Solving the Sigma-Tau Problem

Joe Sawada Aaron Williams

Abstract

Knuth assigned the following open problem a difficulty rating of 48/50 in The Art of Com-
puter Programming Volume 4A:

For odd n > 3, can the permutations of {1,2,...,n} be ordered in a cyclic list so
that each permutation is transformed into the next by applying either the operation
o, arotation to the left, or 7, a transposition of the first two symbols?

This problem, known as the Sigma-Tau problem, is equivalent to the problem of finding a Hamil-
ton cycle on the directed Cayley graph generated by o and 7. In this paper we solve the Sigma-
Tau problem by providing a simple O(n)-time successor rule to generate successive permuta-
tions of a Hamilton cycle in the aforementioned Cayley graph.

1 Introduction

Let P,, denote the set of all permutations of {1,2,...,n}. Let ™ = pyps - - - p, be a permutation in
P,, and consider the following two operations on 7:

(7(71') = PapP3 - PnP1 and 7’(71') = PaP1P3P4 " " * Pn-

The operation o rotates a permutation one position to the left and 7 transposes the first two elements.
The Sigma-Tau graph G, is a directed graph where the vertices are the permutations P,,. There is a
directed edge from 7, to 7, if and only if 79 = o(m;) or my = 7(m;). Such a graph can be thought
of as a Cayley graph over P,, with generators ¢ and 7. The Sigma-Tau graph G, is illustrated below.
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Sigma-Tau Problem Does there exist is a Hamilton cycle in G,, for odd n > 3?

This Sigma-Tau problem was assigned a difficulty of 48/50 in Knuth’s The Art of Computer Pro-
gramming, making it the hardest open problem in the fascicle version of Volume 4A [1, Problem 71
in Section 7.2.1.2] since the middle-levels problem which was rated 49/50 was recently solved by
Miitze [2]. A reproduction of this question is shown below.

71. [48] Does the Cayley graph with generators o = (12 ... n) and 7 = (12) have a
Hamiltonian cycle whenever n > 3 is odd?

From general Hamilton cycles conditions given by Rankin [4] (see also [8]), it is known that there
is no Hamilton cycle in G,, for even n > 2. For n = 3, the following is a Hamilton cycle in Gs:

231, 312, 132, 321, 213, 123.

It applies the operations o, 7, 0, o, T followed by o to return to the first permutation. The Sigma-Tau
problem can also be thought of as a combinatorial generation problem: Can the permutations P,, be
listed so that successive permutations (including the last/first) differ by the operation o or 7? The
efficient ordering and generation of permutations has a long and interesting history with surveys by
Sedgewick in the 1970s [7], Savage in the 1990s [5], and more recently by Knuth [1]. However the
Sigma-Tau problem has remained a long-standing open problem in the area.

The Hamilton path variant of the Sigma-Tau problem was stated in 1975 in first edition of the
Combinatorial Algorithms textbook by Nijenhuis and Wilf [3, Exercise 6]. An explicit Hamilton
path in G,, was recently given by the authors in [6]. Many of the same concepts are revisited here
to solve the significantly more difficult Hamilton cycle problem. Specifically, the main result of
this paper is to answer the Sigma-Tau problem in the affirmative, providing a simple O(n)-time
successor rule to produce successive permutations in a Hamilton cycle of G,,.

In the following section, we present some necessary definitions and notation along with some
preliminary results. In Section 3 we describe how G, can be partitioned into 2 cycles, and then
ultimately provide a construction for a Hamilton cycle in G,,, for odd n > 3. The Appendix contains
a C implementation for our Hamilton cycle construction. The construction presented in this article
also appears in an unpublished manuscript [9] that provides an alternate proof using rotation systems.

2 Preliminary Definitions, Notation, and Results

Unless otherwise stated, assume for the rest of this paper that n > 3. Let 7 = pyps - - - p, denote
a permutation in P,,. Let QQ be a subset of P,, that is closed under 0. A successor rule on Q is a
function f : Q — Q that maps each permutation 7 to one of o(7) or 7(7). Our goal is to define a
successor rule on P,,, with the appropriate conditions, that constructs a Hamilton cycle one vertex
(permutation) at a time in the Sigma-Tau graph G,,. A template for the function is as follows:
f(m) = { 7(m)  if conditions;
o(m)  otherwise.



Observe that the successor rule f(7) = o(m) partitions G, into (n—1)! cycles which correspond to
equivalence classes of permutations under rotation. Let the lexicographically largest permutation in
each cycle be its representative, and call such a permutation a cyclic permutation; each representa-
tive corresponds to a permutation starting with n. Let rotations(m) denote the set of permutations
rotationally equivalent to 7.

Remark 2.1 If a successor rule f induces a Hamilton cycle in G, then there are at least (n—1)!
permutations 7 such that f(m) = 7(m).

When representing a permutation, the last symbol can be inferred from the first n—1 symbols. A
shorthand permutation is a length n—1 prefix of some permutation. For 1 < j < n—2, define
g(j) = j+1, and define g(n—1) = 2. A seed is a shorthand permutation s = s;s9 - - 5,,_; Where
s1 = n and the missing symbol x is g(sy) (Note: this definition is different from the one given in [6]
and it is critical to our Hamilton cycle construction). Let Seeds,, denote the set of all (n—1)(n—3)!
seeds. Given a seed s with missing symbol z, the flower of s, denoted by flower(s), is the set of all
n—1 cyclic permutations that can be obtained by inserting x after a symbol in s. Given a seed s, let
perms(8) = U cpouwer(s) Totations(m). If S is a set of seeds, let perms(S) = (U, g perms(s).

Example 1 Whenn = 5 the 4 - 2! = 8 seeds are:
5134, 5143, 5214, 5241, 5312, 5321, 5413, 5431.
The flower of seed 5321 is flower(5321) = {54321, 53421, 53241, 53214}.

perms(5321) = 54321,43215, 32154, 21543, 15432,
53421, 34215, 42153, 21534, 15342,
53241, 32415, 24153, 41532, 15324,
53214, 32145, 21453, 14532, 45321.

Remark 2.2 Every cyclic permutation m = p1ps - - - p, belongs to the flower of either one or two
seeds. It belongs to the flower of the seed obtained by removing g(ps) from w. Also if p» = g(p3),
then it belongs to the flower of the seed obtained by removing py from T.

An immediate consequence is the following remark.
Remark 2.3 perms(Seeds,) = P,,.

Our definitions of seeds and flowers are motivated by the following equivalence property. Given
a permutation T = p1ps - - - Py, let equiv () be the set of all rotations of pypspy - - - p,, with ps inserted
back into the second position. For example equiv(54321) = {54321, 34215,24153,14532}. A
successor rule f is T-equivalent if f(m) = 7(m) implies that f(7’) = 7(n’) for all permutations
7' € equiv(r).

Lemma 2.4 A successor rule f induces a cycle cover on G, if and only if f is T-equivalent.



Proof. (=) Suppose f induces a cycle cover on G,,. If f(7w) = 7(m) for some permutation 7 =
P1p2 -+ Pn, then o (m) = paps - - - p,p1 must be preceded by 7' = 7(paps -+ - Pup1) = Papapaps -+ Pu1-
Thus, f(7') = 7(7’). Repeating this argument starting with 7" implies that f (pspepspe - - - PaP1P3) =
T(papepspes - - - pnp1ps) and so on, which implies that f is 7-equivalent. (<) Suppose f is 7-
equivalent. Consider m = pipy---p, and T = paP1P3Ps - - - pp and o = pP1P2 - - - Pn_1. Note

that 7(m1) = o(m) = 7. For f to be a cycle cover on G,, exactly one of f(m;) and f () must be 7.
This follows since o € equiv(my). O

2.1 A Hamilton Cycle for an Induced Subgraph of G,,

Let G,[Q] denote the subgraph of G,, induced by Q. By considering the T-equivalence property
and considering a seed s = $152- -5, 1 With missing symbol z, we define a successor rule on
Gn[perms(s)] that induces a Hamilton cycle. For 1 < j < n—1, consider the cyclic permutation
obtained by inserting x after s;. Let m; denote the rotation of this permutation such that x is in the
second position. Define a T-equivalent successor rule fs on G, [perms(s)| as follows:

T(m ifm=m;forsomel < j <n-—1;
rim={ 7 J 7=

o(m)  otherwise.

Example 2 Consider seed s = 5321 with missing symbol x = 4. Repeated application of the
successor rule f, induces the following Hamilton cycle in G5[perms(5321)]:

21543715432
45321, 53214, 32145, 21453, otea
14532 = 7y,
41532, 15324, 53241, 32415, s~ A R
24153 = 15, 15345 34215 5301 45301 S3214
4215 14532 32145
42153, 231:23;15’ iSS;;l’Z, SRR 2\1534/ 3V34153 41532‘/ 21453/
43215, 32154, 21543, 15432, 15324
54321 = 7. 32415 53241

The five permutations in each row are equivalent under rotation. A 7 transition is applied to
move between the equivalence classes when the second symbol is the missing symbol = = 4.

Remark 2.5 fs(7;) = 7(n;) = o(mwj_1), where 7y = m,_1.
Let seq(m) denote the following sequence of all permutations rotationally equivalent to 7:

n—l(

o(n),o*(m),..., 0" (), x,

where o/ denotes o/~ !(c(j)) for j > 1. Repeated application of f, induces a Hamilton cycle,
denoted by ham(s), in G, [perms(s)] as follows:

ham(s) = seq(m,_1), seq(Tp—2), ..., seq(m).

Lemma 2.6 For any seed s, the successor rule fq induces a Hamilton cycle in G, [perms(8)] using
n—1 T-edges.



2.2 A Tree-like Structure of Seeds

The seeds of the set Seeds,, can be arranged into a tree-like structure that has exactly one cycle.
Consider a seed s = 5159 --5,-1 with missing symbol z. Define the parent of s, denoted by
parent(s), to be the seed obtained by removing g(x) from syzsy - --s,_1. Let a(s) be the length
n—3 prefix of so(s9—1)---2(n—1)(n—2) - - - 2. By this definition, the last element of a(s) is g(x).
The decreasing subsequence of s is the longest prefix of a(s) that appears as a subsequence in
S3, 54, ..., 5j—1, where j is such that s; = 1. This is well-defined since 1 appears in every seed, but
not in the first position. The level of s is (n—3) minus the length of its decreasing subsequence.

Example 3 The decreasing subsequence of the following seeds is highlighted in blue.

seed s «(s) level parent(s)
64213 432 2 65413
63521 325 1 64321
64321 432 0 65431

Lemma 2.7 If s is a seed at level { > 0, then parent(s) is at level {—1.

Proof. Let s = s159---5,_1 be a seed with missing symbol z. Since ¢ > 0, the last symbol of
a(s), which is g(z), will not be in s’s decreasing subsequence. Thus, the decreasing subsequence
of parent(s) is the decreasing subsequence of s with g(x) added to the front. Thus, parent(s) is at
level /—1. O

Let Hub, denote the subset of seeds at level 0. A seed sy - --S,_1 with missing symbol x
is in Hub,, if and only if xsys3 - - - 5,9 is a rotation of (n—1)(n—2)---2, sy = n, and s,_; = 1.
Denote the n—2 seeds in the Hub,, by hy, h,, ..., h, 5. They can be ordered as follows, where
parent(h;) = hjq (with h,,_; = h;) and each h; is missing the symbol ¢ + 1.

hy = n(n-1)(n-2)--

hy = n2(n—1)(n— 2)

h; = n32(n—1)(n— 2) 1,
h,» = n(n-2)(n-3)---1

Example4 Forn = 6, the parent structure of all seeds is illustrated below, where h; = 65431,
hy = 62541, hy = 63251, hy, = 64321.



Lemma 2.8 Let n > 4 and let s, and s, be distinct seeds where s = s1S9 - - S,_1 has missing
symbol x. If s5 = parent(sy) then flower(sy) N flower(ss) = {s1xs9 - - Sp_1}. If So # parent(sy)
and s1 # parent(sy) then flower(sy) N flower(sg) = 0.

Proof. Suppose sy = parent(s;). From the definition of parent, s;xss - - - s,_1 is in flower(s;) N
flower(ss). Every other cyclic permutation in flower(s;) starts with s;s9, where s, = x—1 or s5 =
n—1 and x = 2. Therefore since n > 4, these permutations are not in flower(sy). Thus flower(s;)N
flower(ss) = {sjxsy---s,_1}. Now suppose that s, # parent(s;) and s; # parent(sy) and
flower(s1) N flower(sy) # 0. Then flower(s1) N flower(sz) must contain some cyclic permutation
T = 8183+ S;LSj41 - Sp—1 Where 2 < j < n—1. Note that if j = 1 then sy = parent(s;). By
removing any symbol from 7 except = or s9, the resulting shorthand permutation is not seed, by its
definition. However, if removing s, is a seed, then s; = parent(s;), a contradiction. Thus in this
case flower(sy) N flower(sy) = 0. O

This lemma along with the definition of f, implies that given a seed s = sys9---5,_1 With
missing symbol x, 51285 - - - 5,1 is the unique permutation 7 in perms(s) N perms(parent(s)) such
that fs(m) = 7(m). Let Tparent(s) denote this permutation sy -+ S, 1.

3 Successor Rules to Construct Hamilton Paths/Cycles in G,

In this section, we start by showing that the following successor rule partitions G,, into two cycles.
Then by modifying the rule for a single permutation, a successor rule is presented that constructs a
Hamilton path in G,,. By modifying the rule for n—1 permutations we obtain a successor rule that
constructs a Hamilton cycle in G,, for odd n.

Let S be a subset of Seeds,,. Define the successor rule F's on G, [perms(S)] as follows:

Fs(m) = 7(m)  if there exists s € S such that 7 € perms(s) and fs(7) = 7(7);
s\m) = o(m)  otherwise.




Remark 3.1 The successor rule Fg is T-equivalent.

As a first step, we focus on how this successor rule behaves on Hub,,. For our upcoming Hamil-
ton cycle construction on G,,, we will want to keep track of some special permutations. Consider
the n—2 permutations obtained by taking all rotations of (n—1) - - - 32 and inserting n into the first
position and 1 into the second last position:

Define p,,_ as follows:

P1 =  n(n—-2)---321(n—1),

P2 =  n(n-3)---32(n—1)1(n—2),

Ps =  n(n—4)---32(n—1)(n—2)1(n—3),
Pn2 = n(n—1)---4312.

Pn-1 = n(n_3)(n—4) s 2(71—2) (n—l)l

Removing the second symbol from each of these n—1 permutations results in a seed at level 1 and
each permutation is the 7parent of the resulting seed. The following example illustrates how Frryp,
partitions G, [perms(Hwub,,)] into two cycles for n = 6.

Example S Forn =6, p1, po, ..., ps are:

p1 = 643215, py = 632514, ps = 625413, py = 654312, ps = 632451.

Frup, partitions Gg[perms(Hubg)| into the following two cycles C; and Cy. The cycle C}
contains the permutations pi, p2, P3, P4 in that relative order highlighted in blue. The cycle ('
contains p; highlighted in blue.

Ci =

564321, 643215, 432156, 321564, 215643, 156432, 516432, 164325, 643251,
463251, 632514, 325146, 251463, 514632, 146325, 416325, 163254, 632541,
362541, 625413, 254136, 541362, 413625, 136254, 316254, 162543, 625431,
265431, 654312, 543126, 431265, 312654, 126543, 216543, 165432, 654321.

Cy

543216,432165,321654,
254316,543162,431625,
325416,254163,541632,
432516,325164,251643,

231654,316542,165423,654231,542316,423165,
341625,416253,162534,625341,253416,534162,
451632,516324,163245,632451,324516,245163,
521643,216435,164352,643521,435216,352164,

243165,431652,316524,165243,652431,524316,
354162,541623,416235,162354,623541,235416,
425163,251634,516342,163425,634251,342516,
532164,321645,216453,164532,645321,453216.

Observe that (' starts with 7(654321) and ends with 654321 while C begins with o (654321).

Lemma 3.2 Fp,p, partitions G, [perms(Hwub,,)] into two cycles Cy and Cy where Cy contains the
, Pn_2 While respecting their relative order, and Cy contains p,,_1. More-
over, Cy contains n - - - 321 and Cy contains (n—2)(n—1)(n—3)(n—4) - - - 1n.

permutations p1, P2, - - -



Proof. Since Fryp, is T-equivalent, from Lemma 2.4 it will induce a cycle cover on G, [perms(Hub,))).
We explicitly show that it induces a two cycle cover with the properties mentioned. Given a Hub,,
seed h; = 5159+ -+ 5,1 with missing symbol z = ¢ + 1, define 7r§- in a similar manner used when
defining 7; in ham(s): it is the permutation obtained by inserting x after s; in the seed h;, fol-
lowed by a rotation so that z is in the second position. Let 7T? = 77;“2 and let W?’l = 7rj1. Since
h; =n(i)(i—1)---2(n—1)(n—2) - - - (i+2)1,

7 o= (1+2)(i+1)1n(i)(i—1) - - - 2(n—1)(n—2) - - - (i+3).
Applying three rotations we have:
o®(mh_y) =n(i)(i—1)---2(n—1)(n—2) - (i+1)1 = 7} """,
Now, from the definition of ham(s) and Remark 2.5 we have

o Frup, (mi71) = 7(7i™) = o(x"~)) which is the first permutation of seq(7’""),

. FHubn(sz—l) = T(wa—l) 0(7?;—2)’ and

o FHubn(Wé) =7(my) = U(ﬁ) = 0(03<Wgt12))-

Using these properties, we can explicitly trace the two cycles in G, [perms(Hwub,,)]. Let C; be the
following cycle obtained by applying Firs, starting from the first permutation of seq(7~7):

2,
5
4
2

),

[\V)
S
=
S

seq(my 1), o(m,”
seq(m, 1), o(m,”
seq(my 1), o(m,”

n—2

g n—%
3 n—
o (ﬂ-nf?1
n—

o ( n—2

9 9 9
NN
S
333333

S

56(](7?711—1)’ U(W}L—2)’ 02(7%—2)’ 03(7@11—2)‘

The cycle C; contains (n+3)(n—2) permutations. Each row corresponds to the first n+3 permuta-
tions for some ham(h;). Also observe that for 1 < i < n—2, p; is a member of rotations(w'~; ™).

Th—1
Thus p1, P2, - - -, Pn_2 appear in C; respecting the relative order. Moreover, o3(7} ,) = 7}~ 2 =

n---321 is the last permutation in C. Let Cs be the following cycle obtained by applying F'gup,
starting from o*(7}_,):

oM (my o), 02(mh_g), - 0™ (my ), seq(m)_s), seq(my_y), ..., seq(my),
0-4(71-7%72)7 0-5(71-7%72)7 e ao-n<7T72LfQ)7 SGQ(T(TZL*E})? 86Q<7T’?L*4) 569(71-%)
‘74(773—2)» 05(W2—2)a O (WZ—Q)a 36(](”2—3) 36‘1(772—4) 5641(773)
ol (mn23), o®(mn23), ... o™(mT3),  seq(mn=3), seq(mn3), ..., seq(mh 7).

The cycle C5 contains the remaining ((n—3) + n(n — 4))(n—2) permutations of perms(Hub,,).
The permutation p,,_; belongs to rotations(m,:— 3) and thus belongs to C5. Moreover C5 ends with
75 % = (n—2)(n—1)(n—3)(n—4) - - - 1n. O

Because of the tree-like structure of the seeds, we can treat the cycles C'; and Cy of Hub,, as a
base case and then repeatedly add appropriate seeds to grow the two cycles.



Lemma 3.3 Letn > 4 and let sy, Ss, . . ., S, be an increasing ordering of Seeds,, by level, where
m = (n—1)(n—3)\. Let S = {s1,83,...,8;} for some n—2 < j < m. Then Fg partitions
Gnlperms(S)] into two cycles Cy and Cs.

Proof. The proof is by induction on j. The base case when 7 = n—2 is covered by Lemma 3.2 since
the first n—2 seeds are the Hub,, seeds with level 0. Consider S = {s1,s2,...,s;} forn—2 <
j < m. Inductively, assume that Fg partitions G, [perms(S)] into two cycles C} and Cs. Since
Fis; 1y = fs;41> Fis;..y induces a Hamilton cycle in G, [perms(s;11)]. By the ordering of the seeds,
Sj+1 = 8152+ - Sp—1 has level £ > 0 and all seeds at a smaller level are in {s;, s,...,s;}. Thus,
by Lemma 2.7 and Lemma 2.8 there is exactly one seed s in {s1, S2, ..., s;}, namely parent(s;;1),
such that flower(s;1)Nflower(s) is not empty. Moreover this intersection contains the single cyclic
permutation ™ = $1xSs - - - S,,—1. Thus, from the definition of ham(sj), 7 is the only permutation in
perms(S) such that Fisygs,,1(7) is notin perms(S). Suppose that 7 is in C'. By replacing the edge
(m,0(m)) in C; constructed by Fs from the inductive hypothesis with the sub-path of ham(s;;1)
starting with 7 and ending with o (), we obtain a larger cycle C constructed by Fsyys,,,} that
contains all permutations in perms(s;1). The case for when 7 is in C5 is analogous. a

When S = Seeds,, the successor rule F is equivalent to the following.

2-cycle successor rule

Let 1 = pips---p, be a permutation and let » be the symbol to the right of n when 7 is
considered cyclically and skipping over ps.

T(m) if (r,p2) € {(1,2),(2,3),...,(n—2,n—1),(n—1,2)};
) = { o(m) other@ise.

3.1 Hamilton Path Successor

From Lemma 3.2, Fgryp, partitions G, [perms(Hwub,,)] into two cycles C and Cy where C'; contains
m = n---321 and C; contains my = (n—2)(n—1)(n—3)(n—4) - --1n. Lemma 3.3 and its proof
construction together with Remark 2.3 demonstrate that F partitions G,, into two cycles C; and Cs
where (' contains 7; and C5 contains 7. Since F'(m) = 7(m) and F(me) = 7(ms) by changing
the successor of 7y from 7(7;) to o(m) = 7(my) in F we obtain a successor rule that constructs a
Hamilton Path in G, starting from 7(7;) and ending with 5.

Hamilton path successor rule for G,

Let 1 = pips---p, be a permutation and let r» be the symbol to the right of n when 7 is
considered cyclically and skipping over p,. Define the successor rule HP on G, as follows:

| 7(m)  if(r,p2) €{(1,2),(2,3),...,(n—2,n—1),(n—1,2)} and T # n - - - 321;
L) = { o(m) otherfvgise.




Our results prove the following theorem for n > 4. The correctness for cases n = 2, 3,4 are easily
verified by iterating HP () starting from 12, 231, and 3421 respectively. For n = 2 we get 12, 21.
For n = 3 we get 231, 312, 123, 213, 132, 321. For n = 4 we get:

3421, 4213, 2413, 4132, 1324, 3241, 2341, 3412, 4123, 1234, 2134, 1342,
3142, 1423, 4231, 2431, 4312, 3124, 1243, 2143, 1432, 4321, 3214, 2314.

Theorem 3.4 The successor rule HP induces a Hamilton path in G, starting from T(n - - - 321) and
ending with (n—2)(n—1)(n—3)(n—4) - - - In, for all n > 1.

This Hamilton path successor is similar to, but not the same as the one presented in [6].

3.2 Hamilton Cycle Successor

To convert the 2-cycle successor £ into a Hamilton cycle successor (which must be T-equivalent by
Lemma 2.4) we change the definition of n—1 transitions from o to 7. Consider the n—1 permutations
obtained by taking all rotations of 12 - - - (n—1) and inserting n into the second position:

ry =  (n—=1)nl2---(n—2),
) =  (n—2)n(n—1)12---(n—3),
rs =  (n=3)n(n—2)(n—1)12--- (n—4),
rpo = 2n345---(n—1)1,
r,_1 = 1n23---(n—1).
Let R, = {ry,rs,...,r, 1}. The following lemma is proved at the end of this subsection.
Lemma 3.5 F partitions G, into two cycles C and Cy where C contains the permutations r,rs, ..., Tp_o

while respecting their relative order, and C5 contains r,_.

By changing the definition of F' for the permutations in R,,, we obtain the following successor rule.

Hamilton cycle successor rule for G,, where n > 3 is odd

Let 1 = pips---p, be a permutation and let » be the symbol to the right of n when 7 is
considered cyclically and skipping over p,. Define the successor rule HC on G, as follows:

T(m) if (r,p2) € {(1,2),(2,3),...,(n—2,n—1),(n—1,2)} or 7 € Ry;
HC(m) = { o(m) other\?vzise.

Example 6  An illustration of how the successor rule HC'(7) joins the two cycles C; and C
constructed by applying the 2-cycle successor F' on G7 is given below.

10



ry o(r)

Theorem 3.6 The successor rule HC' induces a Hamilton cycle in G, for odd n > 3.

Proof. From Lemma 3.5, F' partitions G,, into two cycles C; and C5 where C contains the per-
mutations ry, ro, . .., I, s while respecting their relative order, and C'; contains r,_;. Observe that
7(r;) = o(rip1) for 1 <i <n—1and 7(r,—1) = o(r1). Also, F(r;) = o(r;) for all . Considering
(1, let q; denote the permutation before r; 1 for 1 < i < n—2 and let q,_, denote the permutation
before r;. Then ] is given by

C’lzrl,a(rl),...,ql, I'Q,O'(I'Q),...,qg, 1‘3,0'(1'3),...,(13, I‘n_Q,O'(I'n_Q),...,qn_Q.
Similarly, letting q,,_; denote the permutation before r,,_; in C5 we have
02 =Tp-1, U(rn—1>a -y gp—1-

By changing the successor of each r; from o(r;) to 7(r;) in F' we obtain HC' which produces the
following Hamilton cycle for odd n:

rlaa(rQ)a"'7q27 1'3,0(1'4)’---7(14, rn7270—(rn71)7--'7qn717 rnflao'(rl)w"aqla

I'2,0'<I'3)7...,(]3, I‘4,0’(I‘5),...,q5, rn7370(rn72>7"'7qn72-

O
A complete C implementation of both the Hamilton path and Hamilton cycle successors is given in
the Appendix.
3.2.1 Proof of Lemma 3.5

Recall that F = Fgeeqs,. For each rj, 1 = o(r;) = pip2---p, is a cyclic permutation where
pe # g(p3). Thus, by Remark 2.2, 7 belongs exclusively to the flower of the seed obtained by
removing ¢(p,) from 7. Denote this seed by sd(r;). Given a seed s at level ¢ > 0, define prehub(s)
to be the seed at level 1 obtained by applying the parent operation ¢ — 1 times starting with s.
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Lemma 3.7 If1 < j < n—2 then prehub(sd(r;)) is the seed obtained by removing the first symbol

of 07((n—1)(n—2) - - - 2), inserting n at the beginning and inserting I into the second last position.
Additionally, prehub(sd(r,—1)) = n(n—4)(n—>5) - --2(n—2)(n—1)1.

Proof. The decreasing subsequence of sd(ry) = nl134---(n—1) has length 0. Thus r; is at level
n—3. Applying n—4 parent operations we obtain the seed n(n—3)(n—4)---21(n—1) at level 1,
which is prehub(sd(r1)). For2 < j <n—2,considerr; = (n—j)n(n—j+1)--- (n—1)12--- (n—j—1).
The decreasing subsequence of sd(r;) is simply (n—j+1) with length 1. Thus, n—>5 applications
of the parent operation are required to get to prehub(sd(r;)) and this will yield the required seed.
The decreasing subsequence of sd(r,,—1) = n245---(n—1)1is 2(n—1), which has length 2. Apply-
ing n—6 parent operations we obtain the seed n(n—4)(n—5) - --2(n—2)(n—1)1 at level 1, which is
prehub(sd(r,_1)). O

By inserting the missing symbol from prehub(sd(r;)) into the second position we obtain p;.
Corollary 3.8 For1 < j < n—1, the permutation Tparent(prehub(sd(r;))) = p;.

From Lemma 3.2, Fppyp, partitions G, [perms(Hub,,)] into two cycles C; and Cy where Cy

contains p, P, - - - , Pn_2 in that relative order and C'; contains p,,_;. Lemma 3.3 and its proof con-
struction, along with Remark 2.3 demonstrate that F' partitions G,, into two cycles C; and C5 where
('} contains pq, P, - - - , Pn_2 in that relative order and C5 contains p,,_;. Together, Corollary 3.8,

the inductive proof of Lemma 3.3, and the tree-like structure of the seeds imply that C'y, considered
starting from p;, will be of the form:

P, 5T, P2y 52500y P2, -0 T2y -

It also means that r,,_; is in C5. This proves Lemma 3.5.
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Appendix - C code for a Hamilton path in G,, or a Hamilton cycle in G,, for odd n
#include <stdio.h>
int n, pi[100], PATH=0, CYCLE=0;

void Print () {
for (int i=1; i<=n; i++) printf("%d", pi[il); printf("\n");

Y i e e
void Sigma () {

int tmp, 1i;

tmp = pi[l];

for (i=1; i < n; i++) pi[i] = pil[i+1];

piln] = tmp;
}
Y e
void Tau () {

int tmp = pi[l]; pi[l] = pil[2]; pil2] = tmp;
}
/)=——=———=————=—==========================================

// RETURN TRUE IF pi[l..n]= n..21

int SpecialPerm() {
for (int i=1; i<=n; i++) if (pi[i] != n-i+1) return O;
return 1;

// RETURN TRUE IF pi[l]pi[3..n] is a rotation of 12..n-1
int SpecialSet () {

if (pi[2] != n) return 0;

if (pi[l] < n-1 && pi[l]+1 != pi[3]) return O;

if (pi[l1] == n-1 && pi[3] != 1) return 0;

for (int i=3; i<n; i++) {

if (pi[i] < n-1 && pi[i]+1 != pi[i+1]) return O;
if (pi[i] == n-1 && pi[i+l] != 1) return O;

}

return 1;
}
Y e
void Next () {

int r,i=1;

while (pi[i] != n) i++;

if (i ==1) r =pi[3];

else if (1 == n) r = pi[l];

else r = pi[i+1];

if (PATH && SpecialPerm()) Sigmal();

else if ((r < n-1 && pi[2]==r+l) || (r==n-1 && pi[2]==2)) Taul();

else if (CYCLE && SpecialSet()) Tau();

else Sigma () ;
}
Y
int main () {

int total=0, TOTAL=1, i, type;

printf ("ENTER 1 (Hamilton Path) or 2 (Hamilton Cycle):"); scanf ("%d", &type);
if (type == 1) PATH = 1;

if (type == 2) CYCLE = 1;

printf ("ENTER n (must be odd for cycle): "); scanf ("%d", &n);

for (i=2; i<=n; i++) TOTAL = TOTAL *i; // TOTAL = n!

for (i=1; i<=n; i++) pi[i] = n-i+1; // INITAL PERM = tau(n..Z21)

Tau();

while (total < TOTAL) {
Print () ;
Next () ;
total++;
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