Notes in
Computer Science, pages 525–536, London, ON, Canada, 2013.

14. A. Williams. Hamiltonicity of the Cayley digraph on the symmetric group gener-
ated by (1 2) and (1 2 ··· n). arxiv.org/abs/1307.2549, page 14 pages, 2013.

15. D. Wong. Constructions for Universal Cycles (supervised by Joe Sawada). PhD
thesis in Computer Science, University of Guelph, 2014.

16. S. Zaks. A new algorithm for generation of permutations. BIT Numerical Mathe-
matics, 24(2):196–204, 1984.

13

Stack flipi Rule

1234 2 12

2134 3 213

3124 2 31

1324 3 132

2314 2 23

3214 4 3214

4123 2 41

1423 3 142

2413 2 24

4213 3 421

1243 2 12

2143 4 2143

3412 2 34

4312 3 431

1342 2 13

3142 3 314

4132 2 41

1432 4 1432

2341 2 23

3241 3 324

4231 2 42

2431 3 243

3421 2 34

4321 4 4321

(i) Minimum flips

Stack flipi Rule

1234 4 123

4321 3

2341 4 23 1

1432 3

3412 4 3 12

2143 3

4123 4 123

3214 2 4

2314 4 231

4132 3

3142 4 31 2

2413 3

1423 4 1 23

3241 3

4231 4 231

1324 2 4

3124 4 312

4213 3

1243 4 12 3

3421 3

2431 4 2 31

1342 3

4312 4 312

2134 1 34

(ii) Maximum flips

Stack flipi Rule

123 1 1

1̄23 2 1̄2

2̄13 1 2̄

213 2 21

1̄2̄3 1 1̄

12̄3 2 12̄

21̄3 1 2

2̄1̄3 3 2̄1̄3

3̄12 1 3̄

312 2 31

1̄3̄2 1 1̄

13̄2 2 13̄

31̄2 1 3

3̄1̄2 2 3̄1̄

132 1 1

1̄32 3 1̄32

2̄3̄1 1 2̄

23̄1 2 23̄

32̄1 1 3

3̄2̄1 2 3̄2̄

231 1 2

2̄31 2 2̄3

3̄21 1 3̄

321 3 321

1̄2̄3̄ 1 1̄

12̄3̄ 2 12̄

21̄3̄ 1 2

2̄1̄3̄ 2 2̄1̄

123̄ 1 1

1̄23̄ 2 1̄2

2̄13̄ 1 2̄

213̄ 3 213̄

31̄2̄ 1 3

3̄1̄2̄ 2 3̄1̄

132̄ 1 1

1̄32̄ 2 1̄3

3̄12̄ 1 3̄

312̄ 2 31

1̄3̄2̄ 1 1̄

13̄2̄ 3 13̄2̄

231̄ 1 2

2̄31̄ 2 2̄3

3̄21̄ 1 3̄

321̄ 2 32

2̄3̄1̄ 1 2̄

23̄1̄ 2 23̄

32̄1̄ 1 3

3̄2̄1̄ 3 3̄2̄1̄

(i) Minimum flips

Stack flipi Rule

123 3 12

3̄2̄1̄ 2

231̄ 3 2 1̄

13̄2̄ 2

31̄2̄ 3 1̄2̄

213̄ 2

1̄2̄3̄ 3 1̄2̄

321 2

2̄3̄1 3 2̄ 1

1̄32 2

3̄12 3 12

2̄1̄3 1 3

21̄3 3 21̄

3̄12̄ 2

1̄32̄ 3 1̄ 2̄

23̄1 2

32̄1 3 2̄1

1̄23̄ 2

2̄13̄ 3 2̄1

31̄2 2

13̄2 3 1 2

2̄31̄ 2

3̄21̄ 3 21̄

12̄3 1 3

1̄2̄3 3 1̄2̄

3̄21 2

2̄31 3 2̄ 1

1̄3̄2 2

312 3 12

2̄1̄3̄ 2

123̄ 3 12

32̄1̄ 2

23̄1̄ 3 2 1̄

132̄ 2

3̄1̄2̄ 3 1̄2̄

213 1 3

2̄13 3 2̄1

3̄1̄2 2

132 3 1 2

2̄3̄1̄ 2

321̄ 3 21̄

12̄3̄ 2

21̄3̄ 3 21̄

312̄ 2

1̄3̄2̄ 3 1̄ 2̄

231 2

3̄2̄1 3 2̄1

1̄23 0 23

(i) Maximum flips

Table 1. The two orders of burnt pancakes for n = 3. Each flip is determined directly
using the relevant information in the successor rule.

14

1 //---

2 // GENERATING (SIGNED) PERMUTATIONS BY MIN or MAX FLIPS

3 // BY APPLYING SUCCESSOR RULES

4 //---

5 #include <stdio.h>

6 #include <stdlib.h>

7 #define MAX_N 20

8
9 int n, k, a[MAX_N], sign[MAX_N], total, type, SIGNED = 0;

10
11 //---

12 void Input() {

13
14 printf(" ----------------------\n");

15 printf(" Permutation Generation \n");

16 printf(" ----------------------\n");

17 printf(" 1. Max Flip \n");

18 printf(" 2. Min Flip\n");

19 printf(" 3. Max Flip (Signed) \n");

20 printf(" 4. Min Flip (Signed) \n");

21
22 printf("\n ENTER selection #: "); scanf("%d", &type);

23
24 if (type < 0 || type > 4) {

25 printf("\n INVALID ENTRY\n\n");

26 exit(0);

27 }

28
29 printf(" ENTER length n: ");

30 scanf("%d", &n);

31
32 k = 1;

33 if (type == 3 || type == 4) { SIGNED = 1; k = 2; }

34 printf("\n");

35 }

36 //--

37 void Print() {

38 int i;

39
40 for (i=1; i<=n; i++) {

41 if (sign[i] == 0 || !SIGNED) printf(" %d ", a[i]);

42 else printf("-%d ", a[i]);

43 }

44 printf("\n");

45 total++;

46 }

47 //---

48 void Flip(int t) {

49 int i, b[MAX_N];

50
51 for (i=1; i<=t; i++) b[i] = a[t-i+1];

52 for (i=1; i<=t; i++) a[i] = b[i];

53
54 //============================

55 // Flip Signs for signed case

56 //============================

57 if (k > 1) {

58 for (i=1; i<=t; i++) b[i] = sign[t-i+1];

59 for (i=1; i<=t; i++) sign[i] = (b[i]+1) % k;

60 }

61 }

62 //--

63 void MinFlip() {

64 int incr,j;

65
66 do {

15

67 Print();

68 incr=0;

69 j=1;

70 while (j < n) {

71 if (a[j] < a[j+1]) incr++;

72 if (incr == 2 || (incr == 1 && a[j+1] < a[1])) break;
73 j++;

74 }

75 Flip(j);

76 } while (!(j == n && a[1] == 1));

77 }

78 //--

79 void SignedMinFlip() {

80 int incr,j;

81 do {

82 Print();

83 incr=0;

84 j=1;

85 while (j < n) {

86 if (a[j] < a[j+1]) incr++;

87 if (incr == 2 || (incr == 1 && a[j+1] < a[1])) break;
88 if (a[j] < a[j+1] && sign[j] == sign[j+1]) break;
89 if (a[j] > a[j+1] && sign[j] != sign[j+1]) break;
90 j++;

91 }

92 Flip(j);

93 } while (!(j == n && a[1] == 1 && sign[1] == 0));

94 }

95 //--

96 void MaxFlip() {

97 int j;

98 do {

99 Print(); Flip(n); Print();

100 j = n;

101 while (a[j] == j) j--;

102 Flip(j-1);

103 } while (j > 2);

104 }

105 //--

106 void SignedMaxFlip() {

107 int j;

108 do {

109 Print(); Flip(n); Print();

110 j = n;

111 while (a[j] == j && sign[j] == 0) j--;

112 Flip(j-1);

113 } while (j > 1);

114 }

115 //--

116 int main() {

117 int j;

118
119 Input();

120 //==============

121 // INITIAL PERM

122 //==============

123 for (j=1; j<=n; j++) a[j] = j;

124 for (j=1; j<=n; j++) sign[j] = 0;

125
126 if (type == 1) MaxFlip();

127 if (type == 2) MinFlip();

128 if (type == 3) SignedMaxFlip();

129 if (type == 4) SignedMinFlip();

130
131 printf("Total = %d\n\n", total);

132 }

