
An Evolutionary Approach to Behavioral-Level Synthesis

G. Grewal, M. O�Cleirigh, and M. Wineberg
Department of Computing and Information Science

University of Guelph,
Guelph, Ontario, Canada,

N1G 2W1
gwg@cis.uoguelph.ca, mocleirigh@uoguelph.ca, wineberg@cis.uoguelph.ca

ABSRACT - This paper presents a novel approach
to the concurrent solution of three High-Level
Synthesis (HLS) problems and solves them in an
integrated manner using a Hierarchical Genetic
Algorithm (HGA). We focus on the core problems
of HLS: Scheduling, Allocation, and Binding.
Scheduling consists of assigning of operations in a
Data-Flow Graph (DFG) to control steps or clock
cycles. Allocation selects specific numbers and
types of functional units from a hardware library
to perform the operations specified in the DFG.
Binding assigns constituent operations of the DFG
to specific unit instances. A very general version of
the problem is considered where functional units
may perform different operations in different
numbers of control steps. The HLS problems are
solved by applying two genetic algorithms in a
hierarchical manner. The first performs allocation,
while the second performs scheduling and binding
and serves as the fitness function for the first.
When compared to other, well-known techniques,
our results show a reduction in time to obtain
optimal solutions for standard benchmarks.

1.0 Introduction

As Very Large Scale Integration (VLSI) design
complexities continue to increase, designers are
moving to higher and higher levels of abstraction to
meet the growing challenges. An example of this is
the VLSI community�s recent acceptance of High-
Level Synthesis (HLS) tools. High-level synthesis is
the process of automatically generating a Register-
Transfer Level (RTL) design from a behavioral
specification [1]. An RTL design consists of
functional units, memory elements, and
interconnections (e.g., multiplexers and buses). The
functional units normally implement one or more
elementary operations like addition, subtraction, etc.
The motivation for HLS stems from several factors.
HLS tools not only reduce the time to design or
redesign a product, they also reduce the number of
iterations required to achieve a satisfactory design by
guiding the designer towards a better solution with
less chance of error earlier in the design process.
Today, HLS tools are enabling companies to deliver
competitive, reliable products in a timely manner.

The inputs to a typical HLS tool include a
behavioral description of the digital circuit to be
designed, a library describing available hardware
resources, and a set of design constraints. The
behavioral description is normally specified using a
hardware description language [2], or a traditional
programming language that is compiled into a
Control/Data-Flow Graph (CDFG) [3]. The hardware
library contains a description of the available unit
types including functional units, registers,
multiplexers, buffers, buses, and interconnects.
Design constraints include constraints on performance
(execution time), cost (area), and other constraints
defined by the application and/or the designer.

To synthesize a desired RTL design several
conflicting and interrelated subproblems must be
solved. This paper focuses on the three core problems
of high-level synthesis: Scheduling, Module
allocation, and Binding. Scheduling is the process of
assigning operations in the original specification to
control steps (clock cycles) so that all of the
precedence relationships, timing constraints, and other
types of constraints are satisfied. Allocation is the job
of selecting specific numbers and types of functional
units from a hardware library to execute the
operations. The number of functional units required
for a design depends on the number and types of
operations that can be performed simultaneously in
any control step. If there is enough hardware
available, it may be possible to perform several
operations simultaneously in a single step and hence
get a faster schedule. In practice, however, a designer
may not be able to use as much hardware as required
to obtain the fastest schedule. Instead, designers are
expected to make suitable trade-offs between
performance and cost. Binding refers to the mapping
of operations to functional units. For example, when
performing two multiplication operations in the same
control step using two multipliers, the decision must
be made as to which multiplier will perform which
operation.

The three problems of scheduling, allocation,
and binding are interdependent and notoriously
difficult to solve optimally. (Optimality is defined as
some combination of execution time, area, and other
appropriate measures.) For guaranteed optimal results
all three problems must be considered simultaneously.
However, the problem of scheduling alone is NP-
complete [1]. Many of the current approaches for

mailto:gwg@cis.uoguelph.ca
mailto:mocleirigh@uoguelph.ca
mailto:wineberg@cis.uoguelph.ca

solving the problems are based upon heuristics [4-10]
and the quality of results varies and may not be
optimal. Recently, Integer-Linear Programming (ILP)
formulations [11-14] have proven effective in
handling the interdependence between the three
problems, but their runtimes become unacceptable as
the problem size increases.

In this paper we present an integrated solution to
the HLS problems of scheduling, allocation, and
binding based on two Genetic Algorithms (GAs). The
main advantage of the genetic search over other
approaches is a reduction in time to obtain optimal
solutions. Our model differs from earlier hybrid
approaches [15] that use a genetic algorithm in
conjunction with well-known heuristics. We use two
genetic algorithms in a hierarchical manner to solve
he problems in an integrated manner. The first
genetic algorithm is used to select functional units
from a hardware library, while the second uses the
allocations to perform scheduling and binding. The
second GA performs the role of fitness function for
the first. In this way, we achieve a truly integrated
solution as both genetic algorithms run concurrently
and cooperate with each other until a satisfactory
solution is found.

The remainder of this paper is organized as
follows. Section 2 describes the problems of
scheduling, allocation, and binding in more detail. In
section 3 we describe how we model and solve the
problems using two genetic algorithms. In Sec. 4 we
demonstrate the effectiveness of our approach by
showing that our system can generate optimal results
for standard benchmarks. Section 5 explains how we
determined appropriate operators and parameters for
the GAs. Finally, we present our conclusions and
directions for future work in Sec. 6.

2.0 Basic Concepts

We now begin with a closer look at the three
problems of scheduling, allocation, and binding. In
Fig. 1 a simple data-flow graph and hardware library
are shown.

Figure 1: Data flow graph and module library.

The DFG contains five operations: 2 multiplication
operations, 2 addition operations, and 1 subtraction
operation. The hardware library contains three types

of functional units, each with various execution times
and areas. More than one instance of each functional
unit may be chosen in the final allocation. Notice that
all of the functional units present in the library are
complex, allowing different operations to be
performed in different numbers of control steps. The
faster functional units also tend to consume more
space (chip area) and thus cost more to instantiate.
Here each functional unit is capable of performing
each operation in the DFG; in general, this may not be
true.

Given a behavior specified as a DFG, as well as a
hardware library, the problem is to find a suitable
schedule such that:
• the operations are performed by the units having

the required capability,
• a unit can execute at most one operation at a time,
• the operations are executed in the order specified

by the DFG,
• the total area is limited,
• the execution occurs with a number of steps that

is limited.

Figure 2 illustrates three different schedules and
allocations for the behavior specified in Fig. 1. Each
schedule incorporates different combinations of units.
The short 3-step schedule requires 2 instances of the
faster � but larger � multiplier (ALU1), resulting in a
1500 unit area design. By extending the schedule
length to 4 steps, only 1 instance of the fast multiplier
is required to satisfy the timing requirement using a
smaller 1000 unit design. In the case of the 6-step
schedule, both multiplication operations must be
bound by the same unit instance if the inexpensive
unit, ALU3, is to be used. Notice how the issues of
schedule and area restrictions, availability of units,
and unit allocation and binding are all interdependent.

Figure 2: Alternate sch

Two kinds of c
during scheduling an
familiar are the data-d
ensure that no operati
its operand values ha
dependency constraint

-3

×2

×2

+4

×5

+1

-3

 1 1 3 2

 ALU 1 2 1 600
 ALU 2 3 1 400
 ALU 3 3 2 300

 × (+,-) Area

Time Delay

+1 ×2

-3

+4

×5

a b c d e f
ALUs

edules, allocations, and bindings.

onstraints play a crucial role
d allocation. First and most
ependency constraints. These

on begins execution until all of
ve been computed. Each data-
 corresponds to an edge of the

+1

+4

×5

×2

×5

+4

+1

-3

 1

 2
 3

 4
 5
 6

 1 3 3 step

DFG and bounds the starting time of an operation by
the completion times of its predecessors on the DFG.
Completion times, in turn, depend on the particular
units allocated. Thus, data-dependency constraints
enforce the ordering imposed by the DFG, with
consideration given to the type of unit allocated to
each operation.

The second important set of constraints focuses
on each individual unit � its type and instance. If any
unit is used by more than one operation, those
operations must be implemented in some sequential
order. No operation can begin until its predecessor (if
any) on the same unit has completed its execution.
Although this constraint also bounds starting times by
the completion times of predecessors, this ordering is
unrelated to data dependency. The ordering here is
imposed by the mapping of operations to units and is
not predetermined. It must be ascertained
dynamically, if (multi-step) units are to be reused. For
example, the 6-step schedule in Fig. 2 indicates that
operations 4, 1, and 3, being bound to the same
instance of ALU3, must occur in some order (here 4,
1, 3). We refer to the ordering among operations that
are executed by the same unit as their unit-use
ordering.

3.0 Our Approach

In practice, the total time and area available on a chip
are often restricted to lie within some prespecified
limits. Consequently, a designer is required to verify
the existence of some feasible solution that meets
both time and total area constraints; this requires no
objective function at all. By progressing through a
series of plausible time and area limits, the sequence
of solutions clearly display the area/time tradeoffs to
the designer. Our integrated approach to the
scheduling, allocation, and binding problems is based
on the hierarchical application of two genetic
algorithms. They are hierarchical because the second
GA acts as the fitness function for the first as shown
in Fig. 3.
The first genetic algorithm, GA1, performs allocation;
that is, it selects functional units from a general
hardware library to implement the operations in the
original specification. Each unit instance is assigned a
unique unit number, and multiple instances of the
same unit type can be selected. The only restriction is
that the total area required for a given allocation
cannot exceed the area limit specified by the designer.

The second genetic algorithm, GA2, performs
scheduling and binding using the allocation provided
by GA1. Thus, potential allocations provided by GA1
are evaluated on the basis of their ability to satisfy the
timing constraint imposed by the designer. If a
schedule is found that satisfies the timing constraint, a
feasible solution has been found and the process
terminates. Otherwise, GA2 returns the length of the
best (shortest) schedule found after a predetermined
number of generations.

Figure 3: Hierarchical application of two GAs.

The point is that both genetic algorithms will

continue to run concurrently and cooperate with each
other until a solution is found that satisfies both
timing and area constraints imposed by the designer.

3.1 GA1 � Allocating Functional Units

We now take a closer look at the genetic algorithm
used to allocate functional units. The total area
available on a chip is restricted to lie within a
prespecified limit. More formally,

AreaLimitAU
m

mm ≤∑

where variable m indexes each instance being
considered in the current allocation, Am is the chip
area consumed by including unit m in the design, and
Um is a 0-1 variable. If Um = 1, unit m is selected to
appear in the final design.

We employ a bit-string representation where the
values of all variables Um are directly stored in a
string of length n, where n is the maximum number of
functional units the designer is willing to consider
using. At first glance, this representation seems to be
the most direct and easiest, but infeasible solutions
containing constraint violations need to be considered.
One way to do this is to use penalty functions to
penalize infeasible solutions [16]. However,
difficulties arise in selection of the penalty function
and its coefficients to prevent premature convergence
and infeasible final solutions.

A second strategy, and the one employed in this
paper, is based on the application of a special repair
algorithm to �correct� any infeasible solutions
generated [17]. For the allocation problem, this can
be done by setting some Um variable(s) to 0. The
repair procedure is outlined in Fig.4.

Yes – area/time constraints
satisfied, therefore stop

No – return length of
shortest schedule

Unit
Allocaton

Module Library
+

Area Limit
Dataflow Graph

+
Time Limit

GA1
Module

Allocation

GA2
Scheduling
& Binding

Feasible
solution?

T
a
(
c
T
g
t

g
c
w
r
c
T
a
s
e
s
s
c
s
b
t
s
p
b

a
t
m
[
c
s
r
i
b
b

Figure 5: Outline of GA1.

procedure repair (x)
begin
 area-exceeded = false
 xx =′

 if∑
=

>⋅′
n

i
AreaLimitiAix

1
][][

 then area-exceeded = true
 while (area-exceeded) do
 begin
 i=randomly select a unit and remove it from the
 current allocation: i.e., 0][=′ ix

 if ∑
=

≤⋅′
n

i
AreaLimitiAix

1
][][

 then area-exceeded = false
 end
end

Figure 4: The repair procedure.

he repair procedure transforms an infeasible
llocation (x) into a feasible one (x′) by removing
setting 0][=′ ix) randomly selected units from the
urrent allocation until the area constraint is satisfied.
hus, all candidate allocations generated by GA1 are
uaranteed to satisfy the area constraint imposed by
he designer.

Figure 5 shows a template for the allocation
enetic algorithm (GA1). The initial population is
onstructed from randomly generated individuals,
ith infeasible individuals in the population being

epaired as described above. Routine Evaluate()
omputes the fitness of each of the given individuals.
his routine calls the scheduling and binding genetic
lgorithm (GA2) which returns the length of the best
chedule found using the given allocation. One
xecution of the while loop corresponds to the
imulation of one generation. Throughout the
imulation, the number of individuals (M) is kept
onstant. Routine stopCriteria() terminates the
imulation when a solution (allocation, schedule, and
inding) is found that satisfies both the area and
iming constraint imposed by the designer. If no such
olution can be found, the GA terminates after a
respecified number of generations and returns the
est solution found.

In each generation, a set of offspring of size M
re created. Two mates p1 and p2 are selected from
he population independently of each other, and each
ate is selected using binary tournament selection

18]. The crossover routine generates two offspring
1 and c2 using standard 2-point crossover. With a
mall probability, Pm = 1/n, the mutation operator
andomly changes each of the components of each
ndividual in the population. Clearly, offspring may
e infeasible, in which case, they must be repaired
efore being evaluated.

3

T
d
r
u
m
c
p
t
t

[
S
p
w
t
t
a
e
a

Generate initial Population randomly;
Repair infeasible members of Population;
Evaluate (Population);
while not stopCriteria() Do
begin

NewPoulation = ∅
for j = 1 to M/2 Do

Select p1 and p2 from Population
{c1,c2} = crossover (p1,p2);
mutate (c1,Pm)
mutate (c2,Pm)
Add c1 and c2 to newPopulation

 end
 Population = newPopulation
 Repair infeasible members of Population
 Evaluate (Population);
end
.2 GA2 � Scheduling and Binding Operations

he role of GA2 is to schedule the operations in the
ata-flow graph under the precedence and resource
estrictions implied by GA1. Scheduling operations
sing only the units provided by GA1 involves
aking a choice as to the order in which operations

an be executed and assigned (bound) to units. The
roblem is to find a schedule and binding that satisfies
he timing constraint imposed on the final circuit by
he designer.

GA2 uses a modified version of List Scheduling
19] to construct feasible schedules. In List
cheduling, all �ready� operations of the DFG are
laced into a list ordered by relative priorities and
henever a unit becomes available the operation with

he highest priority in the list is chosen and assigned
o that unit. An operation is considered �ready�, if
nd only if all of its predecessors have completed
xecuting. Figure 6 shows the general list-scheduling
lgorithm.

1.

2.

3.

Assign a priority to each operation in the DFG.

Initialize a priority queue for ready operations by
inserting every operation that has no immediate
predecessors. Sort the operations in increasing
order of priority.

While the priority queue is not empty do the
following:

a. Get the operation at the front of the
queue.

b. Select an idle unit to perform the task.
c. After all immediate predecessors of an

operation are executed, insert that
operation�s successor(s) into the priority
queue.

Figure 6: List-Scheduling Algorithm.

It is clear from Fig. 6 that the particular assignment of
priorities to operations (step 1) results in different
schedules (with possibly different lengths) being
generated. This is because operations are selected for
execution in different orders. Various heuristics [20-
22] have been proposed for prioritizing the operations
in the DFG. However, no one heuristic has emerged
as the clear winner. Rather, recent results [23] suggest
that the performance of a list scheduler can be
improved by using a mixture of several heuristics.

In the approach presented here, we employ a
genetic algorithm to determine the priority of the
operations to be scheduled. This is a permutation
problem by nature. We employ a priority-based
encoding where the position of each gene in a
chromosome is used to identify the operation to be
scheduled and the value of each gene is used to
denote the priority associated with the operation. The
value of a gene is an integer exclusively within [1,p],
where p is the number of operations in the original
DFG. The larger the integer (p), the higher the
priority.

Figure 7: (a) Priority-based encoding; (b) dataflow
graph; and (c) final schedule.

Figure 7(a) shows a possible encoding for the
operations of the DFG in Fig. 7(b). If we assume the
existence of a single functional unit capable of
performing all of the operations in the DFG in a
single control step, a feasible schedule can be
constructed as follows. At the beginning, only
operation 1 is ready to be scheduled and is therefore
assigned to control step 1. Then three operations 2, 3,
and 4 become ready and compete for the second
control step. Their priorities are 7, 1, and 6,
respectively. Operation 2 wins, because it has the
highest priority. After scheduling operation 2 on
control step 2, the candidates for control step 3 are

operations 3, 4, and 5. Operation 4 wins and is
scheduled on control step 3. The process simply
repeats until all of the operations are scheduled. The
final schedule is shown in Fig. 7(c).

In the previous example, a single unit capable of
executing all of the operations in the DFG was used.
Most designs, however, will include multiple units. It
should be clear, therefore, that the decision regarding
whether or not an operation can be scheduled not only
depends on whether the operation�s predecessors have
executed, but also on the availability of a unit to
perform the operation. Thus, a chromosome does not
directly represent a schedule, but rather a way of
resolving conflicts when more than one operation is
ready for scheduling.

Unlike GA1, the scheduling and binding genetic
algorithm (GA2) uses a permutation encoding as
opposed to a simple bit string, Specialized crossover
and mutation operators are used to preserve the
encoding during reproduction. This way, a repair
operator is not required. A number of crossover
operators have been proposed for permutation
encodings. However, through extensive
experimentation we have found that Partially-Mapped
Crossover (PMX) proposed by Goldberg et al. [24] to
be most effective for our problem. PMX can be
viewed as a variation of two-point crossover by
incorporating a special repair procedure to resolve
possible illegitimacy. PMX is implemented as
follows. Choose a random cut point and consider the
segments following the cut point in both parents as a
partial mapping of the genes to be exchanged in the
first parent to generate the offspring. Take
corresponding genes from the segments of both
parents, locate both these genes in the first parent, and
exchange them. Repeat this process for all genes in
the segment. Thus, a gene in the segment of the first
parent and a gene in the second parent will define
which genes in the first parent have to be exchanged
to generate offspring.

In addition to PMX, a �swap� mutation operator
was also used. This operator simply selects two
positions at random and swaps their contents. The
operator is applied with a small probability Pm = 1/p.

4.0 Experimental Results

The previously described Hierarchical Genetic
Algorithm (HGA) is implemented in the C
programming language in a UNIX environment.
Using well known benchmarks, the HGA will be
compared to other related works, including the HAL
system [9], SYMPHONY [11], TASS [4], and ADPS
[13]. In selecting comparison systems, a wide variety
of approaches have been chosen. HAL uses the
popular force-directed scheduling, heuristic, while
SYMPHONY uses an integrated ILP formulation
which is sensitive to the interdependence between the
3 problems. TASS uses a variant of simulated
annealing. ADPS first uses force-directed scheduling

1

 2

 4

 5

3

6

7

 (a)

3 7 1 6 4 5 2

Position: operation in DFG

Value: Priority of operation

1 2 3 4 5 6 7

1 2 4 5 3 6 7

Operation

Control Step

1 2 3 4 5 6 7

 (c)

Dataflow graph

(b)

to obtain a schedule; the resulting schedule is then
used for allocation and binding, all within an iterative
process that attempts to refine the design. All times
given represent CPU time expressed in seconds. The
initial population sizes of GA1 and GA2 were
selected to be 5 and 20 strings, respectively.

4.1 The Elliptical Wave Filter

An important facet of any HLS systems is the ability
to determine a lower bound performance for
execution of a behavioral specification, for a fixed
number of resources. This first example demonstrates
the ability of the HGA we are proposing to quickly
minimize schedule length given a fixed bound on
area.

The elliptical wave filter consists of 34 addition
and multiplication operations. The hardware library
contains two unit types: adders and multipliers. Each
adder has a delay of 1 control step and an area of 100
units, while each multiplier has a delay of 2 control
steps and an area of 250 units.

Initially, we limit area to 1050 units and seek a
minimum time solution. Table 1 reveals that the HGA
found an optimal 17-step schedule, requiring 3 adders
and 3 multipliers. When the area limit was reduced to
700 units the HGA found an optimal 18-step
schedule, and near-optimal 19-step schedule both
requiring 3 adders and 2 multipliers. When the area
limit was further reduced to 450 units an optimal 21-
step schedule was found requiring 1 multiplier and 2
adders. Finally, when the area limit was reduced to
just 350 units an optimal 28-step schedule was found
requiring 1 adder and 1 multiplier. In each case, the
comparison with HAL, TASS and SYMPHONY
show a reduction in time to obtain the same optimal
results.

4.2 Bandpass Filter

We now demonstrate the HGA�s ability to minimize
area given constraints on execution time. For
purposes of comparison, we choose the Bandpass
Filter benchmark and complex unit library presented
in [9], and compare the HGA with SYMPHONY and
ADPS. The DFG consists of 29 operations including
multiplication, addition, and subtraction operations.
The cumulative area of the units present in the library
is 1620, with each unit having a delay of 1 control
step.

Initially, time was limited to 8 control steps and
a minimum area solution sought. Table 2 (at end of
paper) reveals that the HGA and SYMPHONY found
an optimal allocation (675), while ADPS produced a
sub-optimal (685) solution. With the time limit
relaxed to 9 control steps, the HGA and SYMPHONY
again found an optimal allocation (625), but ADPS
could only find a sub-optimal solution (650). This
trend continued for both 10 and 11 step schedules. In
every case, HGA and SYMPHONY produced better
results than ADPS. However, the EGA required less
time than SYMPHONY to obtain equivalent (optimal)
solutions.

5.0 Tuning the HGA
In this section we wish to look at the various
components and settings that comprise the
Hierarchical GA to see whether different setting
would produce different results. We decided to use
the Bandpass Filter problem, as it was the more
difficult of the two problems we have investigated.

5.1 Experimental Design

We varied the crossover rate (crt), mutation rate (mrt)
and population size (ps). We also examined the 3
different permutation crossover techniques (cvr) for
the scheduling level of the GA: exchange crossover
(X), order crossover (O) and cycle crossover (C). We
therefore are doing a multiple factor analysis with 4
factors (crt, mrt, p-s and cvr). For the crossover rate,
we used 20%, 70%, 90% and 100%; for the mutation
rate we used 0, 0.035 and 0.07 (no crossover, 1/lngth
and 2/lngth); for the population size we used 10, 50,
100 and 1000 individuals. For a summary of the
factors and factor levels see Table 3.

For the experimental design we chose a factorial
design, where all factors are fully crossed. Each
treatment is repeated 20 times to provide statistical
significance for the various inferences obtained.

Since the fitness function used is a minimization
on the number of control steps that the choice of ALU
units along with a schedule found produces, it is
natural that the response variable studied would be the
number of control steps.

However, in the majority of runs, the actual
minimum is found. So to gain more information, we
also keep track of the generation that the best fitness
value was discovered in a run. The better the settings
for the HGA, the earlier that the minimum should be
found.
Area
Limit

Units
Allocated

Control
Steps

Time (s)
 HAL TASS SYMPHONY HGA

1050 *,*,*,+,+,+ 17 120 10.0 2 0.026
700 *,*,+,+ 18 240 10.1 233 0.026
700 *,*,+,+ 19 Not reported Not Reported 358 0.026
450 *,+,+ 21 360 10.2 Not Reported 0.014
350 *,+ 28 480 Not Reported Not Reported 0.008

Table 1: Results for Elliptical Wave Filter.

Unfortunately, the HGA does not always find
the minimum number of control steps. This presents a
problem when comparing runs that converged on the
minimum and those that do not.

To resolve this problem we combine the two
response variables into a single response variable by
using the number of steps as the major factor and the
number of generations as the subfactor. The new
response variable follows the formula:

ri = (gmax +1) ⋅ si + gi

where gmax is the maximum generation before the GA
is halted, si is the number of control steps by the ith
chromosome, and gi is the first generation that the ith
chromosome was first formed. For example, in an
experiment which has a maximum generation of 99, if
the best chromosome was discovered in a run first
appeared in generation 52 and took 9 control steps,
then

ri = (99 +1) ⋅ 9 + 52 = 952

The resulting response variable is obviously not
normally distributed. Therefore we must use non-
parametric methods when performing a statistical
analysis; all statistical methods used, in our case a
MANOVA (multivariate analysis-of-variance), are
performed using ranked values instead of the original
response variable (the ri�s).

For the experiments, we used a maximum
generation cutoff value of 99 generations. We ran
experiments on the bandpass filter DFG using 3
different area constraints: 675, 625 and 600.

5.2 Results

Surprisingly, tightening the constraints does not
always mean increasing the level of difficulty. From
the histograms of our response variable ri (Fig. 8) we
see that the �easiest� problem, i.e. the one that always
finds the solution in 1 or 2 generations has an area
target of 600, our tightest constraint.
The area constraint of 600 is so easy for the HGA to
solve that there is not enough variance in the response
data to perform a MANOVA to examine the various
factors under investigation.

Furthermore, the results of the two other area
constraints produce identical inferences.
Consequently, we will only present the factor analysis
for the 625 area constraint.

The results of the MANOVA on the bandpass
filter problem with an area constraint of 625 are given
in Table 4. The factors that have statistical
significance are in bold.

We will now look at the statistically significant
main effects one by one. First we see that all of our
factors have a significant main effect with the
exception of the crossover rate. This means that the
crossover rate (crt), taken by itself, does not have an
effect on the behavior of the HGA.

Next, looking at pair-wise comparison (using the
Student�s T test) of the factor levels of the crossover
type (cvr) main effect using the Bonferroni post-hoc
correction, we see that

Xover Type Difference Prob
C | O 9.68646 0.962137
X > C 395.955 0
X > O 405.642 0

Control
Steps

Model Units Allocated Area Constraint CPU Time (s)

8 SYMPHONY
ADPS
HGA

+*,+-,+-,*
+-,*,*,+,-
+*,+-,+-,*

675
685
675

4.8
9.0

0.215
9 SYMPHONY

ADPS
HGA

+-,*,*,+
+-,*,*,+-
+-,*,*,+

625
650
625

17
64

0.225
10 SYMPHONY

ADPS
HGA

,+-,+,
+*,*,+,+-
,+-,+,

625
650
625

132
15

0.25
11 SYMPHONY

ADPS
HGA

+*,+-,*
+-*,*,+,-
+*,+-,*

600
630
600

42
197
0.02

Table 2 Execution Times for Bandpass Filter.
 Factor Factor Levels

CVR Crossover
Type

Exchange Crossover (X)
Order Crossover (O)
Cycle Crossover (C)

CRT Crossover
Rate

0.2,0.7,0.9,1.0

MRT Mutation
Rate

0.000,0.035,0.070

P-S Population
Size

10,50,100,1000

std. err = 22.31
Table 3: Factors and Factor Levels for HGA
Tuning Analysis

where > means �performs better than�, and | means
�is not statistically different from�. In other words,
the exchange crossover always produces better results
when used in the HGA when compared to cycle and
order crossovers.

Next is the pair-wise comparison of the different
mutation rates (mrt), again using the T test with a
Bonferroni post-hoc correction:

Mutation rate Difference Prob
0.034483 > 0 55.1453 0.039980
0.068965 > 0 52.2062 0.056957
0.068965 | 0.034483 2.93906 0.998849
std.err = 22.31

 From this we can conclude that mutation is
important, as either of the mutation rates used was
better than no mutation. However, we could not
distinguish between the behaviors of the two different
mutation rates that were used.

Analyzing the population size (p-s) we found
that the larger the population size used, the better the
behavior of the HGA, which is to be expected.
However, when looking at the number of evaluations
performed a different story emerges. We computed
the number of evaluation by using the formula
ei = n ⋅ gi + n . We then combined the control steps
with the number of evaluations by computing

vi =100,000 ⋅ si +ei , where 100,000 is the maximum
evaluation that can occur, and then used a non-
parametric analysis by applying MANOVA on the
ranks of the vi.

The results were exactly the opposite found
when doing the analysis on the number of generations
taken:

Population Size Difference Prob
10 > 50 181.548 0
10 > 100 383.737 0
50 > 100 202.189 0
10 > 1000 462.213 0
50 > 1000 280.665 0
100 > 1000 78.4757 0.000034
std. err. = 17.26

Consequently, smaller population sizes, while
perhaps taking more generations to find the solution,
will do so using fewer evaluations and hence find the
solution in much smaller computational time.

Finally, we examined the interaction terms. We
found that by and large, the interaction terms just
reinforced the results found for the main effects (with
some very minor differences, which could have been
the effect of the low number of repetitions used for
time consideration).

800 850 900 950 1000

500

1000

1500

step+gen

800 850 900 950 1000 1050 1100 1150 1200 1250 1300

500

1000

1500

step+gen

800 850 900 950 1000 1050 1100 1150 1200

1000

2000

3000

step+gen
 Area = 675 Area = 625 Area = 600

Figure 8: HGA Performance Frequencies on the Bandpass Filter Problem
by Control Steps + Generation Found For 3 Different Area Constraints

Source df Mean Square F-ratio Prob Source df Mean Square F-ratio Prob
Const 1 5976115920 25012 ≤ 0.0001 p-s 3 352277511 1474.4 ≤ 0.0001
xvr 2 51427123 215.24 ≤ 0.0001 xvr*p-s 6 2854217 11.946 ≤ 0.0001
xrt 3 386875 1.6192 0.1828 xrt*p-s 9 449420 1.8810 0.0503
xvr*xrt 6 1396494 5.8447 ≤ 0.0001 xvr*xrt*p-s 18 540738 2.2631 0.0018
mrt 2 924022 3.8673 0.0210 mrt*p-s 6 238399 0.99777 0.4249
xvr*mrt 4 162643 0.68071 0.6053 xvr*mrt*p-s 12 307270 1.2860 0.2194
xrt*mrt 6 425081 1.7791 0.0994 xrt*mrt*p-s 18 418112 1.7499 0.0258
xvr*xrt*mrt 12 204909 0.85761 0.5905 xvr*xrt*mrt*p-s 36 278740 1.1666 0.2290

Error df = 2736 SSE = 653717184 MSE = 238932
Total df = 2879 SSE = 1884033224

Table 4: MANOVA Results for Bandpass Filter with Area Constrain of 625

6.0 Conclusions

In this paper we have presented an integrated solution
to the high-level synthesis problems of scheduling,
allocation, and binding. Our approach is based on the
hierarchical application of two genetic algorithms that
handle all the interactions among the three
subproblems. The solution permits the use of complex
functional units and allows operations to be
implemented by a variety of functional units, possibly
requiring different execution times. Our results show
a reduction in time to obtain optimal solutions to
standard benchmarks compared with other systems. In
a straightforward way, our model can be extended to
effectively use pipelined units or chained operations
whenever there is an opportunity to do so.
Furthermore, our model can also be extended to find
optimal schedules and module allocations for
multiple-block designs, not block-by-block or just
along critical paths, but for all the blocks of a design
simultaneously; we plan to publish the details of
multi-block synthesis in a separate manuscript.

References
1. M. C. McFarland, A. C. Parker and R. Camposano,

Tutorial on high-level synthesis DAC, pp. 330-336
(June 1998).

2. D. E. Thomas, E. M. Dirkes, R. A. Walker, J. V. Rajan,
J. A. Nestor and R. L. Blackburn, The system
architect�s workbench, Proc. 25th Design Automation
Conference ACM/IEEE, (June 1998).

3. H. Trickey, Flamel: A high-level hardware complier,
IEEE Transactions on Computer-Aided Design 6, 2
(March 1987).

4. S. Amellal and B. Kaminska, Functional synthesis of
digital systems with TASS, IEEE Transactions on
Computer-Aided Design Conference, 13, (May 1994).

5. M. Nourani and C. Papachristou, Move frame
scheduling and mixed scheduling allocation for
automated synthesis of digital systems, Proceedings of
the 19Th Design Automation Conference, pp. 99-105,
(1992).

6. K. Wakabayashi and H. Tanaka, Global scheduling
independent of control dependencies based on
condition vectors, Proceedings of the 29th Design-
Automation Conference, pp. 112-115, (June 1992).

7. N. Park, R. Jain, and A. Parker, Datapath synthesis of
pipelined designs: Theoretical foundations in Progress
in Computer-Aided VLSI Design 3 (Ablex Publishing
Corporation) pp. 119-156, (1990).

8. W. Grass, J. Scheichenzuber, U. Lauther and S. Marz,
Global hardware synthesis from behavioral data-flow
descriptions, Proceedings of the 27th Design-
Automation Conference, pp. 456-461, (1990).

9. P. Paulin, High-level synthesis of digital circuits using
global scheduling and binding algorithms, PhD Thesis,
Carleton University, Ottawa, (January 1989).

10. M. McFarland, Using bottom-up design techniques in
synthesis of digital hardware from abstract behavioral
descriptions, Proceedings of the 23rd Design-
Automation Conference, pp. 474-480, (1986).

11. N. Mukherjee, An ILP solution for optimum
scheduling, module and register allocation, and

operation binding in datapath synthesis, VLSI Design,
vol. 3, pp. 21-36,(June 1995).

12. G. Grewal, Scheduling, allocation, and binding in
multiple-block synthesis, Master�s Thesis, University
of Guelph, Department of Computing and Information
Science, Ontario, Canada, (April 1993).

13. C. Papachristou and H. Knouk, A linear program
driven scheduling and allocation method followed by
an interconnect optimization algorithm, Proceedings of
the 27th European Design-Automation Conference, pp.
193-199, (1992).

14. c. Gebotys and M. Elmasry, Simultaneous scheduling
and allocation for cost constrained optimal architecture
synthesis, Proceedings of the 28th Design Automation
Conference, pp. 2-7, 1991.

15. G. Syswerda and J. Palmucci, The application of
genetic algorithms to resource scheduling, Proceedings
of the Fourth International Conference of Genetic
Algorithms, pp. 502-508, (1991).

16. Z. Michalewicz, Genetic algorithms + data structures =
evolution programs, Springer, pp. 80-82, (1999).

17. Z. Michalewicz, Genetic algorithms + data structures =
evolution programs, Springer, pp. 83, (1999).

18. D. Goldberg, K. Deb, and B. Korb, Do not worry, be
messy, 4th International Conference on Genetic
Algorithms, Morgan Kaufmann Publishers, San Mateo,
CA, pp. 24-30, (1991).

19. A. Zomaya, Parallel and Distributed Computing
Handbook, McGraw-Hill, 1996.

20. H. El-Rewini, T. Lewis and H. Ali, Task scheduling in
parallel and distributed systems, Prentice Hall, 1994

21. T. Lewis, H. El-Rewini, Introduction to Parallel
Computing, Prentice Hall, 1992.

22. T. Adam, K Chandy, and J. Dickson, A comparison of
list schedules for parallel processing systems, Comm.
ACM., Vol. 17, pp. 685-690, 1974.

23. A. Auyeung, I. Gondra, and H. Dai, Multi-heuristic list
scheduling genetic algorithm for task scheduling, The
Eighteenth Annual ACM Symposium on Applied
Computing, pp.721-724, 2003.

24. D. Goldberg and R. Lingle, Alleles, Loci, and the TSP,
1st International Conference on Genetic Algorithms,
pp. 154-159, (1985).

	An Evolutionary Approach to Behavioral-Level Synthesis
	ABSRACT - This paper presents a novel approach to the concurrent solution of three High-Level Synthesis (HLS) problems and solves them in an integrated manner using a Hierarchical Genetic Algorithm (HGA). We focus on the core problems of HLS: Scheduling
	1.0 Introduction
	
	2.0 Basic Concepts
	References

