
A fast algorithm to generate Beckett-Gray codes
Extended Abstract

Joe Sawada 1,2

Computing and Information Science
University of Guelph

Guelph, Canada

Dennis Chi-Him Wong 3

Computing and Information Science
University of Guelph

Guelph, Canada

Abstract

We provide several heuristics to improve the efficiency of exhaustively generating
Gray codes on length n binary strings. We then apply the heuristics to a restricted
class of Gray codes on binary strings known as Beckett-Gray codes. The resulting
algoirthm has a speed-up by a factor of 60 over the fastest previously known algo-
rithm when n = 6. It was also used to discover over 9500 new Beckett-Gray codes
for n = 7 in the equivalent of three months of computation time.

Keywords: Beckett-Gray codes, Code generation, Enumeration, Gray codes

1 Research supported by NSERC.
2 Email: jsawada@uoguelph.ca
3 Email: cwong@uoguelph.ca

Electronic Notes in Discrete Mathematics 29 (2007) 571–577

1571-0653/$ – see front matter Crown Copyright © 2007 Published by Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2007.07.091

http://www.elsevier.com/locate/endm


1 Introduction

A Gray code is an ordering of combinatorial objects such that any two suc-
cessive objects differ by some pre-specified constant amount. The amount of
change between elements is called the Hamming distance. The following is an
example of a Gray code on length 3 binary strings with Hamming distance 1,
where the bit that differs with the previous element is underlined:

[000, 001, 011, 111, 101, 100, 110, 010]

A Gray code is said to be cyclic if the last element and the first element
in the sequence also differ by some pre-specified constant amount. The Gray
code on length 3 binary strings above demonstrates the cyclic property. It
is well known that a cyclic Gray code on length n binary string corresponds
to a Hamilton cycle in the n-dimensional hypercube. Figure 1 shows the
3-dimensional hypercube Q3 with the Hamilton cycle corresponding to the
example Gray code on length 3 binary strings above.

000 001

011

111

101100

010

110

Fig. 1. A Hamilton cycle in Q3 corresponds to a cyclic Gray code on length 3 binary
strings.

In this paper, we are interested in finding a special type of Gray code on
binary strings named after Irish playright Samuel Beckett. One of his plays,
“Quad” [Bec84], had 4 actors and was divided into a sequence of time periods.
At the end of each time period, Beckett wished to have one of the four actors
either entering or exiting the stage; he wished the play to begin and end with
an empty stage and he wished each subset of actors to appear on stage exactly
once. Observe that this problem is equivalent to finding a cyclic Gray code
on length 4 binary strings. However, Beckett wanted an additional restriction
on the scripting: the actor that leaves the stage must be the one who has
currently been on stage for the longest time.

If we apply this final restriction to cyclic Gray codes on binary strings we
obtain what is known as a Beckett-Gray code. Unfortunately, Beckett was

J. Sawada, D.C.-H. Wong / Electronic Notes in Discrete Mathematics 29 (2007) 571–577572



unable to find a 4-bit Beckett-Gray code (and indeed none exist), so instead
he repeated some subsets of actors and used 24 time periods. The following
is an example of a 5-bit Beckett-Gray code where the bit that has been a 1
for the longest time is underlined:

[00000, 00001, 00011, 00010, 00110, 00111, 00101, 01101,
01001, 01000, 01010, 01011, 11011, 10011, 10111, 10101,
10100, 00100, 01100, 11100, 11000, 11010, 10010, 10110,
11110, 01110, 01111, 11111, 11101, 11001, 10001, 10000]

There is no known constructive way for building Beckett-Gray codes and
finding Beckett-Gray codes is listed as a hard problem in [Knu06]. Beckett-
Gray codes are known to exist for n = 2, 5, 6, 7, 8 and they do not exist for
n = 3, 4. No Beckett-Gray code is known for any n ≥ 9.

A recursive algorithm for generating Beckett-Gray codes has been devel-
oped by Cooke et al. [CNS07]. However, for n = 6 their algorithm currently
requires more than a month of computation time to produce an exhaustive
list, and for n = 7 a single Beckett-Gray code was found only after several
months of computing time. They also found the first Beckett-Gray code for
n = 8 by using simulated annealing techniques. In this paper, we describe
some heuristics that can improve the runtime for the exhaustive generation
of all cyclic Gray codes on length n binary strings and apply the results to
Beckett-Gray codes. Our first two heuristics consider the Hamiltonian prop-
erty of cyclic Gray codes on binary strings and our third heuristic considers
equivalence under reversal. There is an improvement by a factor of over 60 on
the runtime for an exhaustive search for n = 6 when compared to [CNS07],
and over 9500 new Beckett-Gray codes for n = 7 were also discovered by our
algorithm in about 3 months of computing time.

2 Generating Gray codes on binary strings

We begin this section by describing a simple recursive algorithm to find all
Gray codes on length n binary strings. Then we will outline some heuristics
to improve the running time. The basic idea is to extend a partial Gray code
listing on length n binary strings by considering all strings that differ by a
single bit from the last string in the partial listing. For each such string, the
listing is extended and a recursive call is made. Since equivalence classes of
size n! are formed by permuting the bit positions, we only generate the lexico-
graphically smallest Gray code on length n binary strings in each equivalence
class [Wel61]. This can be done by starting with the string corresponding to 0
and maintaining the largest bit position maxpos that has at some point been

J. Sawada, D.C.-H. Wong / Electronic Notes in Discrete Mathematics 29 (2007) 571–577 573



procedure GC(s, x, maxpos :integer)
local i

1: if s ≥ 2n then
2: Print()
3: else
4: for i = 0 to Min(n− 1, maxpos) do
5: x = Flip(x, i)
6: if avail[x] then
7: avail[x] = false
8: bgc[s] = x
9: GC(s + 1, x, Max(maxpos, i))

10: avail[x] = true
11: x = Flip(x, i)

Fig. 2. GC(s, x,maspos).

set to 1. Pseudocode for this algorithm is shown in Figure 2. The structures
used by the algorithm are as follows:

• bgc: a global array to store the Gray code listing on length n binary strings,

• avail: a global boolean array to keep track of which strings are still available,

• x: the integer value of the string currently at the end of the listing,

• s: the length of the partial listing,

• maxpos: the largest bit position that has at some point been set to 1,

• Flip(x, i): a function that returns the integer value obtained by flipping the i-th
bit in the binary representation of x,

• Print(): a function that prints out the Gray code bgc.

To initialize the algorithm we set avail[i] = true for i = 1 to n−1, set avail[0]
= false, set bgc[0] = 0, and then call GC(1, 0, 0).

The algorithm will generate all Gray codes on length n binary strings.
To generate only the cyclic Gray codes on length n binary strings, the Print
function is only called if the last string in the listing is a power of 2 (it differs
by one bit from 0).

2.1 Improvements for cyclic Gray codes on binary strings

As mentioned earlier, a cyclic Gray code on length n binary strings corresponds
to a Hamilton cycle in the hypercube Qn. Let P = {v0, v1, v2, . . . , vk} be a

J. Sawada, D.C.-H. Wong / Electronic Notes in Discrete Mathematics 29 (2007) 571–577574



simple path in Qn where k < 2n. Such a path may correspond to a prefix
of some Gray code on length n binary strings. Now consider the induced
subgraph GP that is obtained from Qn by removing all the vertices of P
except v0 and their incident edges. Since a Hamilton cycle needs to visit all
vertices and return to the starting vertex, if GP is disconnected then there
will exist no Hamilton cycle starting with P .

One way to test this connectivity is to apply a breadth-first search every
time we add a vertex to the path. However, since there are n · 2n−1 edges in
Qn, this test would take time O(n · 2n) which adds a large overhead. Instead,
we apply two heuristics that test for partial connectivity. The first heuristic
focuses on finding pendant vertices in GP and can be implemented in O(n)
time per recursive call. The second heuristic applies an Eulerian property on
a related graph and can be implemented in O(1) per recursive call.

2.1.1 Pendant vertices

A pendant vertex is a vertex with degree 1. Except for v0, if there are any
pendant vertices in GP then there will be no way to extend P to a Hamilton
cycle. To efficiently find pendant vertices in GP , we maintain a counter for
the number of available neighbors for each vertex. When a vertex vi is added
to P , we decrement this value for each of its neighbors. If one of its neighbors
u gets decremented to 1, it means that u must be the next vertex in the path
since it requires one edge to get to the next vertex in the path. If two or more
neighbors get decremented to 1, then there will be no Hamilton cycle starting
with P . The exception to this is vertex v0 which only gets added at the end.
If its degree is reduced to 0, then P cannot be extended to a Hamilton cycle.
Implementation of these tests to the n-bit cyclic Gray code algorithm can be
easily implemented in O(n) time per recursive call.

2.1.2 The Eulerian property

Consider a subgraph of Qn consisting of all vertices in Qn but containing only
the edges of some Hamilton cycle Ham. Let this graph be denoted by GHam.
Figure 3 shows such a GHam for n = 5 illustrating the Hamilton cycle as
directed edges. Now partition the set of vertices into n + 1 different subsets
V0, V1, . . . , Vn such that each subset contains the vertices which have the same
number of bits set to 1. Thus, the number of vertices in each Vi is

(
n
i

)
, where i

is the number of bits set to 1. Edges exist only between elements in the subsets
Vi and Vj where | i − j | = 1 since the Hamming distance between successive
elements in a Gray code on length n binary strings (Hamilton cycle) is one.
The vertical alignment of vertices in Figure 3 illustrate this partitioning.

J. Sawada, D.C.-H. Wong / Electronic Notes in Discrete Mathematics 29 (2007) 571–577 575



00000 00100

10000

01000

00010

00001
00110

01010

01001

00101

00011

10010

11000

10100

10001

01100

01101

10011

01110

01011

00111

11001

11100

11010

10110

10101
11011

11110

11101

10111

01111

11111

Fig. 3. A Hamilton cycle in GHam corresponds to a cyclic Gray code on length 5
binary strings.

Now consider a directed multi-graph constructed by collapsing the vertices
in each partition of GHam and using the directed edges from the Hamilton cy-
cle. In the resulting graph GEul, the vertices are V0, V1, . . . , Vn with a directed
edge between Vi and Vj for every directed edge between the vertices of Vi and
Vj in GHam. Observe the Hamilton cycle GHam now corresponds to an Euler
cycle in GEul.

Using the Eulerian property, we follow the approach of Fleury’s algo-
rithm [Luc91] to test for connectivity. A bridge of a connected graph is an edge
whose removal disconnects the graph. The main idea of Fleury’s algorithm is
to never cross a bridge of the reduced graph unless there is no other choice.
Thus, if we have a path P that starts from V0 and ends at Vi, we can detect
a bridge if the number directed edges from Vi+1 to Vi is one (the bridge), but
the number of edges from Vi+1 to Vi+2 is greater than 0.

Using some extra data structures, this partial connectivity test of Qn can
be implemented in O(1) time per recursive call.

2.1.3 Equivalence under reversal

In addition to the symmetry with respect to the bit positions, cyclic Gray codes
on length n binary strings also have equivalence under reversal. Although it is
less obvious, the reversal of a Beckett-Gray code is also a Beckett-Gray code.
As long as n �= 2j, we can generate the non-isomorphic Gray codes on length
n binary strings by adding a constant amount of work per recursive call by
considering the position of the string 111 · · · 11. Applying this symmetry, we
can further reduce the time it takes to generate (non-isomorphic) n-bit cyclic
Gray codes.

J. Sawada, D.C.-H. Wong / Electronic Notes in Discrete Mathematics 29 (2007) 571–577576



3 Generating Beckett-Gray codes

To generate Beckett-Gray codes we can modify the algorithm outlined in Fig-
ure 2 to apply the final Beckett restriction: if a bit is changed from a 1 to
a 0 in successive strings, it must be the bit that has been a one the longest.
This can be done by maintaining a first-in, first out queue of the bit positions
set to 1. If this constraint is added, the resulting algorithm to generate n-
bit Beckett-Gray codes will be very similar to the one outlined by Cooke et
al. [CNS07].

However, if we apply the additional improvements for cyclic Gray codes
on binary strings that were outlined in the previous section, we obtain some
significant improvements. In our experiments, we evaluate the performance
of the algorithm in [CNS07] against our improved algorithm that generates
only non-isomorphic Beckett-Gray codes. For n = 6, we achieved a speedup
by a factor of approximately 60, allowing us to generate all non-isomorphic
Beckett-Gray codes in under 15 hours of computation. (It is interesting to
note that the number of regular Gray codes on binary strings where n = 6
is estimated to be 7 × 2022 [SVS83].) For n = 7 we distributed our program
on sixteen processors using SHARCNET 4 . This allowed us to find over 9500
new Beckett-Gray codes in the equivalent of 3 months of computation time.

References

[Bec84] S. Beckett. Collected shorter plays of Samuel Beckett. faber and faber,
London, 1984.

[CNS07] M. Cooke, C. North, and B. Stevens. Beckett-Gray codes. Discrete
Mathematics, submitted, 2007.

[Knu06] Donald E. Knuth. The Art of Computer Programming, volume 4. Addison-
Wesley, 2006.

[Luc91] E. Lucas. Récréations Mathématiques. Gauthier-Villares, Paris, 1891.

[SVS83] J. Silverman, V.E. Vickers, and J.L. Sampson. Statistical estimates of the
n-bit Gray codes by restricted random generation of permutations of 1 to
2n. IEEE Transactions of Information Theory 29, pages 894–901, 1983.

[Wel61] M. B. Wells. Generation of permutations by transposition. Mathematics
of Computation 15, pages 192–195, 1961.

4 SHARCNET is a consortium of colleges and universities in a “cluster of clusters” of high
performance computers, linked by advanced fibre optics (http://www.sharcnet.ca).

J. Sawada, D.C.-H. Wong / Electronic Notes in Discrete Mathematics 29 (2007) 571–577 577


