
A Hamilton Path for the Sigma-Tau Problem

Joe Sawada ∗ Aaron Williams †

Abstract

Nijenhuis and Wilf asked the following question in their Combinatorial Algorithms textbook
from 1975: Can the permutations of {1, 2, . . . , n} be ordered so that each permutation is trans-
formed into the next by applying either the operation σ, a rotation to the left, or τ , a transposition
of the first two symbols? Knuth rated the challenge of finding a cyclic solution for odd n (cycles
do not exist for even n > 2) at 48/50 in The Art of Computer Programming, which makes it Vol-
ume 4’s hardest open problem since the ‘middle levels’ problem was sovled by Mütze. In this
paper we solve the 40 year-old question by Nijenhuis and Wilf, by providing a simple successor
rule to generate each successive permutation. We also present insights into how our solution can
be modified to find a Hamilton cycle for odd n.

1 Introduction
The efficient ordering and generation of permutations has a long and interesting history with surveys
by Sedgewick in the 1970s [8], Savage in the 1990s [7], and more recently by Knuth [1]. However
there has remained one long-standing open problem in the area. This problem was first articulated
in 1975 in first edition of the Combinatorial Algorithms textbook by Nijenhuis and Wilf [3].

To formally state the general version of this problem, consider the following two operations on
a permutation π = p1p2 · · · pn:

σ(π) = p2p3 · · · pnp1 and τ(π) = p2p1p3p4 · · · pn.

The operation σ (u in the original problem) rotates a permutation one position to the left and τ (t in
the original problem) transposes the first two elements. The Sigma-Tau graph Gn is a directed graph

1

3421 4213

1342 2134
1234 2341

4123 3412
3142 1423

2314 4231

2413 4132

3241 1324

4312 3124

2431 1243

4321

3214

1432

2143

Figure 1: The Sigma-Tau graph G4 where the straight arcs are τ edges and the curved
arcs are σ edges.

where the vertices are the permutations of {1, 2, . . . , n}. There is a directed edge from π1 to π2 if
and only if π2 = σ(π1) or π2 = τ(π1). The Sigma-Tau graph G4 is illustrated in Figure 1.

The generalized statement of Nijenhuis and Wilf’s original question is as follows.

Sigma-Tau Path Problem For n > 1, does there exist is a Hamilton path in Gn?

In this paper we solve this problem, answering the question in the affirmative by providing an explicit
Hamilton path construction.

The cycle version of this problem is known to have no solution for even n > 2. This follows
from a more general Hamilton cycle condition by Rankin [5] (see Swan [9] for a simplified proof).1

The following is a Hamilton cycle in G3:

231, 312, 132, 321, 213, 123.

It applies the operations σ, τ, σ, σ, τ followed by σ to return to the first permutation. For odd n ≥ 3,
the problem of finding a Hamilton cycle was stated in Knuth’s The Art of Computer Programming.
It was ranked 48/50 making it the hardest open problem in the fascicle version of Volume 4 [1] since
the middle levels problem which was rated 49/50 was recently solved by Mütze [2].

∗ email: jsawada@uoguelph.ca
† email: awilliams@simons-rock.edu
1An error in [4] stated that a Hamilton path cycle was possible for n = 5. Ruskey, Jiang, and Weston [6] corrected

this error by finding all five non-isomorphic cyclic orders for n = 5.

2

In the following section, we present some necessary definitions and notation along with some
preliminary results. In Section 3 we describe how Gn can be partitioned into 2 cycles, and then
ultimately provide a construction for a Hamilton path in Gn. In Section 4 we give insights into the
construction of a Hamilton cycle in Gn, for odd n. The Appendix contains a C implementation for
the construction of a Hamilton path in Gn. The Hamilton path and cycle rules discussed in this article
also appear in an unpublished manuscript [10]. This article gives a more accessible proof for the
path case.

2 Seeds and Flowers
In this section, we provide the necessary definitions and notation used to prove our main result. For
the rest of this paper we assume that n is fixed to be greater than 3.

Let P denote the set of all permutations of {1, 2, . . . , n}. By removing all τ edges in the Sigma-
Tau graph Gn, the permutations are partitioned into (n−1)! cycles. The n permutations within each
cycle form an equivalence class under rotation. Let the lexicographically largest permutation of
each cycle be its representative, and we call such a permutation a cyclic permutation. Let cycle(π)
denote the set of n permutations rotationally equivalent to π. When representing a permutation, the
last symbol can be inferred from the first n−1 symbols. A shorthand permutation is a length n−1
prefix of some permutation. A seed is a shorthand permutation s = s1s2 · · · sn−1 where s1 = n
and the missing symbol x is s2+1, unless s2 = n−1 in which case x = 1. There are (n−1)(n−3)!
seeds. Given a seed s with missing symbol x, the flower of s, denoted flower(s), is the set of all
n−1 cyclic permutations that can be obtained by inserting x after a symbol in s. Given a seed s, let
perms(s) denote

⋃
π∈flower(s) cycle(π). If S is a set of seeds, let perms(S) =

⋃
s∈S perms(s).

Example 1 When n = 5 the 4 · 2! = 8 seeds are:

5432, 5423, 5321, 5312, 5241, 5214, 5143, 5134.

The flower of seed 5321 is flower(5321) = {54321, 53421, 53241, 53214}.

perms(5321) = 54321, 43215, 32154, 21543, 15432,

53421, 34215, 42153, 21534, 15342,

53241, 32415, 24153, 41532, 15324,

53214, 32145, 21453, 14532, 45321.

For the remainder of this paper, arithmetic on the symbols is performed mod n−1, where n ≡ 1
and 0 ≡ n−1. Observe that each cyclic permutation π = p1p2 · · · pn belongs to at least one flower.
In particular the flower of the seed obtained by removing p2+1 from π contains π. This leads to the
following lemma.

Lemma 2.1 Let S be the set of all seeds. Then perms(S) = P.

Let G = (V,E) be a directed graph with vertex set V and edge set E. Given a subset V ′ of
V , let G[V ′] denote the subgraph of G induced by V ′. A vertex v is a neighbour of a vertex u if

3

(u, v) ∈ E. A successor rule on a directed graph is a function that maps each vertex onto one of its
neighbours. In the following, we define a successor rule that can be used to construct a Hamilton
cycle in Gn[perms(s)] for an arbitrary seed s.

Consider a seed s = s1s2 · · · sn−1 with missing symbol x. For 1 ≤ j < n, consider the cyclic
permutation obtained by inserting x after sj . Let πj denote the rotation of this permutation with x in
the second position. Define a successor rule f for Gn[perms(s)] as follows:

f(π) =

{
τ(π) if π = πj for some 1 ≤ j < n;
σ(π) otherwise.

Example 2 Consider seed s = 5321 with missing symbol x = 4. Repeated application of the
successor rule f constructs the following Hamilton cycle in G5(perms(5321)):

45321, 53214, 32145, 21453, 14532 = π4,
41532, 15324, 53241, 32415, 24153 = π3,
42153, 21534, 15342, 53421, 34215 = π2,
43215, 32154, 21543, 15432, 54321 = π1.

21543 15432

24153 41532

32154

5432143215

45321

14532

21453

15342
34215

42153

53421

21534

5321 53214

32145

32415 53241

15324

The five permutations in each row are equivalent under rotation. A τ transition is applied to
move between the equivalence classes when the second symbol is the missing symbol x = 4.

Note that τ(πj) = σ(πj−1), where τ(π1) = σ(πn−1). Thus, repeated application of f constructs a
Hamilton cycle, denoted Ham(s), in Gn[perms(s)] as follows:

Ham(s) = σ(πn−1), σ2(πn−1), . . . , σn−1(πn−1), πn−1,
σ(πn−2), σ2(πn−2), . . . , σn−1(πn−2), πn−2,
σ(πn−3), σ2(πn−3), . . . , σn−1(πn−3), πn−3,
· · · · · · · · · · · · · · ·
σ(π1), σ2(π1), . . . , σn−1(π1), π1.

Here σj denotes σj−1(σ(j)) for j > 1.

Lemma 2.2 For any seed s, repeated application of the successor rule f constructs a Hamilton
cycle in Gn[perms(s)] using exactly n− 1 τ edges.

2.1 A Tree-like Structure of Seeds
The seeds of P can be ordered into an almost tree-like structure (a unicyclic graph). Consider a seed
s = s1s2 · · · sn−1 with missing symbol x. Define the parent of s, denoted parent(s), to be the seed
obtained by removing x+1 from s1xs2 · · · sn−1, except when x = n−1 the symbol 1 is removed.
The decreasing subsequence of a seed s is the longest prefix of (s2−1)(s2−2) · · · (s2−n+3) that

4

appears as a subsequence in s1, s2, . . . , sn−1. The level of a seed s is (n−3) minus the length of its
decreasing subsequence.

Example 3 Consider the seed s = 92518476. Its decreasing subsequence is 1876 and thus is
at level (9− 3)− 4 = 2. Also, parent(s) = 93251876 has decreasing subsequence 21876 and
it is at level 1.

The hub, denoted hub, is the set of n−1 seeds at level 0. An example of the hub and parent structure
for n = 6 is illustrated in Figure 2.

61543

65432 62154

64321 63215

63521

63251 62415

62145

61534

6135464312

64132

6524365423

62541

62451
62514

61435

61345

61453

65324

6523465342

64213
64123

64231

63152

63512

63125

hub

Figure 2: The seeds for n = 6 illustrating the parent structure and hub.

Lemma 2.3 If s is a seed at level ` > 0, then parent(s) is at level `−1.

Proof. If s = s1s2 · · · sn−1 is a seed with missing symbol x at level ` > 0, then x = s2+1 and its
decreasing subsequence has length d < n−3. Thus x+1 = s2−n−3 is not part of its decreasing
subsequence. The parent of s, which is the permutation s1xs2 · · · sn−1 with x+1 removed, has
decreasing subsequence of length d+1. Thus, parent(s) is at level `−1. 2

Lemma 2.4 Let s1 = s1s2 · · · sn−1 be a seed with missing symbol x and let s2 be a seed not equal
to s1. If s2 = parent(s1) then flower(s1) ∩ flower(s2) = {s1xs2 · · · sn−1}. If s2 6= parent(s1)
and s1 6= parent(s2) then flower(s1) ∩ flower(s2) = ∅.

Proof. Suppose s2 = parent(s1). From the definition of parent, s1xs2 · · · sn−1 is in flower(s1) ∩
flower(s2). Every other cyclic permutation in flower(s1) starts with s1s2, where s2 = x−1, and

5

therefore clearly is not in flower(s2). Thus flower(s1) ∩ flower(s2) = {s1xs2 · · · sn−1}. Now
suppose that s2 6= parent(s1) and s1 6= parent(s2) and that flower(s1)∩flower(s2) is not empty.
Then flower(s1)∩flower(s2) must contain some cyclic permutation π = s1s2 · · · sjxsj+1 · · · sn−1
where 2 < j ≤ n. Note that if j = 1 then s2 = parent(s1). By removing any symbol from π except
x or s2, the resulting shorthand permutation is not seed, by its definition. However, if removing s2
is a seed, then s1 = parent(s2), a contradiction. Thus in this case flower(s1)∩flower(s2) = ∅. 2

3 Constructing a Hamilton Path in Gn
In this section, we show that the following successor rule partitions Gn into two cycles. Then by
making a small modification, we present a successor rule that constructs a Hamilton path in Gn.

2-cycle successor rule.
Let S be a subset of permutations closed under σ. Let π = p1p2 · · · pn be a permutation and let
r be the symbol to the right of n when π is considered cyclicly and skipping over p2. Define the
successor rule nextS on the induced subgraph Gn[S] as follows:

nextS(π) =

{
τ(π) if (r, p2) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 1)} and τ(π) ∈ S;
σ(π) otherwise.

Observe that nextS is equivalent to f when S = perms(s) for some seed s. This observation
is important when considering the following results. To simplify our notation, we let next denote
nextS when S = P.

Lemma 3.1 For n > 3, there are (n−1)(n−1)(n−3)! permutations π in P such that next(π) =
τ(π).

Proof. The set of permutations π = p1p2 · · · pn such that next(π) = τ(π) can be partitioned by the
position of n. By the conditions required for τ(π), p2 6= n. Thus, there are (n−1) ways to place n.
For each such placement, there are (n−1) pairs of values possible for (r, p2). This leaves (n − 3)!
ways to place the remaining n− 3 symbols. 2

Lemma 3.2 If next(π) = τ(π) for some permutation π, then there is a unique seed s such that both
π and τ(π) are in flower(s).

Proof. Given a seed s, observe that each τ edge in Ham(s) is between permutations π and τ(π)
from two different cyclic permutations. Thus by Lemma 2.4, s is the unique seed such that both π
and τ(π) are in flower(s). Summing over all seeds, this accounts for (n−1)(n−1)(n−3)! τ edges
in Gn, which accounts for all τ edges from Lemma 3.1. 2

The following outlines the two major steps required to prove that the successor rule next partitions
Gn into two cycles.

6

1. Show nextS partitions Gn[perms(hub)] into two cycles C1 and C2.

2. Inductively grow C1 by adding the permutations perms(s) one seed at a time.

For the first step, observe that the seeds in the hub can be ordered as follows:

s1 = n(n− 1) · · · 2,
s2 = n1(n− 1)(n− 2) · · · 3,
s3 = n21(n− 1)(n− 2) · · · 4,
· · · · · · · · ·
sn−1 = n(n− 2)(n− 3) · · · 1.

As an example, for n = 5,

s1 = 5432, s2 = 5143, s3 = 5214 s4 = 5321.

For each seed sj , consider the last two permutations {q′j, qj} = {σn−1(π1), π1} in Ham(sj). Let
Q =

⋃
1≤j<n{q′j, qj}. When n = 5 we have

Q = {25143, 51432} ∪ {35214, 52143} ∪ {45321, 53214} ∪ {15432, 54321}.

Figure 3 illustrates how nextS partitions Gn[S] into two cycles for n = 5, where S = perms(hub).

2143521543 15432

25413

5413232541

4132513254

14325

51432
5432

24153 41532

32154

5432143215

45321

14532

21453

15342
34215

42153

53421

21534

5321

23145 31452

1452352314

45231

14352

4352135214

34521

13452

53214

32145
5214

52143

4235123514

24351

12435
35124

43512

51243

32514

25143

43251

5143

51423 14235

21345

52134

32415 53241

43125

54312

25431

53214

12543

15324

45213

35142

Figure 3: An illustration of how the successor rule nextS partitions G5[S] into two
cycles, where S = perms(hub). Note the inner cycle for Q given by 25143, 51432,
15432, 54321, 45321, 53214, 35214, 52143.

Lemma 3.3 Let S = perms(hub). Then nextS partitions Gn[S] into two cycles, one for Q and one
for S−Q.

7

Proof. The following table illustrates that starting from permutation n(n−1) · · · 1 and repeatedly
applying nextS we obtain a Hamilton cycle in Gn[Q]. The cycle of permutations corresponds to the
first column.

π (r, p2) nextS(π)
n(n−1)(n−2) · · · 1 (n−2, n−1) τ(π)
(n−1)n(n−2)(n−3) · · · 1 (n−2, n) σ(π)
n(n−2)(n−3) · · · 1(n−1) (n−3, n−2) τ(π)
(n−2)n(n−3)(n−4) · · · 1(n−1) (n−3, n) σ(π)
· · · · · · · · ·
n1(n−1)(n−2) · · · 2 (n−1, 1) τ(π)
1n(n−1)(n−2) · · · 2 (n−1, n) σ(π)

Consider the hub seeds defined earlier s1, s2, . . . , sn−1. Consider a seed sj = s1s2 · · · sn−1 with
missing symbol x. Observe that parent(sj) = sj+1, where sn = s1. Let p1j , p

2
j , . . . , p

n
j denote

the last n permutations in Ham(sj) and recall that pn−1j , pnj = q′j, qj which are in Q. Observe that
parent(sj) is s1xs2 · · · sn−2 and the first n permutations inHam(parent(sj)) are q′j, qj, p

1
j , p

2
j , . . . , p

n−2
j .

From Lemma 3.2 and the definition of nextS, the only permutation in Ham(sj) that has a different
successor in Gn[S] is pjn−2; it changes from σ to τ . Thus, starting from the n + 1st permutation of
Ham(s1), namely τ(pn−2n−1), the successor rule nextS follows the edges in Ham(s1) until pn−21 . As
just mentioned nextS(pn−21) = τ(pn−21), which is the n+1st permutation ofHam(s2). This process,
illustrated below, repeats until reaching pn−2n−1 whose successor is the staring permutation τ(pn−2n−1).

q′n−1, qn−1, p1n−1, p2n−1, . . . pn−2n−1, τ(pn−2n−1), . . . p11, p21, . . . pn−21 , q′1, q1
q′1, q1, p11, p21, . . . pn−21 , τ(pn−21), . . . p12, p22, . . . pn−22 , q′2, q2
q′2, q2, p12, p22, . . . pn−22 , τ(pn−22), . . . p13, p23, . . . pn−23 , q′3, q3
· ·
q′n−2, qn−2, p1n−2, p2n−2, . . . pn−2n−2, τ(pn−2n−2), . . . p1n−1, p2n−1, . . . pn−2n−1, q′n−1, qn−1

The rows above correspond toHam(s1), Ham(s2), Ham(s3), . . . , Ham(sn−1). Concatenating the
rows in the middle section yields the Hamilton cycle in Gn[S−Q] constructed by nextS. 2

For the second step from our outline, the following lemma demonstrates how we can inductively
grow the cycle S−Q from the previous lemma. For this lemma, let m = (n−1)(n−3)!.

Lemma 3.4 Let s1, s2, . . . , sm be an an ordering of all seeds in increasing order by level. Let
S = perms(s1, s2, . . . , sj) for some n−1 ≤ j ≤ m. Then nextS partitions Gn[S] into two cycles,
one for Q and one for S−Q.

Proof. The proof is by induction on j. The base case when j = n−1 is covered by Lemma 3.3
since the first n − 1 seeds are the hub seeds with level 0. Consider S = perms({s1, s2, . . . , sj})
for n − 1 ≤ j < m. Inductively, assume that nextS partitions Gn[S] into two cycles, one for Q
and one for S − Q. Let S′ = perms(sj+1). As mentioned earlier nextS′ = f and thus repeated
application of nextS′ constructs a Hamilton cycle in Gn[S′]. By the ordering of the seeds, sj+1 =
s1s2 · · · sn−1 has level ` > 0 and all seeds at a smaller level are in {s1, s2, . . . , sj}. Thus, by
Lemma 2.3 and Lemma 2.4 there is exactly one seed s in {s1, s2, . . . , sj}, namely parent(sj+1),
such that flower(sj+1) ∩ flower(s) is not empty . Moreover this intersection contains the single

8

cyclic permutation π = s1xs2 · · · sn−1. Thus, from Lemma 3.2 and using the definition ofHam(sj),
π1 is the only permutation π′ in S such that nextS∪S′(π′) is not in S. Also, no rotation of π is in Q
by the definition of Q. Thus by replacing the edge (π1, σ(π1)) in the Hamilton cycle for Gn[S−Q]
constructed by nextS, with the sub-path of Ham(sj+1) starting with π1 and ending with σ(π1),
we obtain a Hamilton cycle in Gn[S ∪ S′ − Q] constructed by nextS∪S′ . The cycle for Q remains
unchanged. 2

From Lemma 2.1, if S is the set of all seeds, then perms(S) = P. From Lemma 3.4, the
successor rule next partitions P into two disjoint cycles: one for the permutations in Q, and one for
P −Q. In the cycle for Q, the permutation π = (n−1)(n)(n−2)(n−3) · · · 1 follows n(n−1) · · · 1
via a τ operation. By changing this operation to σ in next we obtain a permutation outside Q.
Applying this change we obtain the following successor rule.

Hamilton path successor rule for Gn.
Let π = p1p2 · · · pn be a permutation and let r be the symbol to the right of n when π is
considered cyclicly and skipping over p2. Define the successor rule next′ on Gn as follows:

next′ =

{
τ(π) if (r, p2) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 1)} and π 6= n(n−1) · · · 1;
σ(π) otherwise.

Starting from the permutation π = (n−1)(n)(n−2)(n−3) · · · 1 and applying the successor rule next
n!− 1 times, we obtain a Hamilton path in Gn. Thus, we obtain the following theorem.

Theorem 3.5 The successor rule next′ can be used to construct a Hamilton path in Gn, for
n > 3, starting from π = (n−1)n(n− 2)(n− 3) · · · 1.

The Hamilton path in G5 constructed using next′ starting from 45321 is illustrated in Figure 4.
A complete C implementation that applies next′ to construct a Hamilton path in Gn is provided in
the Appendix.

4 Insights into the Hamilton Cycle Problem
By making a few relatively small changes to the 2-cycle successor rule next we obtain the following
successor rule that we claim can be used to construct a Hamilton cycle in Gn for odd n.

Hamilton cycle successor rule for Gn for odd n
Let π = p1p2 · · · pn be a permutation and let r be the symbol to the right of n when π is
considered cyclicly and skipping over p2. Let S be the set of all rotations of 12 · · ·n−1. Define
the successor rule next′′ on Gn as follows:

next′′ =

{
τ(π) if (r, p2) ∈ {(1, 2), (2, 3), . . . , (n−2, n−1), (n−1, 2)} or p1p3p4 · · · pn ∈ S;
σ(π) otherwise.

9

Figure 4: The Hamilton path constructed by next′ in the graph G5 starting from 45321
and ending with 34215.

This rule is based on (n−1)(n−3)! + 1 seeds instead of (n − 1)(n − 3)! seeds in the 2-cycle
successor rule. In particular, the condition (r, p2) = (n− 1, 1) is changed to (r, p2) = (n− 1, 2) and
this slightly modifies (n−3)! of the seeds and the resulting hub. The other change is the addition
of the seed 123 · · ·n−1. This creates a wheel structure with the additional seed as the center. The
resulting directed cycle in the Sigma-Tau graph is traced out using rotation systems in [10]. Our
future work is to simplify the proof in [10] using the approach taken in this paper.

References
[1] D. E. Knuth. The Art of Computer Programming, volume 4: Combinatorial Algorithms, Part 1. Addison-

Wesley, 2010.

[2] T. Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathematical Society,
112(4):677–713, 2016.

[3] A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Academic Press, New York, 1st edition, 1975.

[4] A. Nijenhuis and H. Wilf. Combinatorial Algorithms. Academic Press, New York, 2nd edition, 1978.

[5] R. A. Rankin. A campanological problem in group theory. Mathematical Proceedings of the Cambridge
Philosophical Society, 44:17–25, 1948.

10

[6] F. Ruskey, M. Jiang, and A. Weston. On the Hamiltonicity of directed σ-τ Cayley graphs (or: A tale of
backtracking). Discrete Applied Mathematics, 57:75–83, 1995.

[7] C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–629, 1997.

[8] R. Sedgewick. Permutations generation methods. ACM Comput. Surv., 9(2):137–164, 1977.

[9] R. G. Swan. A simple proof of Rankin’s campanological theorem. The American Mathematical Monthly,
106(2):159–161, February 1999.

[10] A. Williams. Hamiltonicity of the Cayley Digraph on the Symmetric Group Generated by σ = (12 · · ·n)
and τ = (12). ArXiv e-prints, jul 2013.

11

Appendix - C code for Hamilton path in Gn

#include <stdio.h>
int n, pi[100];
//---
void Print() {

for (int i=1; i<=n; i++) printf("%d", pi[i]); printf("\n");
}
//---
void Sigma() {

int tmp, i;

tmp = pi[1];
for (i=1; i < n; i++) pi[i] = pi[i+1];
pi[n] = tmp;

}
//---
void Tau() {

int tmp = pi[1]; pi[1] = pi[2]; pi[2] = tmp;
}
//---
int SpecialP() { // RETURN TRUE IF pi[1..n] = n(n-1)...1

for (int i=1; i<=n; i++) if (pi[i] != n-i+1) return 0;
return 1;

}
//---
void Next() {

int r,i=1;

while(pi[i] != n) i++;
if (i == 1) r = pi[3];
else if (i == n) r = pi[1];
else r = pi[i+1];

if (((r < n-1 && pi[2]==r+1) || (r==n-1 && pi[2]==1)) && !SpecialP()) Tau();
else Sigma();

}
//---
int main() {

int total=0, TOTAL=1, i;

printf("Enter n: "); scanf("%d", &n);
for (i=2; i<=n; i++) TOTAL = TOTAL *i; // TOTAL = n!

// INITIAL PERM pi[1..n] = (n-1)n(n-2)(n-3)...1
pi[1] = n-1; pi[2] = n;
for (i=3; i<=n; i++) pi[i] = n-i+1;

while (total < TOTAL) {
Print();
Next();
total++;

} }

12

