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ABSRACT - This paper presents a novel approach 
to the concurrent solution of three High-Level 
Synthesis (HLS) problems and solves them in an 
integrated manner using a Hierarchical Genetic 
Algorithm (HGA).  We focus on the core problems 
of HLS: Scheduling, Allocation, and Binding. 
Scheduling consists of assigning of operations in a 
Data-Flow Graph (DFG) to control steps or clock 
cycles. Allocation selects specific numbers and 
types of functional units from a hardware library 
to perform the operations specified in the DFG. 
Binding assigns constituent operations of the DFG 
to specific unit instances. A very general version of 
the problem is considered where functional units 
may perform different operations in different 
numbers of control steps.  The HLS problems are 
solved by applying two genetic algorithms in a 
hierarchical manner. The first performs allocation, 
while the second performs scheduling and binding 
and serves as the fitness function for the first. 
When compared to other, well-known techniques, 
our results show a reduction in time to obtain 
optimal solutions for standard benchmarks. 
 
 
1.0 Introduction 
 
As Very Large Scale Integration (VLSI) design 
complexities continue to increase, designers are 
moving to higher and higher levels of abstraction to 
meet the growing challenges. An example of this is 
the VLSI community�s recent acceptance of High-
Level Synthesis (HLS) tools. High-level synthesis is 
the process of automatically generating a Register-
Transfer Level (RTL) design from a behavioral 
specification [1].  An RTL design consists of 
functional units, memory elements, and 
interconnections (e.g., multiplexers and buses).  The 
functional units normally implement one or more 
elementary operations like addition, subtraction, etc. 
The motivation for HLS stems from several factors. 
HLS tools not only reduce the time to design or 
redesign a product, they also reduce the number of 
iterations required to achieve a satisfactory design by 
guiding the designer towards a better solution with 
less chance of error earlier in the design process.  
Today, HLS tools are enabling companies to deliver 
competitive, reliable products in a timely manner. 

The inputs to a typical HLS tool include a 
behavioral description of the digital circuit to be 
designed, a library describing available hardware 
resources, and a set of design constraints.  The 
behavioral description is normally specified using a 
hardware description language [2], or a traditional 
programming language that is compiled into a 
Control/Data-Flow Graph (CDFG) [3].  The hardware 
library contains a description of the available unit 
types including functional units, registers, 
multiplexers, buffers, buses, and interconnects.  
Design constraints include constraints on performance 
(execution time), cost (area), and other constraints 
defined by the application and/or the designer. 

To synthesize a desired RTL design several 
conflicting and interrelated subproblems must be 
solved.  This paper focuses on the three core problems 
of high-level synthesis: Scheduling, Module 
allocation, and Binding.  Scheduling is the process of 
assigning operations in the original specification to 
control steps (clock cycles) so that all of the 
precedence relationships, timing constraints, and other 
types of constraints are satisfied.  Allocation is the job 
of selecting specific numbers and types of functional 
units from a hardware library to execute the 
operations.  The number of functional units required 
for a design depends on the number and types of 
operations that can be performed simultaneously in 
any control step.  If there is enough hardware 
available, it may be possible to perform several 
operations simultaneously in a single step and hence 
get a faster schedule.  In practice, however, a designer 
may not be able to use as much hardware as required 
to obtain the fastest schedule.  Instead, designers are 
expected to make suitable trade-offs between 
performance and cost. Binding refers to the mapping 
of operations to functional units. For example, when 
performing two multiplication operations in the same 
control step using two multipliers, the decision must 
be made as to which multiplier will perform which 
operation. 

The three problems of scheduling, allocation, 
and binding are interdependent and notoriously 
difficult to solve optimally. (Optimality is defined as 
some combination of execution time, area, and other 
appropriate measures.)  For guaranteed optimal results 
all three problems must be considered simultaneously. 
However, the problem of scheduling alone is NP-
complete [1].  Many of the current approaches for 
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solving the problems are based upon heuristics [4-10] 
and the quality of results varies and may not be 
optimal. Recently, Integer-Linear Programming (ILP) 
formulations [11-14] have proven effective in 
handling the interdependence between the three 
problems, but their runtimes become unacceptable as 
the problem size increases. 

In this paper we present an integrated solution to 
the HLS problems of scheduling, allocation, and 
binding based on two Genetic Algorithms (GAs).  The 
main advantage of the genetic search over other 
approaches is a reduction in time to obtain optimal 
solutions. Our model differs from earlier hybrid 
approaches [15] that use a genetic algorithm in 
conjunction with well-known heuristics. We use two 
genetic algorithms in a hierarchical manner to solve 
he problems in an integrated manner.  The first 
genetic algorithm is used to select functional units 
from a hardware library, while the second uses the 
allocations to perform scheduling and binding.  The 
second GA performs the role of fitness function for 
the first. In this way, we achieve a truly integrated 
solution as both genetic algorithms run concurrently 
and cooperate with each other until a satisfactory 
solution is found. 

The remainder of this paper is organized as 
follows. Section 2 describes the problems of 
scheduling, allocation, and binding in more detail. In 
section 3 we describe how we model and solve the 
problems using two genetic algorithms. In Sec. 4 we 
demonstrate the effectiveness of our approach by 
showing that our system can generate optimal results 
for standard benchmarks. Section 5 explains how we 
determined appropriate operators and parameters for 
the GAs. Finally, we present our conclusions and 
directions for future work in Sec. 6. 
 
2.0 Basic Concepts 
 
We now begin with a closer look at the three 
problems of scheduling, allocation, and binding.  In 
Fig. 1 a simple data-flow graph and hardware library 
are shown.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Data flow graph and module library. 
 
The DFG contains five operations: 2 multiplication 
operations, 2 addition operations, and 1 subtraction 
operation.  The hardware library contains three types 

of functional units, each with various execution times 
and areas.  More than one instance of each functional 
unit may be chosen in the final allocation. Notice that 
all of the functional units present in the library are 
complex, allowing different operations to be 
performed in different numbers of control steps. The 
faster functional units also tend to consume more 
space (chip area) and thus cost more to instantiate. 
Here each functional unit is capable of performing 
each operation in the DFG; in general, this may not be 
true. 
 

Given a behavior specified as a DFG, as well as a 
hardware library, the problem is to find a suitable 
schedule such that: 
• the operations are performed by the units having 

the required capability, 
• a unit can execute at most one operation at a time, 
• the operations are executed in the order specified 

by the DFG, 
• the total area is limited, 
• the execution occurs with a number of steps that 

is limited. 
 

Figure 2 illustrates three different schedules and 
allocations for the behavior specified in Fig. 1. Each 
schedule incorporates different combinations of units.  
The short 3-step schedule requires 2 instances of the 
faster � but larger � multiplier (ALU1), resulting in a 
1500 unit area design.  By extending the schedule 
length to 4 steps, only 1 instance of the fast multiplier 
is required to satisfy the timing requirement using a 
smaller 1000 unit design.  In the case of the 6-step 
schedule, both multiplication operations must be 
bound by the same unit instance if the inexpensive 
unit, ALU3, is to be used. Notice how the issues of 
schedule and area restrictions, availability of units, 
and unit allocation and binding are all interdependent. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Alternate sch
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DFG and bounds the starting time of an operation by 
the completion times of its predecessors on the DFG.  
Completion times, in turn, depend on the particular 
units allocated. Thus, data-dependency constraints 
enforce the ordering imposed by the DFG, with 
consideration given to the type of unit allocated to 
each operation. 

The second important set of constraints focuses 
on each individual unit � its type and instance. If any 
unit is used by more than one operation, those 
operations must be implemented in some sequential 
order.  No operation can begin until its predecessor (if 
any) on the same unit has completed its execution. 
Although this constraint also bounds starting times by 
the completion times of predecessors, this ordering is 
unrelated to data dependency.  The ordering here is 
imposed by the mapping of operations to units and is 
not predetermined.  It must be ascertained 
dynamically, if (multi-step) units are to be reused. For 
example, the 6-step schedule in Fig. 2 indicates that 
operations 4, 1, and 3, being bound to the same 
instance of ALU3, must occur in some order (here 4, 
1, 3).  We refer to the ordering among operations that 
are executed by the same unit as their unit-use 
ordering. 
 
3.0 Our Approach 
 
In practice, the total time and area available on a chip 
are often restricted to lie within some prespecified 
limits. Consequently, a designer is required to verify 
the existence of some feasible solution that meets 
both time and total area constraints; this requires no 
objective function at all.  By progressing through a 
series of plausible time and area limits, the sequence 
of solutions clearly display the area/time tradeoffs to 
the designer. Our integrated approach to the 
scheduling, allocation, and binding problems is based 
on the hierarchical application of two genetic 
algorithms. They are hierarchical because the second 
GA acts as the fitness function for the first as shown 
in Fig. 3. 
The first genetic algorithm, GA1, performs allocation; 
that is, it selects functional units from a general 
hardware library to implement the operations in the 
original specification. Each unit instance is assigned a 
unique unit number, and multiple instances of the 
same unit type can be selected.  The only restriction is 
that the total area required for a given allocation 
cannot exceed the area limit specified by the designer. 

The second genetic algorithm, GA2, performs 
scheduling and binding using the allocation provided 
by GA1.  Thus, potential allocations provided by GA1 
are evaluated on the basis of their ability to satisfy the 
timing constraint imposed by the designer. If a 
schedule is found that satisfies the timing constraint, a 
feasible solution has been found and the process 
terminates. Otherwise, GA2 returns the length of the 
best (shortest) schedule found after a predetermined 
number of generations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Hierarchical application of two GAs. 

 
The point is that both genetic algorithms will 

continue to run concurrently and cooperate with each 
other until a solution is found that satisfies both 
timing and area constraints imposed by the designer.  
 
3.1 GA1 � Allocating Functional Units 
 
We now take a closer look at the genetic algorithm 
used to allocate functional units.  The total area 
available on a chip is restricted to lie within a 
prespecified limit. More formally,  
 

AreaLimitAU
m

mm ≤∑  

 
where variable m indexes each instance being 
considered in the current allocation, Am is the chip 
area consumed by including unit m in the design, and 
Um is a 0-1 variable. If Um = 1, unit m is selected to 
appear in the final design.  

We employ a bit-string representation where the 
values of all variables Um are directly stored in a 
string of length n, where n is the maximum number of 
functional units the designer is willing to consider 
using. At first glance, this representation seems to be 
the most direct and easiest, but infeasible solutions 
containing constraint violations need to be considered. 
One way to do this is to use penalty functions to 
penalize infeasible solutions [16]. However, 
difficulties arise in selection of the penalty function 
and its coefficients to prevent premature convergence 
and infeasible final solutions. 

A second strategy, and the one employed in this 
paper, is based on the application of a special repair 
algorithm to �correct� any infeasible solutions 
generated [17].  For the allocation problem, this can 
be done by setting some Um variable(s) to 0.  The 
repair procedure is outlined in Fig.4. 
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Figure 5: Outline of GA1. 

 

 
 

procedure repair (x) 
begin 
  area-exceeded = false 
  xx =′   

  if∑
=

>⋅′
n

i
AreaLimitiAix

1
][][  

     then area-exceeded = true 
  while (area-exceeded) do 
  begin 
    i=randomly select a unit and remove it from the 
          current allocation: i.e., 0][ =′ ix  
 

    if ∑
=

≤⋅′
n

i
AreaLimitiAix

1
][][  

        then area-exceeded = false 
  end 
end 
 
Figure 4: The repair procedure. 

he repair procedure transforms an infeasible 
llocation (x) into a feasible one ( x′ ) by removing 
setting 0][ =′ ix ) randomly selected units from the 
urrent allocation until the area constraint is satisfied. 
hus, all candidate allocations generated by GA1 are 
uaranteed to satisfy the area constraint imposed by 
he designer. 

Figure 5 shows a template for the allocation 
enetic algorithm (GA1). The initial population is 
onstructed from randomly generated individuals, 
ith infeasible individuals in the population being 

epaired as described above.  Routine Evaluate() 
omputes the fitness of each of the given individuals. 
his routine calls the scheduling and binding genetic 
lgorithm (GA2) which returns the length of the best 
chedule found using the given allocation.  One 
xecution of the while loop corresponds to the 
imulation of one generation. Throughout the 
imulation, the number of individuals (M) is kept 
onstant.  Routine stopCriteria() terminates the 
imulation when a solution (allocation, schedule, and 
inding) is found that satisfies both the area and 
iming constraint imposed by the designer. If no such 
olution can be found, the GA terminates after a 
respecified number of generations and returns the 
est solution found. 

In each generation, a set of offspring of size M 
re created.  Two mates p1 and p2 are selected from 
he population independently of each other, and each 
ate is selected using binary tournament selection 

18].  The crossover routine generates two offspring 
1 and c2 using standard 2-point crossover.  With a 
mall probability, Pm = 1/n, the mutation operator 
andomly changes each of the components of each 
ndividual in the population. Clearly, offspring may 
e infeasible, in which case, they must be repaired 
efore being evaluated. 
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Generate initial Population randomly; 
Repair infeasible members of  Population; 
Evaluate (Population); 
while not stopCriteria() Do 
begin 

NewPoulation = ∅  
for j = 1 to M/2 Do 

Select p1 and p2 from Population 
{c1,c2} = crossover (p1,p2); 
mutate (c1,Pm) 
mutate (c2,Pm) 
Add c1 and c2 to newPopulation 

 end 
    Population = newPopulation 
    Repair infeasible members of Population 
          Evaluate (Population); 
end 
.2 GA2 � Scheduling and Binding Operations 

he role of GA2 is to schedule the operations in the 
ata-flow graph under the precedence and resource 
estrictions implied by GA1.  Scheduling operations 
sing only the units provided by GA1 involves 
aking a choice as to the order in which operations 

an be executed and assigned (bound) to units.  The 
roblem is to find a schedule and binding that satisfies 
he timing constraint imposed on the final circuit by 
he designer.  

GA2 uses a modified version of List Scheduling 
19] to construct feasible schedules. In List 
cheduling, all  �ready� operations of the DFG are 
laced into a list ordered by relative priorities and 
henever a unit becomes available the operation with 

he highest priority in the list is chosen and assigned 
o that unit.  An operation is considered �ready�, if 
nd only if all of its predecessors have completed 
xecuting.  Figure 6 shows the general list-scheduling 
lgorithm. 

 
1. 
 
2. 

 
3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Assign a priority to each operation in the DFG.  

Initialize a priority queue for ready operations by 
inserting every operation that has no immediate 
predecessors. Sort the operations in increasing 
order of priority. 

While the priority queue is not empty do the 
following: 

a. Get the operation at the front of the 
queue. 

b. Select an idle unit to perform the task. 
c. After all immediate predecessors of an 

operation are executed, insert that 
operation�s successor(s) into the priority 
queue.
 
Figure 6: List-Scheduling Algorithm. 



It is clear from Fig. 6 that the particular assignment of 
priorities to operations (step 1) results in different 
schedules (with possibly different lengths) being 
generated. This is because operations are selected for 
execution in different orders.  Various heuristics [20-
22] have been proposed for prioritizing the operations 
in the DFG. However, no one heuristic has emerged 
as the clear winner. Rather, recent results [23] suggest 
that the performance of a list scheduler can be 
improved by using a mixture of several heuristics. 

In the approach presented here, we employ a 
genetic algorithm to determine the priority of the 
operations to be scheduled. This is a permutation 
problem by nature.  We employ a priority-based 
encoding where the position of each gene in a 
chromosome is used to identify the operation to be 
scheduled and the value of each gene is used to 
denote the priority associated with the operation.  The 
value of a gene is an integer exclusively within [1,p], 
where p is the number of operations in the original 
DFG.  The larger the integer (p), the higher the 
priority. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: (a) Priority-based encoding; (b) dataflow 
graph; and (c) final schedule. 

 
Figure 7(a) shows a possible encoding for the 
operations of the DFG in Fig. 7(b). If we assume the 
existence of a single functional unit capable of 
performing all of the operations in the DFG in a 
single control step, a feasible schedule can be 
constructed as follows. At the beginning, only 
operation 1 is ready to be scheduled and is therefore 
assigned to control step 1. Then three operations 2, 3, 
and 4 become ready and compete for the second 
control step. Their priorities are 7, 1, and 6, 
respectively. Operation 2 wins, because it has the 
highest priority. After scheduling operation 2 on 
control step 2, the candidates for control step 3 are 

operations 3, 4, and 5. Operation 4 wins and is 
scheduled on control step 3.  The process simply 
repeats until all of the operations are scheduled. The 
final schedule is shown in Fig. 7(c). 

In the previous example, a single unit capable of 
executing all of the operations in the DFG was used. 
Most designs, however, will include multiple units. It 
should be clear, therefore, that the decision regarding 
whether or not an operation can be scheduled not only 
depends on whether the operation�s predecessors have 
executed, but also on the availability of a unit to 
perform the operation.  Thus, a chromosome does not 
directly represent a schedule, but rather a way of 
resolving conflicts when more than one operation is 
ready for scheduling. 

Unlike GA1, the scheduling and binding genetic 
algorithm (GA2) uses a permutation encoding as 
opposed to a simple bit string, Specialized crossover 
and mutation operators are used to preserve the 
encoding during reproduction. This way, a repair 
operator is not required. A number of crossover 
operators have been proposed for permutation 
encodings. However, through extensive 
experimentation we have found that Partially-Mapped 
Crossover (PMX) proposed by Goldberg et al. [24] to 
be most effective for our problem. PMX can be 
viewed as a variation of two-point crossover by 
incorporating a special repair procedure to resolve 
possible illegitimacy.  PMX is implemented as 
follows. Choose a random cut point and consider the 
segments following the cut point in both parents as a 
partial mapping of the genes to be exchanged in the 
first parent to generate the offspring.  Take 
corresponding genes from the segments of both 
parents, locate both these genes in the first parent, and 
exchange them.  Repeat this process for all genes in 
the segment. Thus, a gene in the segment of the first 
parent and a gene in the second parent will define 
which genes in the first parent have to be exchanged 
to generate offspring.  

In addition to PMX, a �swap� mutation operator 
was also used. This operator simply selects two 
positions at random and swaps their contents. The 
operator is applied with a small probability Pm = 1/p. 
 
4.0 Experimental Results 
 
The previously described Hierarchical Genetic 
Algorithm (HGA) is implemented in the C 
programming language in a UNIX environment.  
Using well known benchmarks, the HGA will be 
compared to other related works, including the HAL 
system [9], SYMPHONY [11], TASS [4], and ADPS 
[13].  In selecting comparison systems, a wide variety 
of approaches have been chosen.  HAL  uses the 
popular force-directed scheduling, heuristic, while 
SYMPHONY  uses an integrated ILP formulation 
which is sensitive to the interdependence between the 
3 problems.  TASS  uses a variant of simulated 
annealing.  ADPS first uses force-directed scheduling 
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to obtain a schedule; the resulting schedule is then 
used for allocation and binding, all within an iterative 
process that attempts to refine the design.  All times 
given represent CPU time expressed in seconds.  The 
initial population sizes of GA1 and GA2 were  
selected to be 5 and 20 strings, respectively. 
 
4.1 The Elliptical Wave Filter 
 
An important facet of any HLS systems is the ability 
to determine a lower bound performance for 
execution of a behavioral specification, for a fixed 
number of resources.  This first example demonstrates 
the ability of the HGA we are proposing to quickly 
minimize schedule length given a fixed bound on 
area. 

The elliptical wave filter consists of 34 addition 
and multiplication operations.  The hardware library 
contains two unit types: adders and multipliers.  Each 
adder has a delay of 1 control step and an area of 100 
units, while each multiplier has a delay of 2 control 
steps and an area of 250 units. 

Initially, we limit area to 1050 units and seek a 
minimum time solution. Table 1 reveals that the HGA 
found an optimal 17-step schedule, requiring 3 adders 
and 3 multipliers. When the area limit was reduced to 
700 units the HGA found an optimal 18-step 
schedule, and near-optimal 19-step schedule both 
requiring 3 adders and 2 multipliers. When the area 
limit was further reduced to 450 units an optimal 21-
step schedule was found requiring 1 multiplier and 2 
adders. Finally, when the area limit was reduced to 
just 350 units an optimal 28-step schedule was found 
requiring 1 adder and 1 multiplier. In each case, the 
comparison with HAL, TASS and SYMPHONY 
show a reduction in time to obtain the same optimal 
results.  
 
4.2 Bandpass Filter 
 
We now demonstrate the HGA�s ability to minimize 
area given constraints on execution time. For 
purposes of comparison, we choose the Bandpass 
Filter benchmark and complex unit library presented 
in [9], and compare the HGA with SYMPHONY and 
ADPS. The DFG consists of 29 operations including 
multiplication, addition, and subtraction operations. 
The cumulative area of the units present in the library 
is 1620, with each unit having a delay of 1 control 
step. 

Initially, time was limited to 8 control steps and 
a minimum area solution sought. Table 2 (at end of 
paper) reveals that the HGA and SYMPHONY found 
an optimal allocation (675), while ADPS produced a 
sub-optimal (685) solution. With the time limit 
relaxed to 9 control steps, the HGA and SYMPHONY 
again found an optimal allocation (625), but ADPS 
could only find a sub-optimal solution (650). This 
trend continued for both 10 and 11 step schedules. In 
every case, HGA and SYMPHONY produced better 
results than ADPS. However, the EGA required less 
time than SYMPHONY to obtain equivalent (optimal) 
solutions. 
 
5.0 Tuning the HGA 
In this section we wish to look at the various 
components and settings that comprise the 
Hierarchical GA to see whether different setting 
would produce different results. We decided to use 
the Bandpass Filter problem, as it was the more 
difficult of the two problems we have investigated. 
 
5.1 Experimental Design 

We varied the crossover rate (crt), mutation rate (mrt) 
and population size (ps). We also examined the 3 
different permutation crossover techniques (cvr) for 
the scheduling level of the GA: exchange crossover 
(X), order crossover (O) and cycle crossover (C). We 
therefore are doing a multiple factor analysis with 4 
factors (crt, mrt, p-s and cvr). For the crossover rate, 
we used 20%, 70%, 90% and 100%; for the mutation 
rate we used 0, 0.035 and 0.07 (no crossover, 1/lngth 
and 2/lngth); for the population size we used 10, 50, 
100 and 1000 individuals. For a summary of the 
factors and factor levels see Table 3. 

For the experimental design we chose a factorial 
design, where all factors are fully crossed. Each 
treatment is repeated 20 times to provide statistical 
significance for the various inferences obtained. 

Since the fitness function used is a minimization 
on the number of control steps that the choice of ALU 
units along with a schedule found produces, it is 
natural that the response variable studied would be the 
number of control steps.  

However, in the majority of runs, the actual 
minimum is found. So to gain more information, we 
also keep track of the generation that the best fitness 
value was discovered in a run. The better the settings 
for the HGA, the earlier that the minimum should be 
found.  
Area  
Limit 

Units 
Allocated 

Control 
Steps 

Time (s) 
       HAL                 TASS            SYMPHONY       HGA 

1050 *,*,*,+,+,+ 17 120 10.0 2 0.026 
700 *,*,+,+ 18 240 10.1 233 0.026 
700 *,*,+,+ 19 Not reported Not Reported 358 0.026 
450 *,+,+ 21 360 10.2 Not Reported 0.014 
350 *,+ 28 480 Not Reported Not Reported 0.008 

Table 1: Results for Elliptical Wave Filter.



Unfortunately, the HGA does not always find 
the minimum number of control steps. This presents a 
problem when comparing runs that converged on the 
minimum and those that do not. 

To resolve this problem we combine the two 
response variables into a single response variable by 
using the number of steps as the major factor and the 
number of generations as the subfactor. The new 
response variable follows the formula: 

 
ri = (gmax +1) ⋅ si + gi  

 
where gmax is the maximum generation before the GA 
is halted, si is the number of control steps by the ith 
chromosome, and gi is the first generation that the ith 
chromosome was first formed. For example, in an 
experiment which has a maximum generation of 99, if 
the best chromosome was discovered in a run first 
appeared in generation 52 and took 9 control steps, 
then  

ri = (99 +1) ⋅ 9 + 52 = 952  
 
The resulting response variable is obviously not 
normally distributed. Therefore we must use non-
parametric methods when performing a statistical 
analysis; all statistical methods used, in our case a 
MANOVA (multivariate analysis-of-variance), are 
performed using ranked values instead of the original 
response variable (the ri�s). 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the experiments, we used a maximum 
generation cutoff value of 99 generations. We ran 
experiments on the bandpass filter DFG using 3 
different area constraints: 675, 625 and 600. 

  
5.2 Results 

Surprisingly, tightening the constraints does not 
always mean increasing the level of difficulty. From 
the histograms of our response variable ri (Fig. 8) we 
see that the �easiest� problem, i.e. the one that always 
finds the solution in 1 or 2 generations has an area 
target of 600, our tightest constraint. 
The area constraint of 600 is so easy for the HGA to 
solve that there is not enough variance in the response 
data to perform a MANOVA to examine the various 
factors under investigation. 

Furthermore, the results of the two other area 
constraints produce identical inferences. 
Consequently, we will only present the factor analysis 
for the 625 area constraint. 

The results of the MANOVA on the bandpass 
filter problem with an area constraint of 625 are given 
in Table 4. The factors that have statistical 
significance are in bold. 

We will now look at the statistically significant 
main effects one by one. First we see that all of our 
factors have a significant main effect with the 
exception of the crossover rate. This means that the 
crossover rate (crt), taken by itself, does not have an 
effect on the behavior of the HGA. 

Next, looking at pair-wise comparison (using the 
Student�s T test) of the factor levels of the crossover 
type (cvr) main effect using the Bonferroni post-hoc 
correction, we see that 
 

Xover Type Difference Prob 
C | O 9.68646 0.962137 
X > C 395.955 0 
X > O 405.642 0 

Control 
Steps 

Model Units Allocated Area Constraint CPU Time (s) 

8 SYMPHONY 
ADPS 
HGA 

+*,+-,+-,* 
+-,*,*,+,- 
+*,+-,+-,* 

675 
685 
675 

4.8 
9.0 

0.215 
9 SYMPHONY 

ADPS 
HGA 

+-,*,*,+ 
+-,*,*,+- 
+-,*,*,+ 

625 
650 
625 

17 
64 

0.225 
10 SYMPHONY 

ADPS 
HGA 

*,+-,+,* 
+*,*,+,+- 
*,+-,+,* 

625 
650 
625 

132 
15 

0.25 
11 SYMPHONY 

ADPS 
HGA 

+*,+-,* 
+-*,*,+,- 
+*,+-,* 

600 
630 
600 

42 
197 
0.02 

 

Table 2 Execution Times for Bandpass Filter. 
 Factor Factor Levels 

CVR Crossover 
Type 

Exchange Crossover (X)
Order Crossover (O) 
Cycle Crossover (C) 

CRT Crossover 
Rate 

0.2,0.7,0.9,1.0 

MRT Mutation 
Rate 

0.000,0.035,0.070 

P-S Population 
Size 

10,50,100,1000 

std. err = 22.31
Table 3: Factors and Factor Levels for HGA 
Tuning Analysis 



where > means �performs better than�, and | means 
�is not statistically different from�. In other words, 
the exchange crossover always produces better results 
when used in the HGA when compared to cycle and 
order crossovers. 

Next is the pair-wise comparison of the different 
mutation rates (mrt), again using the T test with a 
Bonferroni post-hoc correction: 
 

Mutation rate            Difference    Prob 
0.034483 > 0             55.1453        0.039980 
0.068965 > 0             52.2062        0.056957 
0.068965 | 0.034483  2.93906       0.998849 
std.err = 22.31 
 

 From this we can conclude that mutation is 
important, as either of the mutation rates used was 
better than no mutation. However, we could not 
distinguish between the behaviors of the two different 
mutation rates that were used. 

Analyzing the population size (p-s) we found 
that the larger the population size used, the better the 
behavior of the HGA, which is to be expected. 
However, when looking at the number of evaluations 
performed a different story emerges. We computed 
the number of evaluation by using the formula 
ei = n ⋅ gi + n . We then combined the control steps 
with the number of evaluations by computing 

vi =100,000 ⋅ si +ei , where 100,000 is the maximum 
evaluation that can occur, and then used a non-
parametric analysis by applying MANOVA on the 
ranks of the vi.  

The results were exactly the opposite found 
when doing the analysis on the number of generations 
taken: 
 

Population Size Difference Prob 
10 > 50 181.548 0 
10 > 100 383.737 0 
50 > 100 202.189 0 
10 > 1000 462.213 0 
50 > 1000 280.665 0 
100 > 1000 78.4757 0.000034 
std. err. = 17.26 
 

Consequently, smaller population sizes, while 
perhaps taking more generations to find the solution, 
will do so using fewer evaluations and hence find the 
solution in much smaller computational time.  

Finally, we examined the interaction terms. We 
found that by and large, the interaction terms just 
reinforced the results found for the main effects (with 
some very minor differences, which could have been 
the effect of the low number of repetitions used for 
time consideration). 
 

800 850 900 950 1000
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1000

1500
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800 850 900 950 1000 1050 1100 1150 1200 1250 1300
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1000

1500

step+gen

800 850 900 950 1000 1050 1100 1150 1200

1000

2000

3000

step+gen  
 Area = 675 Area = 625 Area = 600 
 

Figure 8: HGA Performance Frequencies on the Bandpass Filter Problem  
by Control Steps + Generation Found For 3 Different Area Constraints 

Source df Mean Square F-ratio Prob Source df Mean Square F-ratio Prob 
Const 1 5976115920 25012  ≤ 0.0001 p-s 3 352277511 1474.4  ≤ 0.0001 
xvr 2 51427123 215.24  ≤ 0.0001 xvr*p-s 6 2854217 11.946  ≤ 0.0001 
xrt 3 386875 1.6192 0.1828 xrt*p-s 9 449420 1.8810 0.0503 
xvr*xrt 6 1396494 5.8447  ≤ 0.0001 xvr*xrt*p-s 18 540738 2.2631 0.0018 
mrt 2 924022 3.8673 0.0210 mrt*p-s 6 238399 0.99777 0.4249 
xvr*mrt 4 162643 0.68071 0.6053 xvr*mrt*p-s 12 307270 1.2860 0.2194 
xrt*mrt 6 425081 1.7791 0.0994  xrt*mrt*p-s 18 418112 1.7499 0.0258 
xvr*xrt*mrt 12 204909 0.85761 0.5905 xvr*xrt*mrt*p-s 36 278740 1.1666 0.2290 
 
Error df = 2736 SSE = 653717184 MSE = 238932   
Total df = 2879 SSE = 1884033224    

Table 4: MANOVA Results for Bandpass Filter with Area Constrain of 625 



6.0 Conclusions 
 
In this paper we have presented an integrated solution 
to the high-level synthesis problems of scheduling, 
allocation, and binding. Our approach is based on the 
hierarchical application of two genetic algorithms that 
handle all the interactions among the three 
subproblems. The solution permits the use of complex 
functional units and allows operations to be 
implemented by a variety of functional units, possibly 
requiring different execution times. Our results show 
a reduction in time to obtain optimal solutions to 
standard benchmarks compared with other systems. In 
a straightforward way, our model can be extended to 
effectively use pipelined units or chained operations 
whenever there is an opportunity to do so. 
Furthermore, our model can also be extended to find 
optimal schedules and module allocations for 
multiple-block designs, not block-by-block or just 
along critical paths, but for all the blocks of a design 
simultaneously; we plan to publish the details of 
multi-block synthesis in a separate manuscript.  
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