
GENERALIZING THE CLASSIC GREEDY AND NECKLACE

CONSTRUCTIONS OF DE BRUIJN SEQUENCES AND

UNIVERSAL CYCLES

JOE SAWADA, AARON WILLIAMS, AND DENNIS WONG

Abstract. We present a class of languages that have an interesting property:
For each language L in the class, both the classic greedy algorithm and the

classic Lyndon word (or necklace) concatenation algorithm provide the lexi-

cographically smallest universal cycle for L. The languages consist of length
n strings over {1, 2, . . . , k} that are closed under rotation with their subset of

necklaces also being closed under replacing any suffix of length i by i copies

of k. Examples include all strings (in which case universal cycles are commonly
known as de Bruijn sequences), strings that sum to at least s, strings with at

most d cyclic descents for a fixed d > 0, strings with at most d cyclic decre-

ments for a fixed d > 0, and strings avoiding a given period. Our class is also
closed under both union and intersection, and our results generalize results of

several previous papers.

1. Introduction

1.1. Constructing de Bruijn Sequences. Let T(n, k) be the set of k-ary strings
of length n. For example, T(2, 3) = {11, 12, 13, 21, 22, 23, 31, 32, 33}. A de Bruijn
sequence for T(n, k) is a sequence of length kn that contains each string in T(n, k)
exactly once as a substring when the sequence is viewed circularly.

Martin showed that a de Bruijn sequence for T(n, k) can be constructed by a sim-
ple greedy algorithm in 1934 [23]. The algorithm starts with sequence kn−1 (where
exponentiation denotes repetition) and then repeatedly applies the following rule:

Append the smallest symbol in {1, 2, . . . , k} so that substrings of
length n in the resulting linear sequence are distinct.

For an example, let us illustrate one step of the algorithm when n = 2 and k = 3.
After applying the rule a handful of times, the partial sequence is 31121 . At this
point, the algorithm does not append 1 since 11 already appears in the sequence.
Similarly, 2 is not appended since 12 already appears. However, 3 can be appended
and so the algorithm continues with the sequence 311213 . Martin proved that the
algorithm always terminates with a sequence that has length kn + n− 1 and suffix
kn, and that a de Bruijn sequence is obtained by removing the initial kn−1 prefix.
In particular, when n = 2 and k = 3, the algorithm terminates with 3112132233
and so 112132233 is a de Bruijn sequence for T(2, 3). We mention that the choice
of the initial sequence is critical to the success of Martin’s algorithm. For example,
the greedy algorithm for n = 2 and k = 3 will get stuck after generating 112131 if
the initial sequence is the empty string ε or the single symbol 1. Knuth refers to
Martin’s sequence as the grand-daddy de Bruijn sequence [19].

The general term for these sequences is named after de Bruijn who showed that

there are 22
n−1−n such sequences for T(n, 2) in 1946 [6], and (k!)k

n−1

k−n for T(n, k)
1
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in joint work with Aardenne-Ehrenfest in 1951 [35]. Later detective work by Stanley
revealed that Flye Sainte-Marie proved the same formula for k = 2 in 1894 [7, 29].

Martin’s greedy algorithm is easy to implement, but it is impractical since it
requires Ω(kn)-space. Fredricksen and Kessler [10, 11, 12] (for k = 2) and later
Fredricksen and Maiorana [13] (for k ≥ 2) provided a beautiful alternative that
generates each character in O(1)-amortized time and uses only O(n) space. Their
construction is known as the FKM algorithm and can be summarized as follows:

Concatenate the aperiodic prefixes of the necklaces in T(n, k) in
lexicographic order.

A necklace is the lexicographically smallest string in an equivalence class of strings
under rotation, and its aperiodic prefix is the shortest prefix that can be repeated
to create the string. For example, the necklaces in T(2, 3) are 11, 12, 13, 23, 33
and thus the FKM algorithm creates the following sequence

1 · 12 · 13 · 2 · 23 · 3 = 112132233,

where · denotes concatenation. Interestingly, the FKM algorithm always generates
the same sequence as Martin’s algorithm and this sequence is the lexicographically
smallest de Bruijn cycle for T(n, k) (see Knuth’s discussion in [19]). The efficiency
of the FKM algorithm was fully analyzed by Ruskey, Savage, and Wang [25].

We note that the FKM algorithm can also be described in a slightly different,
but equivalent manner. The period of a string is the length of its aperiodic prefix. A
string is aperiodic if its period equals its length. An aperiodic necklace is a Lyndon
word. The FKM algorithm can be defined as the lexicographic concatenation of the
k-ary Lyndon words whose length divides n. We will use the necklace definition
because it is better suited for generalizations, as pointed out by Ruskey, Sawada,
Williams [27].

1.2. Constructing Universal Cycles. Given a set of strings S ⊆ T(n, k), a
universal cycle for S is a sequence of length |S| that contains each string in S
exactly once as a substring when the sequence is viewed circularly. For example,
the subset S1 ⊆ T(4, 3) of strings that have sum at least 10 is

S1 = {1333,2233,2323,2332,2333,3133,3223,3232,3233,3313,3322,3323,3331,3332,3333}

and the lexicographically smallest universal cycle for S1 is

133322332323333.

This natural generalization of de Bruijn sequences for T(n, k) to subsets of T(n, k)
was introduced by Chung, Diaconis, and Graham in 1992 [5]. Since that time uni-
versal cycles have been proven to exist for subsets of T(n, k) that represent a variety
of combinatorial objects including permutations, partitions, subsets, multisets, la-
beled graphs, various functions, and more [3, 4, 5, 15, 16, 17, 18, 19, 21, 28, 26, 32].

Given a specific set of strings S ⊆ T(n, k), the problem of finding an explicit
construction (and generation algorithm) for a universal cycle for S is generally a
more difficult problem than proving that one exists. The approach considered in
this article is to generalize the greedy algorithm and the FKM algorithm. Previous
results using this approach include the following:

• Moreno proved that a generalized FKM algorithm creates universal cycles
for the set of rotations of the lexicographically largest i necklaces [24].
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• Au proved that generalized FKM and greedy algorithm create universal
cycles for the aperiodic strings in T(n, k) [2].
• The authors proved that generalized FKM and greedy algorithm create

universal cycles for the binary strings with sum at least s [31].

We will see that all three of these results can be explained using the same general-
ization of the FKM algorithm and the same generalization of the greedy algorithm.
To illustrate how these unified generalizations work, let us reconsider the strings S1

in T(4, 3) with sum at most 10. Let the necklaces of a set S be denoted by N(S).
Then

N(S1) = {1333, 2233, 2323, 2333, 3333},
and the concatenation of their aperiodic prefixes in lexicographic order gives

1333 · 2233 · 23 · 2333 · 3.

This is identical to the lexicographically smallest universal cycle for S1 that we
saw earlier. More broadly, the generalized version of the FKM algorithm is stated
below:

Concatenate the aperiodic prefixes of the necklaces in S in lexico-
graphic order.

Notice that the previous FKM results use S ⊆ T(n, k) that are closed under rota-
tion, meaning αβ ∈ S implies βα ∈ S. To understand this fact, let Rot(S) denote
closure of S under rotation. Note that the number of distinct rotations of an individ-
ual string is equal to its period. For example, Rot({2233}) = {2233, 2332, 3322, 3223}
and Rot({2323}) = {2323, 3232}. In other words, the length of the aperiodic prefix
of α ∈ T(n, k) is equal to |Rot(α)|. Thus, the FKM algorithm creates sequences of
the correct length for each S that is closed under rotation.

Generalizing the greedy algorithm is a bit more subtle due to the choice of
the initial sequence. In this article we will be focused on S ⊆ T(n, k) that are
guaranteed to have kn ∈ S (or x kn−1 ∈ S for some x < k). Thus, kn−1 remains
a reasonable choice for the initial sequence. Martin’s algorithm is then generalized
as follows

Append the smallest symbol in {1, 2, . . . , k} so that substrings of
length n in the resulting linear sequence are distinct and in S.

If we apply this greedy algorithm to S1, then it terminates with sequence

333133322332323333

and removing initial 333 results in the same universal cycle as generated by the
generalized FMK approach.

Universal cycles have also been constructed using alternate approaches. For
example, Ruskey and Williams [28] and later Holroyd, Ruskey, and Williams [15]
provided an efficient algorithm to construct universal cycles for T(n−1, n). The
authors also constructed universal cycles for binary strings of length n whose sum
falls within a given range [30] which extends [27] and Stevens and Williams [33].

1.3. New Results and Their Significance. We prove that the generalized FKM
and greedy algorithms generate a wide variety of natural universal cycles. A list of
examples appear in Sections 3.3.1–3.3.11 and it includes the aforementioned results
by Moreno [24], Au [2], and the authors [31]. Furthermore, each of our examples
follows from a single general result.
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Theorem 1. The greedy and FKM algorithms create the lexicographically smallest
universal cycle for any S ⊆ T(n, k) that satisfies the following closure properties:

(C1) The set of strings S is closed under rotation.
(C2) Its subset of necklaces is closed under replacing any suffix of length i by ki.

We note that the first closure property is not sufficient for guaranteeing the
existence of universal cycles. For example, {11, 22} is closed under rotation and
has no universal cycle. Our second closure property is also insufficient for proving
the existence. For example, {11, 12, 22} ⊆ T(2, 2) does not have a universal cycle.

To underscore the significance of our results, we note that the greedy algorithm,
the FKM algorithm, and the lexicographically smallest universal cycle do not always
operate in such harmony. For example, the subset S2 ⊂ T(3, 3) that does not have
13 as a cyclic substring is

S2 = {111,112,121,122,123,211,212,221,222,223,231,232,233,312,322,323,332,333}.

In other words, S2 does not have strings in the form 13x, x13, or 3x1. Clearly S2

is closed under rotation, so it satisfies our first condition. The necklaces in S2 are

N(S2) = {111, 112, 122, 123, 222, 223, 233, 333}.

Notice that N(S2) does not satisfy our second closure property since 111 is included
but 113 is not. Thus, our results do not guarantee that the FKM algorithm will
create a universal cycle for S2. In fact, the FKM algorithm creates

1 · 112 · 122 · 123 · 2 · 223 · 233 · 3.

This is not a universal cycle for S2 since 211 and 312 do not appear, while 212
appears twice and 311 appears when it should not. On the other hand, the greedy
algorithm applied to S2 creates

221112122231232233,

which is a universal cycle for S2. However, it is not the lexicographically smallest
universal cycle for S2 (when viewed linearly).

The previous example showed that the harmony produced the greedy algorithm,
the FKM algorithm, and the lexicographically smallest universal cycle does not
hold for the strings in T(3, 3) that avoid 13 as a cyclic substring. Notice that in
this case the avoided substring 13 contains the symbol k = 3. We will see in Section
3.3.6 that the three interrelated results do hold when the avoided substring does
not contain the symbol k. This illustrates one way in which our result is ‘tight’.

One motivation for constructing universal cycles is so that they can be used in
applications. Without an explicit construction it can be computationally infeasible
to create these sequences. Sample applications of de Bruijn sequences include dy-
namic connections in overlay networks [9], genomics [1], software calculation of the
ruler function in computer words [19], and indexing a 1 in a computer word [20].
Our two-pronged results have an additional benefit: Those in need of one of our uni-
versal cycles can start by implementing the simple greedy algorithm; if this proves
to be infeasible due to memory constraints, then they can implement the FKM al-
gorithm. De Bruijn sequences are also used as education tools (see Graham, Knuth,
and Patashnik’s Concrete Mathematics [14]) and are involved in many interesting
academic papers (for recent examples, see Levine [22] and Ehrenborg, Kitaev, and
Steingŕımmson [8]).
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To conclude our introduction we mention that our second closure property can
be slightly relaxed to allow kn /∈ S. For example, the constructions for S1 still
work when kn is omitted from S1 and the final k is omitted from the universal
cycles generated. We use this minor generalization when considering periodic and
aperiodic strings.

Corollary 1. Theorem 1 holds if S ∪ {kn} ⊆ T(n, k) satisfies (C1) and (C2).

The main results of this paper are also found in Wong’s PhD thesis [36].

1.4. Outline. The remainder of this paper is organized as follows. Section 2 inves-
tigates our second closure property under the name k-suffix languages. Section 3
proves that the universal cycles discussed in Theorem 1 exist, and gives a list of
specific universal cycles that are constructed by it. Section 4 proves our result
on the FKM algorithm. Section 5 proves our result on the greedy algorithm and
proves that our universal cycles are lexicographically smallest. Section 6 concludes
the paper with open problems and remarks.

2. k-suffix languages and the k-suffix poset

In this section we investigate our second closure property from Theorem 1 in
more detail. First we define the k-suffix property and prove that set of all necklaces
satisfies it. Then we formulate k-suffix languages as partially ordered sets, which
provides helpful visualizations and closure properties at the end of the section.

Definition 1. A k-suffix language S is a subset of T(n, k) that satisfies the follow-
ing closure property:

If a1a2 · · · an ∈ S then a1a2 · · · an−iki ∈ S for all 1 ≤ i ≤ n.

As an example, let N(n, k) denote the set of necklaces in T(n, k). It is straight-
forward to observe that necklaces are a k-suffix language.

Lemma 1. The set of necklaces N(n, k) is a k-suffix language.

Proof. Let a1a2 · · · an = a1a2 · · · an−jkj ∈ N(n, k) where j ≥ 0. By the definition
of a necklace it is easy to see that a1a2 · · · an−j−1kkj ∈ N(n, k). Thus it follows
that a1a2 · · · an−iki ∈ N(n, k) for all 1 ≤ i ≤ n. �

Note that this definition of a k-suffix language implies closure under replacing
any suffix of length i by ki. Equivalently, k-suffix languages can be defined as closed
under replacing the rightmost value that is less than k by k. We next formulate this
idea using a partially ordered set over T(n, k). Consider the following definition,

τk(α) =

{
kn if α = kn;

βkkj if α = βxkj for some x < k.

In other words, kn is terminal, and otherwise τ(α) is obtained by replacing the
rightmost value in α that is less than k with k. When the context is clear we use
τ instead of τk. For example, when k = 3,

τ(1122) = 1123 and τ(2313) = 2333 and τ(3333) = 3333.
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Figure 1. The Hasse diagram of Poset(4, 2) and Poset(2, 3) re-
spectively. In both cases the necklaces form the ideal in bold.

This provides our cover relation, and our partial order ≺k is the non-reflexive
transitive closure of τk. Again we use ≺ instead of ≺k when the context allows.
For example, when k = 3,

1123 ≺ 1122 and 1333 ≺ 1122 whereas 2313 ⊀ 2113 and 2113 ⊀ 2113.

Our partially ordered set is formally defined below.

Definition 2. The k-suffix poset Poset(n, k) has ground set T(n, k) and partial
order ≺k.

Figure 1 illustrates the Hasse diagram of Poset(4, 2) and Poset(2, 3), in which
each cover relation β = τ(α) is shown as an edge from α down to β. It is easy to
see that Poset(n, k) is a tree poset with unique minimum element kn.

An ideal (also known as a lower set) of Poset(n, k) is a subset I ⊆ Poset(n, k)
such that x ∈ I and y ≺ x implies y ∈ I. Figure 1 illustrates an ideal of necklaces
in both of its posets. The following theorem proves that every k-suffix language
can be visualized in this way.

Theorem 2. A set S ⊆ T(n, k) is a k-suffix language if and only if S is an ideal
of Poset(n, k).

Proof. Suppose S is a k-suffix language. If s ∈ S and s 6= kn, then s = αxkj for
some x < k. By the definition of k-suffix language, αkkj ∈ S. Therefore, τk(s) ∈ S,
and thus S is an ideal of Poset(n, k). The other direction is similar. �

Ideals of a given poset are closed under union and intersection, so Theorem 2
immediately gives the following corollary.

Corollary 2. If SA,SB ⊆ T(n, k) are k-suffix languages, then SA∪SB and SA∩SB
are also k-suffix languages.

3. Existence and Examples

In this section we ground our construction results with a simple existence proof.
We also give a list of interesting universal cycles constructed by our results.
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3.1. Class of Strings. The class of strings covered by Theorem 1 is defined below.
Recall that N(S) denotes the necklaces in S ⊆ T(n, k). That is, N(S) = S∩N(n, k).

Definition 3. Let C(n, k) be the set that contains precisely all S ⊆ T(n, k) that are
closed under rotation, and whose necklaces N(S) form a k-suffix language.

To prove that S ∈ C(n, k) we need to prove that S is closed under rotation and
its subset of necklaces N(S) is a k-suffix language. Sometimes it is more convenient
to prove that the entire set S is a k-suffix language rather than its necklace subset
N(S). The following lemma proves that this approach is also sufficient.

Lemma 2. Let S ⊆ T(n, k). If S is closed under rotation and S is a k-suffix
language, then S ∈ C(n, k).

Proof. Recall that N(n, k) is a k-suffix language by Lemma 1. Therefore, if S is
a k-suffix language, then so is N(S) = S ∩N(n, k). Therefore, if S is also closed
under rotation, then S is a k-suffix language by Definition 3. �

We note that Lemma 2 does not cover all sets in C(n, k). For example,

S3 = {1111,1112,1121,1211,2111,1122,1221,2211,2112,1222,2122,2212,2221,2222},

is in C(4, 2). However, since 1211 ∈ S3 and 1212 /∈ S3, the set S3 is not a k-suffix
language by itself.

3.2. Existence. Stevens and Williams [34] characterized the existence of universal
cycles for subsets of T(n, k) that are closed under rotation. We now use one of their
results to prove that every set in C(n, k) has a universal cycle. First we recount a
definition from [34]. A set S ⊆ T(n, k) is increasable if the following is true:

If α ∈ S and α is not equal to kn, then there exists a symbol in α
that can be increased and the resulting string is also in S.

More precisely, S is increasable if a1a2 · · · an ∈ S and a1a2 · · · an 6= kn, then there
exist i and b > ai such that a1 a2 · · · ai−1 b ai+1 ai+2 · · · an ∈ S.

Theorem 3 ([34]). If S ⊆ T(n, k) is increasable and closed under rotation, then S
has a universal cycle.

Corollary 3. Every S ∈ C(n, k) has a universal cycle.

Proof. By Definition 3, each S ∈ C(n, k) is closed under rotation. Consider an
arbitrary α ∈ S with α 6= kn, and let β ∈ S be its smallest rotation in lexicographic
order. By Definition 3, there is at least one symbol in β that is less than k that can
be increased to k so that the resulting string is also in S. Since S is closed under
rotation, the same statement is true for α. Thus, S is increasable. Hence, S has a
universal cycle by Theorem 3. �

3.3. Examples. In Sections 3.3.1–3.3.11 we describe interesting members of C(n, k),
including the sets of strings considered by Moreno [24], Au [2], and the authors [31].
Figure 2 illustrates the lexicographically smallest universal cycles for each exam-
ple over T(4, 4). When considering periodic and aperiodic strings we prove that
S∪{kn} ∈ C(n, k); our constructive results from Theorem 1 will still apply in these
cases by Corollary 1.
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Figure 2. The lexicographically smallest universal cycles for a
variety of 4-ary strings of length four. Each set S is in C(4, 4)
(or S ∪ {4444} ∈ C(4, 4)) and hence is generated by the FKM
and greedy algorithms. The outermost ring is a universal cycle
for all strings T(n, k). The remaining rings from outer-to-inner
are for subsets that (i) have sum at least 5, 6, . . . , 15; (ii) have at
most 2, 1 cyclic descents; (iii) have at most 2, 1 cyclic decrements;
(iv) have frequency for symbol k = 4 at least 1, 2, 3; (v) have
frequency for symbol 1 at most 3, 2, 1; (vi) do not have 11, 22,
33 as a cyclic substring; (vii) are rotations of the largest 50, 30, 10
necklaces; (viii) are not rotations of the periodic necklace 1212,
3434; (ix) are in the intersection of the previous two universal
cycles (i.e. not rotations of 1212 or 3434); (x) are aperiodic; (xi)
have period in {1, 4}, {1, 2}. Each universal cycle starts from 12
o’clock and proceeds in clockwise order, with a gap between the
examples of each type. For example, the fourth ring from the
outside gives the universal cycle 1114 1123 1124 · · · 3444 4 which
contains all strings in T(4, 4) with sum at least 7.
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3.3.1. Minimum Sum. Let S ⊆ T(n, k) contain the strings with sum at least s.
This set is closed under rotation since rotation does not change a string’s sum.
Also, S is a k-suffix language by Theorem 2 since replacing any symbol x < k with
k increases the sum of the string. Therefore, S ∈ C(n, k) by Lemma 2. The authors
previously considered sets of this type when n = 2 [31].

3.3.2. At most d > 0 cyclic descents. A descent in a string a1a2 · · · an is a pair of
consecutive elements ai, ai+1 such that ai > ai+1. A cyclic descent is a descent or
the pair an, a1 where an > a1. Let S ⊆ T(n, k) contain the strings with at most d
cyclic descents for some fixed d > 0. This set is clearly closed under rotation. Also,
N(S) is a k-suffix language since replacing any suffix of length i by ki will increase
the number of descents only in the special case where a necklace is of the form xn

for x < k. For these strings the number of descents increases from 0 to 1, which
does not violate the upperbound since d > 0. Therefore, S ∈ C(n, k).

3.3.3. At most d > 0 cyclic decrements. A decrement in a string a1a2 · · · an is a
pair of consecutive elements ai, ai+1 such that ai = ai+1 + 1. A cyclic decrement
is a decrement or the pair an, a1 where an = a1 + 1. Let S ⊆ T(n, k) contain the
strings with at most d cyclic decrements for some fixed d > 0. This set is clearly
closed under rotation. Also, N(S) is a k-suffix language since replacing any suffix
of length i by ki will only increase the number of decrements in the special case of
the necklace (k−1)n. For this string the number of decrements increases from 0 to
1, which does not violate the upperbound since d > 0. Therefore, S ∈ C(n, k).

3.3.4. Frequency of k. Let S ⊆ T(n, k) contain the strings with at least `k copies of
k. This set is closed under rotation since rotation does not change a string’s symbol
frequencies. Also, S is a k-suffix language by Theorem 2 since replacing any symbol
x < k with k increases the frequency of k in the string. Therefore, S ∈ C(n, k) by
Lemma 2.

3.3.5. Frequency of i < k. Let S ⊆ T(n, k) contain the strings with at most ui
copies of i < k. This set is closed under rotation since rotation does not change
a string’s symbol frequencies. Also, S is a k-suffix language by Theorem 2 since
replacing any symbol x < k with k does not increase the frequency of i in the string.
Therefore, S ∈ C(n, k) by Lemma 2.

3.3.6. Avoiding a Substring. Let S ⊆ T(n, k) contain the strings that do not contain
β ∈ T(m, k − 1), for some m ≥ 1, as a cyclic substring. This set is closed under
rotation since rotation does not change a string’s cyclic substrings. Also, S is a
k-suffix language by Theorem 2 since replacing any symbol x < k with k cannot
create a new cyclic substring in T(m, k − 1). Therefore, S ∈ C(n, k) by Lemma 2.

3.3.7. Rotations of Large Necklaces. Let S ⊆ T(n, k) contain the strings that are
rotations of the largest i necklaces in N(n, k) in lexicographic order. This set is
closed under rotation by its definition. If α ∈ N(S), then replacing its rightmost
symbol x < k with k will create another necklace by Lemma 1, and this necklace
is larger in lexicographic order. Therefore, N(S) is a k-suffix language. Hence,
S ∈ C(n, k). Moreno previously considered sets of this type [24].
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3.3.8. Avoiding the Rotations of a Periodic Necklace. Let S ⊆ T(n, k) contain the
strings that are not rotations of a fixed periodic necklace β ∈ N(n, k). That is,
S = T(n, k) − Rot({β}). This set is closed under rotation by its definition. If
β = kn, then S ∪ {kn} = T(n, k) ∈ C(n, k). Otherwise, consider β 6= kn. Let
αxkj ∈ N(S) with x < k be an arbitrary necklace in S that is not equal to β
(where j = 0 is possible). We know that αkkj is a necklace by Lemma 1. Suppose
that αkkj = β. Since β is periodic and β 6= kn, we can write β as β = (γkj+1)t

where γ 6= ε and t > 1. Observe that αxkj = (γkj+1)t−1γxkj is not a necklace
since x < k, which contradicts αxkj being a necklace. Thus αkkj 6= β and N(S) is
a k-suffix language. Therefore S ∈ C(n, k).

3.3.9. Unions and Intersections. If SA and SB are closed under rotation, then
both SA ∪ SB and SA ∩ SB are closed under rotation. Thus, Corollary 2 gives the
following.

Lemma 3. If SA,SB ∈ C(n, k), then SA ∪ SB ∈ C(n, k) and SA ∩ SB ∈ C(n, k).

Lemma 3 allows us to combine the previous results in interesting ways, as illus-
trated in Sections 3.3.10 and 3.3.11.

3.3.10. Aperiodic Strings. Let S ⊆ T(n, k) contain the aperiodic strings. Let the
periodic necklaces in N(n, k) be β1, β2, . . . , βt. Notice that

S = T(n, k)− Rot({β1, β2, . . . , βt})
=
(
T(n, k)− Rot({β1})

)
∩
(
T(n, k)− Rot({β2})

)
∩ · · · ∩

(
T(n, k)− Rot({βt})

)
.

Therefore, S ∪ {kn} ∈ C(n, k) by Section 3.3.8 and Lemma 3. Au previously con-
sidered sets of this type [2].

3.3.11. Strings with Given Periods. Let S ⊆ T(n, k) be the strings with period in
P ⊆ {1, 2, . . . , n} with n ∈ P . We can prove that S ∪ {kn} ∈ C(n, k) by using
the same approach as in Section 3.3.10. More specifically, replace β1, β2, . . . , βt by
the necklaces whose period is not in P . This provides a nice generalization of Au’s
result [2].

4. The generalized FKM construction

In this section, we prove the FKM portion of Theorem 1 and Corollary 1.
Let S ∈ C(n, k) where |S| > 1 and let α1, α2, . . . , αm be the lexicographic ordering

of necklaces in N(S). Let ap(α) be the aperiodic prefix of α. Let FKM(S) be the
sequence created by the generalized FKM algorithm applied to S. That is,

FKM(S) = ap(α1) · ap(α2) · · · · · ap(αm)

where · denotes concatenation. We first prove the following results:

(1) m > 1 and kn ∈ N(S),
(2) there are no consecutive periodic necklaces in the lexicographic ordering of

N(S),
(3) if αi = a1a2 · · · an−j−1 xkj for some x < k and 1 ≤ i < m, then αi+1 has

prefix a1a2 · · · an−j−1,
(4) α1 is a prefix of FKM(S),
(5) xkn is a suffix of FKM(S) where x is the maximum value less than k such

that xkn−1 ∈ N(S), and
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(6) if αi = a1a2 · · · an = a1a2 · · · an−j−1 xkj for some x < k and 1 ≤ i < m,
then FKM(S) contains the substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1.

Lemma 4. If S ∈ C(n, k) and |S| > 1, then |N(S)| > 1 and kn ∈ N(S).

Proof. Since |S| > 1, there exists a string α in S such that α 6= kn. Since S is closed
under rotation, it also contains a necklace β such that β 6= kn and β ∈ Rot(α).
Also, since N(S) is a k-suffix language, kn must also be in N(S). Thus N(S) > 1
and kn ∈ N(S). �

Lemma 5. If S ∈ C(n, k) and |S| > 1, then there are no consecutive periodic
necklaces in the lexicographic order of N(S).

Proof. Let α and β be consecutive necklaces in the lexicographic order of N(S)
with α < β. Since α < β we have α 6= kn, and so α contains a rightmost symbol x
that is less that k. That is, α = a1a2 · · · an−j−1xkj where x < k and j ≥ 0.

Let y be the smallest value such that a1a2 · · · an−j−1ykj ∈ N(S) and x < y ≤ k;
the value y exists because N(S) is a k-suffix language. Notice that β must have
a1a2 · · · an−j−1y as a prefix.

Now suppose that α is periodic. Therefore, α = (γxkj)t for some γ and t > 1.
Therefore, β has (γxkj)t−1γy as a prefix. However, (γxkj)t−1γy is not the prefix
of any periodic necklace of length n. Therefore, β is not periodic. �

Lemma 6. Suppose S ∈ C(n, k) and |S| > 1. Let α and β denote consecu-
tive necklaces in the lexicographical ordering of N(S) such that α < β. If α =
a1a2 · · · an−j−1 xkj for some x < k, then β has prefix a1a2 · · · an−j−1.

Proof. Since α is a necklace, clearly a1a2 · · · an−j−1 ykj is a necklace for all x <
y ≤ k. There exists some smallest value of y such that a1a2 · · · an−j−1 ykj ∈
N(S) since N(S) is a k-suffix langauge. Since β is lexicographically smaller or
equal to a1a2 · · · an−j−1 ykj but lexicographically larger than α, clearly β has prefix
a1a2 · · · an−j−1. �

Lemma 7. If S ∈ C(n, k) and |S| > 1, then the lexicographically smallest necklace
in N(S) is a prefix of FKM(S).

Proof. Let α = a1a2 · · · an−j−1 xkj be the lexicographically smallest necklace in
N(S) for some x < k. Such a value of x exists since α 6= kn by Lemma 4.
If α is aperiodic, then clearly FKM(S) has prefix α. Otherwise if α is peri-
odic, then α = (ap(α))t for some t > 1. Let β be the necklace that is after α
in the lexicographic ordering of N(S). Such a necklace exists since |N(S)| > 1
by Lemma 4. By Lemma 5, β is aperiodic. Also by Lemma 6, β has pre-
fix a1a2 · · · an−j−1 = (ap(α))t−1a(t−1)|ap(α)|+1a(t−1)|ap(α)|+2 · · · an−j−1. Therefore,

ap(α) · ap(β) has prefix ap(α) · (ap(α))t−1 = α. �

Lemma 8. If S ∈ C(n, k) and |S| > 1, then FKM(S) has suffix xkn, where x is
the maximum value such that x < k and xkn−1 ∈ N(S).

Proof. Let α and β denote the two lexicographically largest necklace in N(S) such
that α < β. By Lemma 4, β = kn and α exists since |N(S)| > 1. There exists a
maximum value x < k such that xkn−1 ∈ N(S) since N(S) is a k-suffix language.
Observe that α = xkn−1 since there can be no necklace between it and β in the
lexicographical ordering of N(S). Therefore, FKM(S) has suffix ap(α) · ap(β) =
xkn−1 · k = xkn. �
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Lemma 9. Suppose S ∈ C(n, k) and |S| > 1. If α = a1a2 · · · an = a1a2 · · · an−j−1 xkj
∈ N(S) for some x < k, then FKM(S) contains the substring a1a2 · · · an · a1a2 · · ·
a|ap(α)|−j−1.

Proof. Let p = |ap(α)| and let β denote the necklace that is after α in the lexico-
graphic ordering N(S). Clearly α 6= kn and β exists by Lemma 4. By Lemma 6 β
has prefix a1a2 · · · an−j−1. By Lemma 5 at most one of these necklaces is periodic
and we proceed in three cases.

(1) If both α and β are aperiodic, then ap(α) · ap(β) = α · β is a substring
of FKM(S) which has prefix a1a2 · · · an · a1a2 · · · an−j−1 = a1a2 · · · an ·
a1a2 · · · ap−j−1.

(2) If α is periodic and β is aperiodic, then ap(α)·ap(β) = ap(α)·β is a substring
of FKM(S) which has prefix ap(α) · a1a2 · · · an−j−1. Let α = (ap(α))t for
some t > 1. Observe that

ap(α) · a1a2 · · · an−j−1 = ap(α) · (ap(α))t−1a(t−1)p+1a(t−1)p+2 · · · an−j−1
= α · a(t−1)p+1a(t−1)p+2 · · · an−j−1
= a1a2 · · · an · a1a2 · · · ap−j−1.

(3) If α is aperiodic and β is periodic, then there are two subcases. If β = kn,
the substring a1a2 · · · an · a1a2 · · · ap−j−1 is simply equal to a1a2 · · · an due
to the fact that α has suffix kn−1. The desired substring is found in the
length n+1 suffix of FKM(S) by Lemma 8. Otherwise if β 6= kn, then let γ
be the necklace that is after β in the lexicographic ordering of N(S). Such
a necklace exists since β 6= kn. Notice that γ is aperiodic by Lemma 5.
Therefore, by the arguments in the previous case, ap(β) · ap(γ) has prefix
β. Therefore, ap(α) ·ap(β) ·ap(γ) is a substring of FKM(S) which has prefix
α · β. The prefix α · β contains the prefix a1a2 · · · an · a1a2 · · · ap−j−1.

Thus FKM(S) contains the substring a1a2 · · · an · a1a2 · · · a|ap(α)|−j−1. �

We now prove the FKM portion of Theorem 1.

Theorem 4. If S ∈ C(n, k), then FKM(S) is a universal cycle for S.

Proof. Since S is closed under rotation by the definition of C(n, k) and its strings
all have length n, the definition of FKM(S) implies |FKM(S)| = |S|. Therefore,
to prove FKM(S) is a universal cycle for S, we only need to show that FKM(S)
contains each string in S as a substring when the sequence is considered circularly.

When |N(S)| = 1, S = N(S) = {kn}. In this case, FKM(S) is the single
character k which is a universal cycle for S. For the remainder of the proof we
assume |N(S)| > 1.

Now consider a rotation β = aiai+1 · · · ana1a2 · · · ai−1 of an arbitrary necklace
α = a1a2 . . . an in N(S). By Lemma 8 we can assume that α 6= kn since the only
rotation of kn is found at the end of FKM(S). Therefore, without loss of generality,
we suppose α has suffix xkj for some x < k. Let p = |ap(α)|. We show that all
p distinct rotations of α exist in FKM(S). There are two cases depending on the
value of i.

Case 1: 0 < i ≤ p− j − 1: By Lemma 9, a1a2 · · · an ·a1a2 · · · ap−j−1 is a substring
of FKM(S). Observe that β is a substring of a1a2 · · · an · a1a2 · · · ap−j−1
when 0 < i ≤ p− j − 1.
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Case 2: p− j − 1 < i ≤ p: Observe that β = kn−ia1a2 · · · ai−1 when p − j − 1 <
i ≤ p. Let γ be the lexicographically smallest necklace in N(S) such that it
has prefix a1a2 · · · ai−1. If γ is not the lexicographically smallest necklace in
N(S), then the previous necklace of γ has the suffix kn−i due to the fact that
N(S) is a k-suffix language. On the other hand, if γ is the lexicographically
smallest necklace in N(S), then the previous n− i symbols in FKM(S) are
kn−i by Lemma 8 when the sequence is considered circularly. Thus, β is a
substring of FKM(S).

Therefore, FKM(S) contains each string in S as a substring and is a universal cycle
for S since |FKM(S)| = |S|. �

We now extend this result to the FKM portion of Corollary 1.

Corollary 4. If S ∪ {kn} ∈ C(n, k), then FKM(S) is a universal cycle for S.

Proof. If S ∈ C(n, k), then by Theorem 4, FKM(S) is a universal cycle for S.
Otherwise if S /∈ C(n, k) but S ∪ {kn} ∈ C(n, k), then observe that FKM(S) · k =
FKM(S∪kn). By Theorem 4 FKM(S)·k is a universal cycle for S∪kn. By Lemma 8,
FKM(S) · k ends with the suffix kn. Hence, removing the last k in FKM(S) · k only
removes its substring kn when considered circularly. Thus, all other strings in
S ∪ {kn} \ {kn} = S are preserved. Therefore, FKM(S) is a universal cycle for S
since FKM(S) has length |S|. �

The proof of Theorem 4 explicitly states where the rotations of each necklace
are found. To specify the position of a substring in a universal cycle we introduce
the following notation. Suppose FKM(S) = u0u1 · · ·u|S|−1 is a universal cycle for
S ⊆ T(n, k) and α ∈ S. Let last(α) be the last position of the substring α in
FKM(S). In other words, if ui−n+1ui−n+2 · · ·ui = α, then last(α) = i because
i is the last position of the substring α, where 0 ≤ i < |S| and the other index
expressions are taken modulo |S|.
Corollary 5. If S ∈ C(n, k), α ∈ N(S) has suffix xkj for some x < k, and β is a
rotation of α, then last(β) ≤ last(α) + |ap(α)|−j−1.

Proof. Let α = a1a2 · · · an. By Lemma 9, the rotations of α starting from ai
where 1 ≤ i ≤ |ap(α)| − j are all found in succession starting from α itself. In
particular, the last of these rotations β has last(β) = last(α) + |ap(α)| − j − 1.
The remaining rotations of α end within the first necklace in the lexicographic
ordering of N(S) with prefix a1a2 · · · ai for some i satisfying 1 ≤ i ≤ |ap(α)|− j−1.
None of these necklaces appear after α in the lexicographic ordering of N(S), thus
last(β) < last(α) for any such rotation of β. �

This information will be crucial for the greedy algorithm in Section 5.

5. The generalized greedy approach

In this section we prove the greedy portion of Theorem 1 and Corollary 1, and
that the generated universal cycles are all lexicographically smallest.

Let Greedy(S) denote the sequence generated by the greedy algorithm after
removing the initial kn−1. We need to prove that Greedy(S) = FKM(S) and this
is the lexicographically smallest universal cycle when S ∈ C(n, k).

Lemma 10. If S ∈ C(n, k) and |S| > 1, then the lexicographically smallest necklace
in N(S) is a prefix of Greedy(S).
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Proof. By contradiction. Let α = a1a2 · · · an be the lexicographically smallest
necklace in N(S). The string α is also the lexicographically smallest string in S
since S is closed under rotation. Suppose Greedy(S) starts with prefix a1a2 · · · aiz
for some i < n and z 6= ai+1. Observe that z < ai+1 by the definition of the greedy
algorithm. Furthermore, since the greedy algorithm starts with the initial seed
kn−1, after i+1 iterations of the greedy algorithm the length n suffix of the sequence
is β = kn−i−1a1a2 · · · aiz. Notice that if β ∈ S, then its rotation a1a2 · · · aizkn−i−1
must also be in S since S is closed under rotation. However, a1a2 · · · aizkn−i−1 is
strictly less than α, a contradiction to α being the lexicographically smallest string
in S. �

Theorem 5. If S ∈ C(n, k), then Greedy(S) is equivalent to FKM(S).

Proof. Let α1, α2, . . . , αm denote the lexicographic ordering of necklaces in N(S).
Let Lt = ap(α1)ap(α2) · · · ap(αt) for 1 ≤ t ≤ m. When m = 1, S = {kn} and
the greedy algorithm terminates with the correct sequence of length one, namely
Greedy(S) = FKM(S) = k.

For m > 1, we prove that Greedy(S) = FKM(S) = Lm by contradiction. Sup-
pose t is the smallest value such that Lt+1 is not a prefix of Greedy(S), where
αt = a1a2 · · · an = a1a2 · · · an−jkj and an−j < k. From Lemma 10 we know that
1 ≤ t < m. Let αt+1 = b1b2 · · · bn and p = |ap(αt+1)|. Let i be the smallest value
such that 0 < i ≤ p and Lt · b1b2 · · · bi is not a prefix of Greedy(S). Let β denote
the length n−1 suffix of Lt · b1b2 · · · bi−1. Such a suffix exists since both Greedy(S)
and FKM(S) begin with α1 by Lemma 7 and Lemma 10 when m > 1. There are
two cases depending on the value of i.

Case 1: 0 < i ≤ p− j − 1: By Lemma 6, b1b2 · · · bn−j−1 = a1a2 · · · an−j−1. There-
fore by Lemma 9, β = ai+1ai+2 · · · an · a1a2 · · · ai−1 since ap(αt) is prior to
b1b2 · · · bi−1. Since Lt · b1b2 · · · bi is not a prefix of Greedy(S), the greedy
algorithm appends z to β where z < bi. By Corollary 5, βz is not a rota-
tion of the necklaces α1, α2, . . . , αt−1. However, a rotation of βz is equal to
a1a2 · · · ai−1zai+1ai+2 · · · an and is strictly less than αt. Therefore, βz is a
rotation of some necklace that is between αt−1 and αt in lexicographic or-
der, a contradiction to αt being the necklace after αt−1 in the lexicographic
ordering of N(S). Thus z must be equal to bi = ai.

Case 2: p− j − 1 < i ≤ p: By Lemma 9, β = ai+1ai+2 · · · anb1b2 · · · bi−1 which is
equal to ai+1ai+2 · · · ana1a2 · · · ap−j−1 · bp−jbp−j+1 · · · bi−1 since ap(αt) is
prior to b1b2 · · · bi−1. Since Lt · b1b2 · · · bi is not a prefix of Greedy(S), the
greedy algorithm appends z to β where z < bi. By Corollary 5, βz is not a
rotation of the necklaces α1, α2, . . . , αt. However, a rotation of βz is equal
to a1a2 · · · ap−j−1 · bp−jbp−j+1 · · · bi−1zai+1ai+2 · · · an and is strictly less
than αt+1. Therefore, βz is a rotation of some necklace that is between αt
and αt+1 in lexicographic order, a contradiction to αt+1 being the necklace
after αt in the lexicographic ordering of N(S). Thus z must be equal to bi.

Thus by proof of contradiction, Greedy(S) = FKM(S) = Lm as claimed. �

Corollary 6. FKM(S) and Greedy(S) produce the lexicographically smallest uni-
versal cycle among all universal cycles for S ∈ C(n, k).

Proof. The greedy algorithm always starts with the lexicographically smallest neck-
lace in N(S) by Lemma 10, which is also the lexicographically smallest string in S.
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It then greedily appends the lexicographically smallest possible symbol such that
the length n suffix is unique and in S. By the definition of the greedy algorithm,
appending any smaller symbol results in either a duplicate string, or a string not in
S. Thus Greedy(S) must be the lexicographically smallest universal cycle. Also by
Theorem 5, FKM(S) and Greedy(S) produce the same universal cycle. Therefore,
both FKM(S) and Greedy(S) produce the lexicographically smallest universal cycle
for S. �

6. Final Remarks

Although the language C(n, k) includes a broad class of combinatorial objects,
there are still sets that are not in C(n, k) while their universal cycles can be con-
structed by the FKM algorithm. As an example, consider the set S4 ⊆ T(4, 3)
which contains the following length 4 strings:

1112, 1121, 1122, 1212, 1211, 1221, 1222, 1322, 2111,
2112, 2121, 2122, 2132, 2211, 2212, 2213, 2221, 3221.

The set S4 is closed under rotation, but N(S4) = {1112, 1122, 1212, 1222, 1322}
is not a k-suffix language. However, FKM(S4) = 1112 · 1122 · 12 · 1222 · 1322 is a
universal cycle for S4. Naturally, we would like to characterize the sets of strings S
in which FKM(S) is a universal cycle. Similarly, we are interested in characterizing
when the greedy algorithm works.
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