
Practical Algorithms to Rank Necklaces, Lyndon Words, and de Bruijn
Sequences

Joe Sawada1 and Aaron Williams2

1 School of Computer Science, University of Guelph, Canada, jsawada@uoguelph.ca
2 Science, Mathematics & Computing, Bard College at Simon’s Rock, USA awilliams@simons-rock.edu

Abstract. We present practical algorithms for ranking k-ary necklaces and Lyndon words of length n. The algo-
rithms are based on simple counting techniques. By repeatedly applying the ranking algorithms, both necklaces and
Lyndon words can be efficiently unranked. Then, explicit details are given to rank and unrank the length n substrings
of the lexicographically smallest de Bruijn sequence of order n.

1 Introduction

Given a list of distinct combinatorial objects α1, α2, . . . , αm the rank of αi is i. In other words, the rank
of an object is its position in the list. The process of determining the rank of an object in a specific listing
is called ranking. The process of determining αi for a given i is called unranking. For both problems, it is
assumed that the actual objects and their listings are not stored in memory. Thus, the most naı̈ve approach to
ranking is to generate the listing and determine the position of the object in question. However, if the number
of objects in a listing is exponential (as is the case for most combinatorial objects), then this approach yields
an exponential time ranking algorithm in the worst case.

Example 1 The lexicographic listing of the m = 14 necklaces with length n = 6 over Σ = {a, b}:

1. aaaaaa 6. aabaab 11. ababbb
2. aaaaab 7. aababb 12. abbabb
3. aaaabb 8. aabbab 13. abbbbb
4. aaabab 9. aabbbb 14. bbbbbb.
5. aaabbb 10. ababab

A ranking algorithm to determine the rank of the necklace ababbb in lexicographic order will return
11. An unranking algorithm to determine the necklace at rank 11 in lexicographic order will return
ababbb.

The challenge of ranking combinatorial objects efficiently was first investigated by Lehmer [13] in 1964
when he studied permutations, combinations, compositions and partitions. Later in 1977, Wilf [23] presented
a unified setting using directed graphs to list, rank and unrank a class of combinatorial objects and applied it
to sets, partitions, permutations, and tableaux. The setting was later extended to subsets, and some restricted
classes of partitions and permutations [24]. Around the same time Williamson [26] also provided a general
model based on chain partitions for ranking and unranking combinatorial sets including set partitions and
some restricted classes of permutations. Since then, efficient ranking and unranking algorithms have been
developed separately for most basic combinatorial objects [8, 9, 14, 16–18, 22, 25]. For a more general survey
of results, see [19].

For necklaces and Lyndon words, however, the existence of polynomial time ranking and unranking
algorithms remained an open problem [15, 19] for many years. Then, at the 25th Annual Symposium on
Combinatorial Pattern Matching (CPM) in June 2014, Kociumaka, Radoszewski, and Rytter [11] presented

2

an O(n3)-time algorithm to rank Lyndon words. Three weeks later at the 41st International Colloquium on
Automata, Languages, and Programming (ICALP) in July 2014, Kopparty, Kumar, and Saks [12] indepen-
dently presented a polynomial-time algorithm (with no tight bound) to rank necklaces. It is important to note
that the former paper [11] applies a WORD-RAM model of computation in their analysis, even though it is
not made explicitly clear in the proceedings. The main results of each paper are remarkably similar. They
each rely on the construction of an automaton specific to the input string, and they both rank in lexicographic
order. Neither result leads to a practical implementation.

1.1 Applications

Ranking and unranking algorithms for necklaces and Lyndon words have the following applications:

1. The problem of efficiently ranking the length n substrings of the lexicographically smallest de Bruijn
sequence of order n was listed as an open problem in [19]. The crux of this problem is to rank Lyndon
words. A solution to this problem is outlined in [11].

2. There is a well known correspondence between k-ary Lyndon words and irreducible polynomials over
GF(k) [7]. Given a primitive polynomial, a unique irreducible polynomial can be generated for each
Lyndon word of length n as outlined in [3] for k = 2. As a result, an efficient unranking algorithm
for Lyndon words can be used to reverse-index irreducible polynomials as outlined in [12]. An efficient
indexing algorithm for irreducible polynomials remains an open problem.

3. The ranking algorithms can be applied to compute the number of necklaces or Lyndon words with a
given prefix. Details are presented later in this paper.

4. The unranking algorithms can be applied directly to randomly generate Lyndon words and necklaces.
An average case algorithm to randomly generate Lyndon words runs in O(n)-time, as noted in [1].

1.2 New results

We provide a practical algorithm for ranking k-ary necklaces and Lyndon words of length n in lexicographic
order using straightforward counting techniques. By repeatedly applying the ranking algorithms, both neck-
laces and Lyndon words can be efficiently unranked. An implementation in C is provided in the Appendix. It
is important to note our analysis applies the standard unit-cost RAM model of computation, although there
are mathematical operations (multiplication and addition) on integers of exponential size with respect to
n. Thus, the results for Lyndon words are asymptotically equivalent to the ones obtained in [11] where a
WORD-RAM model is assumed, although not explicitly stated.

Additionally, we provide explicit implementation-level details for ranking and unranking the lexico-
graphically smallest de Bruijn sequence, expanding on the outline given in [11]. We also provide details for
computing the number of necklaces and Lyndon words with a given prefix.

The enumeration framework outlined in this paper can also been extended to restricted classes of neck-
laces, including fixed-density necklaces as described in a follow up work [10].

1.3 Outline for remainder of paper

The rest of the paper is outlined as follows. In Section 2 we provide background definitions and notation
along with some preliminary algorithmic results that will be used later in the paper. Then in Section 3 and 4,
practical ranking and unranking algorithms for necklaces and Lyndon words are presented. In Section 5,
these algorithms are applied to give explicit details for ranking and unranking the lexicographically smallest
de Bruijn sequence for a given n. In Section 6 we describe how to compute the number of necklaces and
Lyndon words with a given prefix. Section 7 presents two related open problems. Finally, a complete C
implementation of all our algorithms is given in the Appendix.

3

2 Preliminaries

The strings considered in this paper are assumed to be over an alphabet Σ of size k ≥ 2. A string a1a2 · · · an
is lexicographically smaller than b1b2 · · · bm if either

1. a1a2 · · · aj−1 = b1b2 · · · bj−1 and aj < bj for some j ≤ n and j ≤ m, or
2. a1a2 · · · an = b1b2 · · · bn and n < m.

A necklace is the lexicographically smallest string in an equivalence class of strings under rotation. A string
α = a1a2 · · · an is periodic (non-primitive) if there exists a string β such that α = βj (where exponentiation
denotes repetition) for some integer j > 1; otherwise α is aperiodic (primitive). A Lyndon word is an
aperiodic necklace.

Example 2 The necklaces aaaaaa, aabaab, ababab, abbabb and bbbbbb from Example 1 are
periodic and the remaining nine are Lyndon words.

Lemma 1. Let α = a1a2 · · · an be a necklace and let 1 ≤ i ≤ j ≤ n. Then aiai+1 · · · aj−1x is lexicograph-
ically larger than α if x > aj .

Proof. Consider 1 ≤ i ≤ j ≤ n. Since α is a necklace, any rotation satisfies ai · · · ana1a2 · · · ai−1 ≥ α.
Thus, aiai+1 · · · aj ≥ a1a2 · · · aj−i+1. Therefore if x > aj , then aiai+1 · · · aj−1x will be lexicographically
larger than α. 2

Given a string α, let its necklace representative (i.e., its lexicographically minimal rotation) be de-
noted neck(α). The number of strings in its equivalence class under rotation is equal to the length of the
longest prefix of neck(α) that is a Lyndon word. Let this number be denoted by lyn(α). For example
lyn(aaaaaa) = 1, lyn(ababab) = 2, and lyn(aaaaab) = 6.

Using standard techniques based on factoring a string into its Lyndon components [2, 4], the length of
the longest prefix of a string α that is a Lyndon word can be determined in O(n) time. Such a function can
be directly used to compute lyn(α). The basic idea is to maintain a value p corresponding to the length
of the longest Lyndon prefix while performing a single scan of the string α. Using the same ideas, we can
determine whether or not a string is a necklace in O(n) time. Pseudocode for these two functions LYN(α)
and ISNECKLACE(α) is given in Algorithm 1.

Algorithm 1 includes one more auxiliary function, LARGESTNECKLACE(α), that returns the largest
necklace of length n that is smaller than or equal to α = a1a2 · · · an. The function assumes an alphabet Σ =
{1, 2, . . . , k}. It uses the fact3 that if lyn(α) = p then for any string γ < ap+1ap+2 · · · an, lyn(a1a2 · · · apγ)
is also p. Thus, if α is not a necklace, β = a1a2 · · · ap−1(ap−1)kn−p is the largest possible string of length
n smaller than α that might be a necklace. If it is a necklace, we are done. Otherwise, we repeatedly update
β using this same procedure until a necklace is found. At the start of each iteration, β is not a necklace.
Because appending a k to any Lyndon word of length n > 1 will yield a longer Lyndon word, it must be
that p = lyn(β) is strictly decreasing with each iteration. Observe that lyn(β) ≥ 1 for any string β. Thus if
p = 1, then observe that updated value of β must be xkn−1 for some 1 ≤ x < k which is a Lyndon word.
Therefore, the while loop in this function iterates at most n times which implies the function runs in O(n2)
time.

3 This fact can be observed by tracing the function LYN(α).

4

Algorithm 1 Auxiliary functions used by the upcoming ranking algorithm, assuming n ≥ 1.

1: function LYN(a1a2 · · · an)
2: p← 1
3: for i from 2 to n do
4: if ai > ai−p then p← i

5: if ai < ai−p then return p
6: return p

7: function ISNECKLACE(a1a2 · · · an)
8: p← 1
9: for i from 2 to n do

10: if ai > ai−p then p← i

11: if ai < ai−p then return False
12: return (n mod p = 0)

13: function LARGESTNECKLACE(α = a1a2 · · · an) . Return the largest necklace β of length n smaller than or equal to α
14: β = b1b2 · · · bn = α
15: while not ISNECKLACE(β) do
16: p← LYN(β)
17: bp ← bp − 1
18: for i from p+ 1 to n do bi ← k

19: return β

2.1 A special set Bα(t, j)

In order to rank necklaces and Lyndon words efficiently, we need to efficiently determine the cardinality of
a special set of strings that has both prefix and suffix restrictions. Let α = a1a2 · · · an be a necklace. Let
Bα(t, j) denote the set of strings of length t ≥ j with prefix a1a2 · · · aj such that every non-empty suffix
is greater than α. Let the cardinality of Bα(t, j) be denoted by Bα(t, j). Note that when j = 0, there is no
prefix restriction on the strings.

Example 3 Let α = aaabcc and Σ = {a,b,c}. Bα(2, 0) = {ab,ac,bb,bc,cb,cc} consists
of strings of length 2 where every non-empty suffix is greater than α. The strings in {aa,ba,ca}
are not in this set because the suffix a is lexicographically smaller than α. Now consider Bα(5, 2)
partitioned on the 3rd (underlined) character:

aaa cb aab ab aac ab
aaa cc aab ac aac ac

aab bb aac bb
aab bc aac bc
aab cb aac cb
aab cc aac cc.

Observe how this partition decomposes the set revealing recursive structure:

Bα(5, 2) = Bα(5, 3) ∪ aab ·Bα(2, 0) ∪ aac ·Bα(2, 0).

An enumeration formula for Bα(t, j), where 0 ≤ j ≤ t ≤ n, can be derived based on the recursive struc-
ture illustrated in the previous example. For the formulation we assume an alphabet Σ = {1, 2, . . . , k}.
Considering the empty string, Bα(0, 0) = 1. When t > 0, Bα(t, t) = 0 because the suffix a1a2 · · · at is

5

lexicographically smaller than or equal to α. For 0 ≤ j < t, the strings in Bα(t, j) can be partitioned based
on the symbol in position j+1.
. If the j+1st symbol is smaller than aj+1 then the suffix starting from the first index would be smaller

than α, a contradiction.
. If the j+1st symbol is aj+1 then the number of such strings is Bα(t, j + 1).
. If the j+1st symbol is larger than aj+1, then any suffix starting at index 1, 2, . . . , j + 1 is larger than
α by Lemma 1. Thus, for each of the k − aj+1 choices for this j+1st symbol, the remaining t− j − 1
positions can be filled recursively in Bα(t− j − 1, 0) ways.

Therefore, for 0 ≤ j ≤ t ≤ n,

Bα(t, j) =

1 if j = t and t = 0,
0 if j = t and t > 0,
Bα(t, j + 1) + (k − aj+1) ·Bα(t− j − 1, 0) if 0 ≤ j < t.

An O(n2)-time dynamic programming algorithm to compute these values is provided in Section 3.2.

3 Ranking necklaces and Lyndon words

Let N(α) and L(α) denote the set of necklaces and Lyndon words of length n, respectively, that are lexico-
graphically smaller than or equal to α. Let RankNecklace(α) and RankLyndon(α) denote the cardinality
of the sets N(α) and L(α), respectively. Given a string α = a1a2 · · · an, let T(α) denote the set of strings
w = w1w2 · · ·wn such that neck(w) ≤ α. In other words, T(α) contains all length n strings whose necklace
representatives are no larger than α in lexicographic order. The key step in the Lyndon word and necklace
ranking algorithms from [11] and [12] is to determine the cardinality of T(α), denoted by T (α). In this
section we describe a simple and practical O(n2) implementation to perform this calculation assuming the
unit-cost RAM model of computation.

Example 4 The set T(aabbab) over Σ = {a,b} of 40 strings grouped by rotational equivalence:

aaaaaa aaaaab aaaabb aaabab aaabbb aabaab aababb aabbab
baaaaa baaaab baaaba baaabb baabaa baabab baabba
abaaaa bbaaaa abaaab bbaaab abaaba bbaaba abaabb
aabaaa abbaaa babaaa bbbaaa abbaab babaab
aaabaa aabbaa ababaa abbbaa babbaa bbabaa
aaaaba aaabba aababa aabbba ababba abbaba.

The first string in each column is a necklace. Observe that RankNecklace(aabbab) = 8 and
RankLyndon(aabbab) = 6.

As outlined in [11, 12], standard enumerative techniques and Möbius inversion can be used to obtain the
following formula for α = a1a2 · · · an:

RankLyndon(α) =
1

n

∑
d|n

µ

(
n

d

)
T (a1a2 · · · ad),

where µ(j) is the Möbius function. Applying Burnside’s Lemma, we obtain

RankNecklace(α) =
1

n

∑
d|n

φ

(
n

d

)
T (a1a2 · · · ad),

6

where φ(j) is Euler’s totient function. This formula is described in [12] without explicitly being stated.
In the following subsection we demonstrate that T (α) can be computed inO(n2) time. Since for any real

number r > 1 we have
∑

d|n d
r = O(nr) (a simple proof is given in [11]), we obtain the following theorem.

Theorem 1. The rank of a necklace (Lyndon word) α = a1a2 · · · an in the lexicographic order of necklaces
(Lyndon words) of length n can be determined in O(n2) time.

3.1 Computing T (α)

The approaches from [11, 12] to enumerate T (α) involve creating a finite automaton dependent on α. The
best analysis yields anO(n3)-time algorithm. In this subsection we present a practicalO(n2)-time algorithm
to compute T (α) using simple counting methods. Observe that T (α) = T (α′) where α′ is the lexicographi-
cally largest necklace (of the same length) that is smaller than or equal to α. Thus, in our upcoming formulae
for T (α), we assume that α is a necklace.

To compute T (α) we partition the strings ω = w1w2 · · ·wn ∈ T(α) based on the smallest index t such
that

wtwt+1 · · ·wnw1w2 · · ·wt−1 ≤ α.

Each of these blocks is then further partitioned based on the largest integer 0 ≤ j ≤ n such that a1a2 · · · aj
is a prefix of wtwt+1 · · ·wnw1w2 · · ·wt−1. This means the symbol x following this prefix must be smaller
than aj+1. Formally, let the strings in each such block be denoted by Aα(t, j). Let the cardinality of Aα(t, j)
be denoted by Aα(t, j). Then

T (α) =

n∑
t=1

n∑
j=0

Aα(t, j).

Example 5 Let α = aabbab and let Σ = {a,b}. The 40 strings in T(α) listed in Example 4
can be partitioned into subsets Aα(t, j) for 0 ≤ j ≤ 6 and 1 ≤ t ≤ 6. When j = 0, 1 or 4, the set
Aα(t, j) is empty. The remaining subsets are illustrated in the table below. The substring corresponding
to a1a2 · · · aj is underlined.

Aα(t, j) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
aa aaaa b aa aaa ab aa aa abb aa a abab aa a abbb a
aa aaab b aa aab bb aa aa bab aa a abbb aa
aa aaba b aa aba ab aa ab bbb aa a

j = 2 aa aabb b aa abb bb aa ab
aa abaa
aa abab
aa abba
aa abbb

aab aaa b aab aa ab aab a abb aab b abb aa ab abb a
j = 3 aab aab b aab ab bb aab a

aab aba
aab abb

j = 5 aabba a

j = 6 aabbab b aabba ab aabb bab aab bbab aa abbab a

7

The problem of ranking necklaces and Lyndon words has been reduced to computing Aα(t, j). In the
special case where j = n the strings in Aα(1, n) ∪Aα(2, n) ∪ · · · ∪Aα(n, n) are precisely the rotations
of α. The total number of such strings is lyn(α). Otherwise, for j < n, each set Aα(t, j) falls into one of
the following two cases depending on whether or not the symbol x following the substring a1a2 · · · aj in
question is involved in the wraparound.

Case 1 (t+ j ≤ n). Each ω ∈ Aα(t, j) is of the form σ a1a2 · · · aj x τ where:
. σ ∈ Σt−1 such that every non-empty suffix is larger than α, 4

. x ∈ Σ is smaller than aj+1, and

. τ ∈ Σn−t−j has no restrictions.
Recall from Section 2.1 that the number of possibilities for σ is given by Bα(t−1, 0). Since x is smaller than
aj+1, there are aj+1 − 1 values it can have. For τ , there are trivially kn−t−j possibilities. Thus, in this case,

Aα(t, j) = Bα(t−1, 0) · (aj+1 − 1) · kn−t−j .

Case 2 (t+ j > n). Each ω ∈ Aα(t, j) is of the form an−t+2 · · · aj−1aj xσ a1a2 · · · an−t+1 where:
. x ∈ Σ is smaller than aj+1,
. σ ∈ Σn−j−1, and
. an−t+2 · · · aj−1aj xσ has every non-empty suffix larger than α.5

Let δ = an−t+2 · · · aj−1aj . Since δ is a substring of the necklace α, any suffix of δ must be larger than
or equal to the prefix of α with the same length (by the definition of a necklace). Therefore we determine
the longest suffix of δ that is equal to the prefix of α with the same length. Suppose this suffix has length s
which implies aj−s+1 · · · aj−1aj = a1a2 · · · as. This means any suffix of ω starting from an index less than
or equal to |δ| − s is larger than α. Consider three sub-cases depending on x.

• If x < as+1 then aj−s+1 · · · aj−1ajx is smaller than α, a contradiction.

• If x = as+1 then a1a2 · · · as+1σ ∈ Bα(n− j + s, s+ 1).

• If x > as+1 then any suffix of ω starting from an index less than or equal to |δ| + 1 will be larger
than α by Lemma 1. Thus, σ ∈ Bα(n − j − 1, 0). Since x must be smaller than aj+1, there are
(aj+1 − as+1 − 1) possible values for x, provided aj+1 > as+1.

Thus, in this case, if aj+1 > as+1,

Aα(t, j) = Bα(n− j + s, s+ 1) + (aj+1 − as+1 − 1) ·Bα(n− j − 1, 0).

Otherwise Aα(t, j) = 0.

Example 6 Let α = a1a2 · · · a9 = aaabbaccb andΣ = {a,b,c}. Consider Aα(8, 6). For this set
we have the restriction that x < a7 = c. The following illustrates this set partitioned by its 5th character
x, with the substring a1a2 · · · a6 underlined:

abba a ac aa abba b ab aa
abba a bb aa abba b ac aa
abba a bc aa abba b bb aa
abba a cb aa abba b bc aa
abba a cc aa abba b cb aa

abba b cc aa.

Note s = 1. Observe how this partition follows the formula outlined for this case:

4 This follows from the definition of t noting that t− 1 < n.
5 This follows from the definition of t noting that |an−t+2 · · · aj−1aj xσ| < n.

8

Aα(8, 6) = Bα(4, 2) + (1) ·Bα(2, 0).

3.2 AnO(n2) algorithm to compute T (α)

Given a necklace α = a1a2 · · · an, let suf α(i, j) denote the length of the longest suffix of aiai+1 · · · aj that
is equal to a prefix of α. Then applying the formulae presented in the previous subsection, the pseudocode in
Algorithm 2 computes T (α) in O(n2) time. The algorithm precomputes the values Bα(t, j) using a standard
dynamic programming approach. It also includes pre-computation of the values suf α(i, j) for 2 ≤ i ≤ j ≤
n. Note that each value suf α(i, j) can be computed with a single scan of the string aiai+1 · · · aj applying
Lemma 1.

Algorithm 2 Computing T (α) for a given necklace α = a1a2 · · · an.

1: function T(α)

2: . Precompute Bα(t, j) using dynamic programming
3: Bα(0, 0)← 1
4: for t from 1 to n do
5: Bα(t, t)← 0
6: for j from t− 1 down to 0 do Bα(t, j)← Bα(t, j + 1) + (k − aj+1) ·Bα(t− j − 1, 0)

7: . Precompute suf α(i, j) for 2 ≤ i ≤ j ≤ n
8: for i from 2 to n do
9: s← i

10: for j from i to n do
11: if aj > aj−s+1 then s← j + 1

12: suf α(i, j)← j − s+ 1

13: . Compute T (α)
14: total← LYN(α)
15: for t from 1 to n do
16: for j from 0 to n−1 do
17: if j + t ≤ n then total← total +Bα(t− 1, 0) · (aj+1 − 1) · kn−t−j
18: else
19: if j < n−t+2 then s← 0
20: else s← suf α(n−t+2, j)

21: if aj+1 > as+1 then total← total +Bα(n−j+s, s+1) + (aj+1 − as+1 − 1) ·Bα(n− j − 1, 0)

22: return total

Lemma 2. Given a necklace α = a1a2 · · · an, T (α) can be computed in O(n2) time.

Recall that if α is not a necklace then T (α) = T (α′) where α′ is the lexicographically largest necklace
that is smaller than α. By applying the function LARGESTNECKLACE(α) outlined in Section 2, the necklace
α′ is obtained in O(n2) time.

Corollary 1. Given a string α = a1a2 · · · an, T (α) can be computed in O(n2) time.

This result proves Theorem 1, which states that necklaces and Lyndon words can be ranked in O(n2) time.

9

4 Unranking necklaces and Lyndon words

The unranking problem for necklaces is to find the necklace α = a1a2 · · · an at a given rank r in the
lexicographic ordering of necklaces of length n. Again, for algorithmic purposes, let Σ = {1, 2, . . . , k}.
Starting with the lexicographically largest necklace α = kn, the correct value for each index j (from left
to right) can be determined by performing a binary search on the possible values 1, 2, . . . , k, initializing
min = 1 and max = k. Observe that if a1a2 · · · ajxkn−j−1 is not a necklace, then a1a2 · · · ajγ is not a
necklace for any γ ∈ Σn−j such that γ ≤ xkn−j−1. At the start of each iteration of the binary search the
following loop invariants are maintained:

1. a1a2 · · · aj−1 is a prefix of the necklace at rank r,
2. the current string α with aj = max is a necklace with rank that is greater than or equal to r, and
3. replacing aj with min−1 results in a string that is either not a necklace, or it is a necklace with rank less

than r.

When testing the middle value t = (min +max)/2 and setting aj = t, if the new string is a necklace and
its rank is still greater than or equal to r, then max is updated to t. Otherwise, min is updated to t+ 1.

Pseudocode for this procedure is given in Algorithm 3. A similar approach works for Lyndon words
starting from the lexicographically largest Lyndon word α = (k−1)kn−1, using LYN(α) = n instead of
ISNECKLACE(α) and RankLyndon(α) instead of RankNecklace(α).

Algorithm 3 An O(n3 log k) unranking algorithm for necklaces applying a binary search at each index j.

1: function UNRANK(n, r)
2: α = a1a2 · · · an ← kn

3: for j from 1 to n do
4: min← 1
5: max← k
6: while min < max do . binary search on the initial values 1, 2, . . . , k
7: prev ← aj
8: t← (min+max)/2
9: aj ← t

10: if ISNECKLACE(α) and RankNecklace(α) ≥ r then max← t
11: else
12: aj ← prev
13: min← t+ 1

14: return α

Since there are O(log k) calls made to RankNecklace(α) for each index j, UNRANK(n, r) runs in
O(n3 log k) time.

Theorem 2. The necklace (Lyndon word) at rank r in the lexicographic order of necklaces (Lyndon words)
of length n over an alphabet of size k can be determined in O(n3 log k) time.

5 Application: Ranking and unranking de Bruijn sequences

Consider an alphabetΣ of size k. A circular sequence of length kn is called a de Bruijn sequence if it contains
each string of length n as a substring exactly once. Amazingly, the lexicographically smallest de Bruijn
sequence for a given n, denoted DB(n), can be constructed by concatenating together L1, L2, L3, . . . , Lm
which are the Lyndon words of length that divide n listed in lexicographic order. Thus,

DB(n) = L1 · L2 · L3 · · ·Lm.

10

Equivalently, if N1, N2, N3, · · · , Nm are the necklaces of length n listed in lexicographic order, where
ap(Ni) denotes the longest Lyndon prefix of Ni, then ap(Ni) = Li and

DB(n) = ap(N1) · ap(N2) · ap(N3) · · · ap(Nm).

This construction was presented by Fredricksen, Kessler, and Maiorana [5, 6] and it can be generated inO(1)
time per symbol [20].

The rank of ω = w1w2 · · ·wn inDB(n) = d1d2d3 · · · dkn is the index r such that the substring of length
n starting at position r is ω. We denote this rank by RankDB(w1w2 · · ·wn). The unranking problem for de
Bruijn sequences is to find the substring of length n starting at index r in the sequence DB(n).

Example 7 From Example 1, there are 14 necklaces of length 6 over Σ = {a, b}. The concatenation
of their aperiodic prefixes yields DB(6) =

a aaaaab aaaabb aaabab aaabbb aab aababb aabbab aabbbb ab ababbb abb abbbbb b.

It has length 26 = 64 and when considered circularly it contains each length 6 string as a substring
exactly once. The rank of the underlined string is RankDB(aabaaa) = 5. Since a de Bruijn sequence
is considered to be circular, note that RankDB(baaaaa) = 64.

The problem of finding efficient algorithms to rank and unrank the strings in DB(n) was stated as an
open problem in [19]. A polynomial-time solution that applies the ranking of Lyndon words, was given
in [11]. Their algorithms have running times of O(n3) for ranking and O(n4 log k) unranking respectively
using the WORD-RAM model. In the following two subsections, we expand on the outline of their algorithm,
providing clear implementation ready descriptions of these algorithms using the alphabetΣ = {1, 2, . . . , k}.
A complete C implementation is given in the Appendix.

5.1 Ranking de Bruijn sequences

In this subsection we provide algorithmic details to compute the rank of ω = w1w2 · · ·wn in DB(n). The
description expands on Theorem 23 from [11] which is based on the proof of Theorem 3.4 from [5]. Recall
the algorithm to construct DB(n) depends on the lexicographic ordering of necklaces N1, N2, N3, . . . , Nm

or Lyndon words L1, L2, L3, . . . , Lm. The ranking algorithm is partitioned into three cases:

1. ω is found at the end of DB(n) (ω = Nm) or in the wrap-around,

2. ω is a necklace Ni where i ∈ {1, 2, . . . ,m− 1},

3. ω is not a necklace and not found in the wrap-around.

Case 1: Observe that DB(n) begins with 1n and ends with kn. Thus, if ω = kt1n−t for 0 < t ≤ n, then its
rank is kn − t+ 1.

11

Case 2: If ω is a necklace Ni, where 1 ≤ i < m, then either Ni = Li, or Ni is periodic. In the latter case,
Ni is a prefix of Li · Li+1 [5]. Thus, the rank of ω is given by:

RankDB(ω) = 1 +
i−1∑
j=1

|Li|

= 1− |Li|+
i∑

j=1

|Li|

= 1− lyn(ω) +
∑
d|n

d · RankLyndon(w1w2 · · ·wd)

= 1− lyn(ω) + T (n,w).

Case 3: If ω is not a necklace or found in the wraparound of DB(n), then let Ni = neck(ω) where s is the
smallest offset such that Ni = ws+1ws+2 · · ·wnw1w2 · · ·ws. There are three sub-cases [5]:

(a) If w1w2 · · ·ws 6= ks, then ω is a substring of Li ·Li+1 and RankDB(ω) = RankDB(Ni)+ lyn(Ni)−s.
(b) If w1w2 · · ·ws = ks and Ni is periodic (lyn(Ni) < n), then ω is a substring of Li−1 · Li · Li+1 and

RankDB(ω) = RankDB(Ni)− s.
(c) If w1w2 · · ·ws = ks and Ni is aperiodic (lyn(Ni) = n), then let Nj be the largest necklace that is less

than ws+1ws+2 · · ·wn1s. Then ω is a substring of Lj−1 ·Lj ·Lj+1 and RankDB(ω) = RankDB(Nj)+
lyn(Nj)− s.
The pseudocode in Algorithm 4 summarizes these three cases computing the rank of ω in DB(n). It

includes a simpleO(n2) time method for computing the necklace of a string at the start of Case 3. In fact, this
can be done in O(n) time [2]. As mentioned earlier, for any real number r > 1 we have

∑
d|n d

r = O(nr).
Thus, the time required in Case 2 is O(n2).

Theorem 3. The rank of w1w2 · · ·wn in DB(n) can be determined in O(n2) time.

Algorithm 4 Computing RankDB(ω) for a given ω = w1w2 · · ·wn.

1: function RANKDB(ω = w1w2 · · ·wn)

2: . Case 1
3: if ω = kt1n−t then return kn − t+ 1

4: . Case 2
5: if ISNECKLACE(ω) then return 1− LYN(ω) + T(ω)

6: . Case 3
7: s← 0
8: α← ω
9: while not ISNECKLACE(α) do

10: s← s+ 1
11: α← ws+1ws+2 · · ·wnw1w2 · · ·ws

12: if w1w2 · · ·ws 6= ks then return RANKDB(α) + LYN(α) −s
13: if LYN(α) < n then return RANKDB(α) −s
14: β ← LARGESTNECKLACE(ws+1ws+2 · · ·wn1s)
15: return RANKDB(β) + LYN(β) −s

12

5.2 Unranking de Bruijn sequences

To unrank a de Bruijn sequence DB(n) for a given rank r, we consider the same three cases described in
previous subsection on ranking. If d = kn − r + 1 ≤ n, then the string at rank r is kd1n−d and it is found
at the end of DB(n) or in the wraparound (Case 1). Otherwise, let α = a1a2 · · · an be the lexicographi-
cally smallest necklace with r′ = RankDB(α) ≥ r. By the construction of DB(n), d = r′ − r < n. As
mentioned in the previous subsection, the string starting at index r′ in DB(n) is α, even if α is periodic.
Thus, if d = 0, then the string starting at rank r is the necklace α (Case 2). Observe that the strings of rank
r = 1 and r = 2 in DB(n) are the necklaces 1n and 1n−12, respectively. Thus, if d > 0, the necklace
α is at least the third one in lexicographic order. Let β = b1b2 · · · bn be the necklace before α in lexico-
graphic order, and let δ = c1c2 · · · cn be the necklace before β in lexicographic order. If p = lyn(β) and
p ≥ d, then the string at rank r is bn−d+1bn−d+2 · · · bna1a2 · · · an−d ; otherwise, the string at rank r is
cn−d+p+1cn−d+p+2 · · · cnb1b2 · · · bpa1a2 · · · an−d.

Algorithm 5 An O(n3 log k) unranking algorithm for DB(n).
1: function UNRANKDB(n, r)

2: . Case 1: The string is found at the end of DB(n) or in the wraparound
3: d← kn − r + 1
4: if d ≤ n then return kd1n−d

5: . Apply a binary search to find the smallest necklace α with rank greater than or equal to r
6: α = a1a2 · · · an ← kn

7: for j from 1 to n do
8: min← 1
9: max← k

10: while min < max do
11: prev ← aj
12: t← (min+max)/2
13: aj ← t
14: if ISNECKLACE(α) and RankDB(α) ≥ r then max← t
15: else
16: aj ← prev
17: min← t+ 1

18: . Case 2: α is a necklace
19: d← RankDB(α)− r
20: if d = 0 then return α

21: . Case 3
22: β = b1b2 · · · bn ← LARGESTNECKLACE(a1a2 · · · an−1(an−1))
23: δ = c1c2 · · · cn ← LARGESTNECKLACE(b1b2 · · · bn−1(bn−1))
24: p← LYN(β)
25: if p ≥ d then return bn−d+1bn−d+2 · · · bna1a2 · · · an−d
26: else return cn−d+p+1cn−d+p+2 · · · cnb1b2 · · · bpa1a2 · · · an−d

Pseudocode for unranking DB(n) is given in Algorithm 5. By applying a binary search strategy, similar
to the one that was employed to unrank necklaces, the necklace α can be found in O(n3 log k) time. The
necklace β can be found in O(n2) time using the function LARGESTNECKLACE(α′) where α′ is obtained
from α by decrementing the value of an. The necklace δ can similarly be found in O(n2) time.

Theorem 4. The string w1w2 · · ·wn with rank r in DB(n) over an alphabet of size k can be determined in
O(n3 log k) time.

13

6 Computing the number of necklaces and Lyndon words with a given prefix

Let α = a1a2 · · · aj for 1 ≤ j ≤ n over Σ = {1, 2, . . . , k}. Let Nn(α) denote the number of necklaces of
length n with prefix α and let Ln(α) denote the number of Lyndon words of length n with prefix α. In this
section we describe a polynomial time algorithm to compute Nn(α) and Ln(α).

We begin by considering two special cases. The first special case is when j = n. If α is a necklace then
Nn(α) = 1; otherwise Nn(α) = 0. Similarly, if α is a Lyndon word then Ln(α) = 1; otherwise Ln(α) = 0.
This case can easily be resolved in O(n) time using the functions ISNECKLACE(α) and LYN(α). For the
second special case, suppose α = 1j for 1 ≤ j < n. In this case there will be no necklace or Lyndon word
with a prefix smaller than α. The largest possible length n string with prefix α is αkn−j which is clearly a
Lyndon word. Thus Nn(α) = RankNecklace(αkn−j) and Ln(α) = RankLyndon(αkn−j).

Now assume that j < n and α 6= 1j . The largest string with α as a prefix is αkn−j . The smallest string
with α as a prefix is α1n−j , and clearly α1n−j is not a necklace. Thus:

Nn(α) = RankNecklace(LARGESTNECKLACE(αkn−j))−RankNecklace(LARGESTNECKLACE(α1 n−j)).

Similarly, for Lyndon words we have

Ln(α) = RankLyndon(LARGESTLYNDON(αkn−j))− RankLyndon(LARGESTLYNDON(α1 n−j)).

The function LARGESTLYNDON(α) returns the lexicographically largest Lyndon word of length |α| = n
that is less than or equal to α. This function can be obtained by modifying LARGESTNECKLACE(α) shown
in Algorithm 1, replacing line 15 with: while LYN(β) 6= n do.

Theorem 5. Nn(α) and Ln(α) can be computed in O(n2) time.

7 Conclusions and future work

We have provided a re-interpretation of the ranking algorithm for Lyndon words given in [11]. Our approach
applies straightforward counting techniques that allow for a more practical implementation. Using this same
framework, it is possible to efficiently rank and unrank other restricted classes of necklaces and Lyndon
words. In particular, ranking algorithms for fixed-density necklaces have recently been developed [10], where
the density of a binary string is the number of 1s in the string.

A bracelet is the lexicographically smallest string in an equivalence class of strings under both rotation
and reversal. For example, while aababb and aabbab are both necklaces, only aababb is a bracelet; a
reversed rotation of aabbab yields aababb. They can be listed in lexicographic order in constant amortized
time [21].

Open problem #1: Is there a polynomial-time algorithm to rank/unrank bracelets, and if so, can it
be done in O(n3)-time or better?

An unlabeled necklace is the lexicographically smallest string in an equivalence class of strings under
both rotation and permutation of the alphabet symbols. For example, while aaaabb and aabbbb are both
necklaces, only aaaabb is an unlabeled necklace; permuting a and b in aabbbb yields bbaaaa which is
a rotation of aaaabb. They can be listed in lexicographic order in constant amortized time [3].

Open problem #2: Is there a polynomial-time algorithm to rank/unrank unlabeled necklaces, and if
so, can it be done in O(n3)-time or better? What if the alphabet is binary?

14

8 Acknowledgements

We would like to thank the anonymous reviewers who have helped improve the accuracy and presentation of
this paper. Joe Sawada is supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) grant RGPIN 400673-2012.

References

1. F. Bassino, J. Clément, and C. Nicaud. The standard factorization of Lyndon words: an average point of view. Discrete
Mathematics, 290(1):1–25, 2005.

2. K. S. Booth. Lexicographically least circular substrings. Information Processing Letters, 10(4/5):240–242, 1980.
3. K. Cattell, F. Ruskey, J. Sawada, M. Serra, and C. Miers. Fast algorithms to generate necklaces, unlabeled necklaces, and

irreducible polynomials over GF(2). Journal of Algorithms, 37(2):267–282, 2000.
4. J. P. Duval. Factorizing words over an ordered alphabet. Journal of Algorithms, 4(4):363–381, 1983.
5. H. Fredricksen and I. Kessler. Lexicographic compositions and de Bruijn sequences. Journal of Combinatorial Theory, Series

A, 22(1):17 – 30, 1977.
6. H. Fredricksen and J. Maiorana. Necklaces of beads in k colors and k-ary de Bruijn sequences. Discrete Mathematics, 23:207–

210, 1978.
7. S. W. Golomb. Irreducible polynomials, synchronizing codes, primitive necklaces and cyclotomic algebra. In Conference on

Combinatorial Mathematics and Its Applications, pages 358–370. 1969.
8. U. I. Gupta, D. T. Lee, and C. K. Wong. Ranking and unranking of 2-3 trees. SIAM Journal on Computing, 11:582–590, 1982.
9. U. I. Gupta, D. T. Lee, and C. K. Wong. Ranking and unranking of B-trees. Journal of Algorithms, 4:51–60, 1983.

10. P. Hartman and J. Sawada. Ranking fixed-density necklaces and Lyndon words. manuscript, 2016.
11. T. Kociumaka, J. Radoszewski, and W. Rytter. Computing k-th Lyndon word and decoding lexicographically minimal de Bruijn

sequence. In A. Kulikov, S. Kuznetsov, and P. Pevzner, editors, Combinatorial Pattern Matching, volume 8486 of Lecture Notes
in Computer Science, pages 202–211. Springer International Publishing, 2014.

12. S. Kopparty, M. Kumar, and M. Saks. Efficient indexing of necklaces and irreducible polynomials over finite fields. In
J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Automata, Languages, and Programming, volume 8572 of
Lecture Notes in Computer Science, pages 726–737. Springer Berlin Heidelberg, 2014.

13. D. H. Lehmer. The machine tools of combinatorics. In E. Beckenbach, editor, Applied Combinatorial Mathematics, pages
5–31. John Wiley and Sons, 1964.

14. L. Li. Ranking and unranking of AVL trees. SIAM Journal on Computing, 15:1025–1035, 1986.
15. C. Martı́nez and X. Molinero. An efficient generic algorithm for the generation of unlabelled cycles. In Mathematics and

Computer Science III, Trends in Mathematics, pages 187–197. Birkhäuser Verlag Basel, 2004.
16. W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear time. Information Processing Letters, 79:281–284,

2001.
17. J. Pallo. Enumerating, ranking, and unranking binary trees. The Computer Journal, 29:171–175, 1986.
18. E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and Practice. Prentice Hall College Div, 1977.
19. F. Ruskey. Combinatorial Generation. Working version (1i) edition, 1996.
20. F. Ruskey, C. Savage, and T. M. Y. Wang. Generating necklaces. Journal of Algorithms, 13:414–430, 1992.
21. J. Sawada. Generating bracelets in constant amortized time. SIAM Journal of Computing, 31(1):259–268, 2001.
22. A. E. Trojanowski. Ranking and listing algorithms for k-ary trees. SIAM Journal on Computing, 7:492–509, 1978.
23. H. S. Wilf. A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects. Advances in Mathe-

matics, 24:281–291, 1977.
24. H. S. Wilf. A unified setting for selection algorithms (II). Annals of Discrete Mathematics, 2:135–148, 1978.
25. S. G. Williamson. Ranking algorithms for lists of partitions. SIAM Journal on Computing, 5:602–617, 1976.
26. S. G. Williamson. On the ordering, ranking, and random generation of basic combinatorial sets. In Combinatoire et

Représentation du Groupe Symétrique, volume 579 of Lecture Notes in Mathematics, pages 187–193. Springer-Verlag, 1977.

15

Appendix - C code

//===
// Ranking and unranking algorithms for k-ary necklaces, Lyndon words and de Bruijn
// sequences.
//===
#include <stdio.h>
#define MAX 63 // n=62 is largest feasible for long long integers when k=2

int mu[MAX] = { 0,1,-1,-1,0,-1,1,-1,0,0,1,-1,0,-1,1,1,0,-1,0,-1,0,
1,1,-1,0,0,1,0,0,-1,-1,-1,0,1,1,1,0,-1,1,1,0,-1,
-1,-1,0,0,1,-1,0,0,0,1,0,-1,0,1,0,1,1,-1,0,-1,1};

int phi[MAX] = { 0,1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,
10,22,8,20,12,18,12,28,8,30,16,20,16,24,12,36,18,
24,16,40,12,42,20,24,22,46,16,42,20,32,24,52,18,
40,24,36,28,58,16,60,30};

int k, NECKLACE=0, LYNDON=0, DB=0;

long long int power[MAX];

//===
// Find the longest prefix of w[1..n] that is a Lyndon word
//===
int Lyn(int n, int w[]) {

int i,p=1;

for (i=2; i<=n; i++) {
if (w[i] < w[i-p]) return p;
if (w[i] > w[i-p]) p = i;

}
return p;

}
//===
// Return whether or not w[1..n] is a necklace
//===
int IsNecklace(int n, int w[]) {

int i,p=1;

for (i=2; i<=n; i++) {
if (w[i] < w[i-p]) return 0;
if (w[i] > w[i-p]) p=i;

}
if (n%p == 0) return 1;
return 0;

}
//===
// Compute the largest necklace neck[1..n] <= w[1..n]
//===
void LargestNecklace(int n, int w[], int neck[]) {

int i,p;

for (i=1; i<=n; i++) neck[i] = w[i];
while (!IsNecklace(n,neck)) {

p = Lyn(n,neck);
neck[p]--;
for (i=p+1; i<=n; i++) neck[i] = k;

}
}
//===
// Compute the largest Lyndon word neck[1..n] <= w[1..n]
//===
void LargestLyndon(int n, int w[], int neck[]) {

int i,p;

for (i=1; i<=n; i++) neck[i] = w[i];
while (Lyn(n,neck) != n) {

16

p = Lyn(n,neck);
neck[p]--;
for (i=p+1; i<=n; i++) neck[i] = k;

}
}
//===
// Return the number of strings whose necklace is <= w[1..n]
//===
long long int T(int n, int w[]) {

int i,j,t,s,neck[MAX],suf[MAX][MAX];
long long int tot, B[MAX][MAX];

// Sets neck[1..n] to the largest necklace less than or equal to w[1..n]
LargestNecklace(n, w, neck);

// Compute B[t][j] = number of strings of length t with prefix neck[1..j] but
// no suffix less than neck[1..n]
B[0][0] = 1;
for (t=1; t<=n; t++) {

B[t][t] = 0;
for (j=t-1; j>=0; j--) B[t][j] = B[t][j+1] + ((k - neck[j+1]) * B[t-j-1][0]);

}

// Compute suf[i][j] = longest suffix of neck[i..j] that is a prefix of neck[1..n]
for (i=2; i<=n; i++) {

s = i;
for (j=i; j<=n; j++) {

if (neck[j] > neck[j-s+1]) s = j+1;
suf[i][j] = j-s+1;

}
}

// Compute T(...)
tot = Lyn(n,neck);
for (t=1; t<=n; t++) {

for (j=0; j<n; j++) {
if (j+t <= n) tot += B[t-1][0] * (neck[j+1]-1) * power[n-t-j];
else {

if (j < n-t+2) s = 0;
else s = suf[n-t+2][j];
if (neck[j+1] > neck[s+1]) tot += B[n-j+s][s+1] + (neck[j+1]-neck[s+1]-1) * B[n-j-1][0];

}
}

}
return(tot);

}
//===
// Return the rank of w[1..n] - a valid Lyndon word or necklace - in lex order
//===
long long int Rank(int n, int w[]) {

int i;
long long int r=0;

for (i=1; i<=n; i++) {
if (n%i == 0) {

if (NECKLACE) r += phi[n/i] * T(i,w);
if (LYNDON) r += mu[n/i] * T(i,w);

}
}
return(r/n);

}
//===
// Return the necklace or Lyndon w[1..n] for a given valid rank in lex order
//===
void UnRank(int n, long long int r, int w[]) {

int j,min,max,prev,t;

// Start with necklace or Lyndon word with largest rank

17

for (j=1; j<=n; j++) w[j] = k;
if (LYNDON) w[1] = k-1;

// Determine character w[j] from left to right using a binary search
for (j=1; j<=n; j++) {

min = 1; max = k;
while (min < max) {

prev = w[j];
t = (min+max)/2;
w[j] = t;
if (NECKLACE && IsNecklace(n,w) && Rank(n,w) >= r) max = t;
else if (LYNDON && Lyn(n,w) == n && Rank(n,w) >= r) max = t;
else {

w[j] = prev;
min = t+1;

}
}

}
}
//===
// Return the rank of w[1..n] in the lexicographically smallest de Bruijn sequence
//===
long long int RankDB(int n, int w[]) {

int i,t,j,s=0,neck[MAX],prev[MAX];

// w[1..n] = kˆt 1ˆ{n-t} for t >= 1, which includes all wraparounds
t=0; while (w[t+1] == k && t+1 <=n) t++;
j=t; while (w[j+1] == 1 && j+1 <=n) j++;
if (t >= 1 && j == n) return(power[n]-t+1);

// w[1..n] is a necklace
if (IsNecklace(n,w)) return(1 - Lyn(n,w) + T(n,w));

// Find the necklace neck[1..n] of w[1..n] and its offset
for (i=1; i<=n; i++) neck[i] = w[i];
while (!IsNecklace(n,neck)) {

s++;
for (i=1; i<=n; i++) {

if (i+s <= n) neck[i] = w[i+s];
else neck[i] = w[i+s-n];

}
}

if (s != t) return (RankDB(n,neck) + Lyn(n,neck) - s);
if (Lyn(n,neck) < n) return (RankDB(n,neck) - s);

for (i=n-s+1; i<=n; i++) neck[i] = 1;
LargestNecklace(n,neck,prev);
return (RankDB(n,prev) + Lyn(n,prev) - s);

}
//===
// Return the string starting at index r in the lex smallest de Bruijn sequence
//===
void UnRankDB(int n, long long int r, int w[]) {

int i,j,min,max,last,t,p,neck[MAX],prev[MAX],prev2[MAX];
long long int d;

// Special case for strings in the wraparound
d = power[n] - r+1;
if (d < n) {

for (j=1; j<= d; j++) w[j] = k;
for (j=d+1; j<=n; j++) w[j] = 1;
return;

}
//--
// Find the smallest necklace neck[1..n] whose rank is greater than or equal to r
for (j=1; j<=n; j++) neck[j] = k;

18

// Determine character neck[j] from left to right using a binary search
for (j=1; j<=n; j++) {

min = 1; max = k;
while (min < max) {

last = neck[j];
t = (min+max)/2;
neck[j] = t;
if (IsNecklace(n,neck) && RankDB(n,neck) >= r) max = t;
else {

neck[j] = last;
min = t+1;

}
}

}
//---
d = RankDB(n,neck) - r;
if (d == 0) {

for (i=1; i<=n; i++) w[i] = neck[i];
}
else {

// Get the previous 2 necklaces prev and prev2 in lex order
neck[n]--;
LargestNecklace(n,neck,prev);
neck[n]++;

prev[n]--;
LargestNecklace(n,prev,prev2);
prev[n]++;

p = Lyn(n,prev);
j = 1;
if (p >= d) {

for (i=1; i<=d; i++) w[j++] = prev[n-d+i];
}
else {

for (i=1; i<=d-p; i++) w[j++] = prev2[n-(d-p)+i];
for (i=1; i<=p; i++) w[j++] = prev[i];

}
for (i=1; i<=n-d; i++) w[j++] = neck[i];

}
}
//===
// Compute the number of necklaces (or Lyndon words) with a given prefix by computing
// the rank of the largest necklace with the given prefix (r2) and subtracting the
// rank of the largest necklace with a smaller prefix (r1).
//===
long long int CountGivenPrefix(int pre[], int n, int j) {

int i,p,w[MAX];
long long int r1,r2;

if (j == n) {
if (LYNDON && Lyn(n,pre) == n) return 1;
if (!LYNDON && IsNecklace(n,pre)) return 1;
return 0;

}

for (i=j+1; i<=n; i++) pre[i] = 1;
if (LYNDON) LargestLyndon(n,pre,w);
else LargestNecklace(n,pre,w);
r1 = Rank(n,w);

for (i=j+1; i<=n; i++) pre[i] = k;
if (LYNDON) LargestLyndon(n,pre,w);
else LargestNecklace(n,pre,w);
r2 = Rank(n,w);

// Check if prefix is of form 111...11
i = 1;

19

while (pre[i] == 1 && i <=j) i++;
if (i == j && pre[1] == 1) return r2;
else return r2 - r1;

}
//===
int main() {

int i,j,n,option,w[MAX],pre[MAX];
long long int r;

printf("1 = Rank Necklaces \n");
printf("2 = Rank Lyndon Words \n");
printf("3 = Rank de Bruijn Sequence \n\n");
printf("4 = UnRank Necklaces \n");
printf("5 = UnRank Lyndon Words \n");
printf("6 = UnRank de Bruijn Sequence \n\n");
printf("7 = Count Necklaces with a given prefix \n");
printf("8 = Count Lyndon Words with a given prefix \n\n");

printf("Select option #: "); scanf("%d", &option);
printf("Enter n k: "); scanf("%d %d", &n, &k);

// PRECOMPUTE power[i] = kˆi
power[0] = 1;
for (i=1; i<=n; i++) power[i] = power[i-1] * k;

if (option == 1 || option == 4 || option == 7) NECKLACE = 1;
if (option == 2 || option == 5 || option == 8) LYNDON = 1;
if (option == 3 || option == 6) DB = LYNDON = 1;

if (option == 1 || option == 2 || option == 3) {
printf("Enter string w[1..n] over alphabet {1,2,...,k}\n");
for (i=1; i<=n; i++) {

printf(" w[%d] = ", i);
scanf("%d", &w[i]);

}
if (option == 3) printf("\nRank = %lld\n", RankDB(n,w));
else printf("\nRank = %lld\n", Rank(n,w));

}
if (option == 4 || option == 5 || option == 6) {

printf("Enter rank: "); scanf("%lld", &r);
if (option == 6) UnRankDB(n,r,w);
else UnRank(n,r,w);

for (i=1; i<=n; i++) printf("%d", w[i]);
printf("\n");

}
if (option == 7 || option == 8) {

printf("Enter prefix length 1 < j < n: "); scanf("%d", &j);
printf("Enter prefix over alphabet {1,2,...,k}\n");
for (i=1; i<=j; i++) {

printf(" p[%d] = ", i);
scanf("%d", &pre[i]);

}
printf("Count = %lld\n", CountGivenPrefix(pre,n,j));

}
}

