The Underlying Similarity of Diversity M easures Used
in Evolutionary Computation

Mark Wineberg and Franz Oppacher

Computing and Information Science
University of Guelph
Gueph, Canada
wineberg@cis.uoguelph.ca

School of Computer Science
Carleton University
Ottawa, Canada
oppacher@scs.carleton.ca

In this paper we compare and analyze the various diversity measures used in the
Evolutionary Computation field. While each measure looks quite different from
the others in form, we surprisingly found that the same basi ¢ method underlies
all of them: the distance between dl possible pairs of chromosomes/organisms
in the population. This is true even of the Shannon entropy of gene frequencies.
We then associate the different varieties of EC diversity measures to different
diversity measures used in Biology. Findly we give an O(n) implementation
for each of the diversity measures(where n is the population size), despite their

basisinan O(nz) number of comparisons.

1 Introduction

In recent years there has been a growing interest in genetic diverdty in the
Evolutionary Computation field [1][2]. Diversty maintenance procedures are
beginning to be emphasized, egpecidly in the areas of multi-objective optimization
[3], and dynamic environmentsin evolutionary sysemd4][5].

There are many different diversty measures that can be found in the literature. The
standard diversity measure is the sum of the Hamming distances between al possible
pairs of chromosomes. Another popular measure is the use of the Shannon Entropy
from Information Theory on gene frequencies Even variance and dandard deviation
can be viewed as a diversty measure, egpecidly when usng red vaued genes. This
naturaly leads to the question: which of these varied diversity measuresis best?

Surprisingly, there appear to be a deep smilarity between dl of the above different
measures. In this paper we andyze dl of the above diversty measures and expose this
smilarity. We dso present efficient procedures for computing these diversty
measures. For example the time complexity for the "adl posshble pars' diversty
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measure would naively be thought to be O(n”) because there are O(n”) chromosome

parings in a population of size n The agorithm we present computes the vaue in
O(n) time.

2 All-Possible-PairsDiversity

The smplest definition of diversty comes from the answer to the question “how
different is everybody from everybody ese?’ If every chromosome is identicd, there
is no difference between any two chromosomes and hence there is no diversity in the
population. If each chromosome is completdy different from one another, then those
differences add, and the population should be maximdly diverse. So the diversty of a
population can be seen as the difference between dl possble pars of chromosomes
within that population.

While the above definition makes intuitive sense, there is one aspect not covered:
what do we mean by different. If a pair of chromosomes is only different by one
locus, it only gems reasonable that this pair should not add as much to the diversity
of the population as a par of chromosomes with every locus different. Consequently
the difference between chromosomes can be seen as the Hamming distance or
chromosome distance, where the Hamming distance is the sum of dl loci where the
two chromosomes have differing genes. Hence the population diversity becomes the
sum of the Hamming distances between al possible pairs of chromosomes, see [6]. In
cluster theory thisis called the statistic scatter, see[7].

Now, since the Hamming distance is symmetric, and is equa to O if the strings are
the same, only the lower triangle in a chromosome-pars table need be consdered
when computing the diversity. Consequently the dl-possble-pairs diversty can be
formalized as

Div(P)= & & hd(c.c) )

i=1 j=1

where P is the population and chromosome C‘T P and n is the population sizeand
hd(c;,G) is the Hamming distance between two chromosomes.

3 TheReformulation of the All-Possible -Pair s Diversty:
A Linear TimeAlgorithm

A problem with formula (1) is its time complexity. Since the Hamming distance
between any two pairs takes O(l)time and there ae n’ possible pairs (actualy

%n(n- 1) pairs when symmetry is taken into account), then the time complexity
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when usng (1) is O(I nz). Since the time complexity of the GA is O(Ixn)
cdculding the divesity every generation would be expensive.
Fortunately a reformulaion of definition (1) can be converted into an O(1xn)

agorithm to compute the al-possible-pairs diversity. Thiswill be developed directly.

It seems unlikdy such an efficient dgorithm would not dready be present
somewhere in the literature. Unfortunately, most mathematical textbooks that ded
with sets of binary strings seem to be interested in the maximum of the distances
between dl posshble pars and not the average. Unlike the sum or average, the time
complexity of the maximum Hamming Distance between al possble pars cannot be

reduced from O(I nz) to O(Ixn) time so the issue is ignored. While the maximum

digance between dl possble pairs of chromosomes can dso be conddered as a
diversty measure on a GA population, it is not a particularly good one since it is too
sengtive to outlier chromosomes, and does not give fine grain information about
changes in the population.

Gene Counts and the Gene Frequencies

Before we can give the reformulation, we shal introduce two terms that will be
extensvely used throughout the paper: the gene count across a population, and the
genefrequency of apopulation.

The gene count ¢, @) is the count across the population of al genes a locus k that
equalsthe symbol a . This meansthat

c.e)=ad,@) @

i=1

where d (a) is a Kronecker d that becomes 1 when the gene a locus k in

chromosome i equals the symbol a, and otherwise is 0. The array of the gene counts
of each locuswill be caled the gene count matrixt.

The gene frequency f, @) is the ratio of the gene count to the size of the
population. In other words,

©)

The aray of the gene frequencies of each locus will be caled the gene frequency
matrix2.

1 For non-evolutionary systems, such as those used for cluster analysis or symbolic machine
learning, the gene count matrix could be called the symbol count matrix.

2 Jugt as with the gene count matrix, the gene frequency matrix could be caled the symbol
frequency matrix when dealing with non-evolutionary systems.
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The Reformulation

With the notetion in place we can present the dternate form of writing the dl-
possible-pairs diversity:

Theorem la: The dl-possible-pairsdiversity can berewritten as

2
o o

piv(P)=—& & f, @) (- f,(a)) (4

k=1 "al A

Proof Let us fird examine a chromosome dy tha a locus k has gene a. When
computing dl of the possble comparison pars, the vdue 0 is obtained from
comparisons of dy with any other chromosomes thet dso have the same gene a a

locus k. There are nf, @ )chromosomes with gene a a locus k (induding dv).
Consequently there are n- nf, (@) comparisons with chromosomes that do not have
gene a a locus k, and hence will return the value 1. So the component of the distance
attributable to ch is n- nf, @). Since there ae nf(a) chromosomes that have the
same gene a locus K, the total distance contributed by chromosomes with gene a a
locus k is nf, @)(n- nf, @)), which smplifies to nsz(a)(l- f, @)). Summing
over dl a will give us double the comparison count (since we are adding to the count
both  hd,(ch ,ch;) ad hd/(ch,ch)). So the true compaison count is

4 f @)li-f,(@)). Averaging over dl lodi gives us the resuit we wart. [

"al A

Theorem 1b: The normdized al-possible-pairs diversity can be rewritten as

4 4 fe)x-f (@) a<n

i

I r@-r1o, ...

Div(P)=%|>§?a_ =5
! n
t

|
o] o
a a f e)xl-f @) asn
l x(n - 1) k=1" al A
where r = nxmoda .
Proof. To normalize this formula we mugt first find the maximum diversity

vaue that can be obtained under any makeup of the population. Once this is found,
the naomaized diversity isjust the regular diversity divided by thisvaue.
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Case 1) Theaphabet sizeis strictly lessthan the size of the population (a < n)
In this case the diversity becomes maximad when dl gene frequencies are as equd as

possibles, i.e. when f, @) :%. Substituing this into the diversity equation (4) when
modified dightly to handle the case whena does not evenly divide into n produces

max(Div(P)):n—a?a- 1 - r(a-z r)g
2a8 nn g

©)

which gives us the result we want when divided into equation (4).

Case 2) When the dphabet size is greater then or equa to the size of the population
(a® n) each frequency becomes L. This is because there can only be the n different
symbols in the populaion when maximaly diverse. Also sincen|n, r =0. So, by

sdtting a = nand r = 0 in equation (5) and amplifying, then dividing this maximum
into equation (4), the result required is obtained. |

In mogt cases a<n ad a|n,so r is 0 and the normalized dl-possble-pairs
divergty can be written as

@ 1) Ekizll"?.Afk(a) 1-f.e) (6)

Since, in the mgority of GA implementations a binary dphabet is used with an even
population sze (because crossover children fill the new population in pairs), the
above equation becomes

Div(P) =

243 o
Div(P)=—a a f,@) @-f (@) )

k=1"al A

An O(|»n) All-Possble-Pairs Diversity Algorithm

The normalized dl-possiblepairs diversty messure (6) can be trandated into an
agorithm that computesthis diversity in O( | xn) time.

To keep its time complexity down, each aphabet symbol is replaced in the
chromosome with its corresponding index in the dphabet set. For example, if the
aphabet is A={a,t ,c,g}, then the corresponding indices are &1, t=2, c=3 and g=4,
and the chromosome aatccgctatag becomes 112334321214. This is done to alow
congtant time indexing into the gene frequency array, based on the gene vaues.

3 This can be proven easily by solving for each of the frequencies from the set of equations
produced by N Div(P) = 0 after taking into account the constraint é_ f @) =1.

a
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The cdculation is done in two pats Firg the gene frequencies are found in
findGeneFrequency' then the diversity is computed in 'APP_Diversity":

function findGeneFrequencies(p, lgth, a)

args: popul ation p — apopulation of chromosome
int lgth — thelengthof thechromosome
int a — theszeofthealphabet

vars: float [l gth,a] geneFreq; int[lgth,a] geneCount
int[lgth] chr; int gene, i, j, k

code: geneFreq : = nakeArray(float, lgth , a)
geneCount := makeArray(int, lgth , a)

i nitAll Val ues(geneCount, 0)
for each chr inp
for k :=1to Igth
gene := chr[Kk]

geneCount [ k, gene] := geneCount[k, gene] + 1
for i :=1 to lgth
for j :=1to a
geneFreq[i,j] := geneCount[i,j] / size(p)

return geneFreq

function APP_Diversity(p, lIgth, a)

args: same asin findGeneFrequencies( )

vars: float [l gth,a] geneFreq
int max; float diversity = 0

code: geneFreq : = findGeneFrequencies(p, Ingth, a)
max := lgth * (a -1) / a assumesa| Igth;

if a doesn't divide Igth, use max from Theoremlb
for k :=1tolgth

for a:=1to a
diversity := diversity +
geneFreq[k, a] * (1-geneFreq[k,a])
return diversity / max
Finding the gene frequencies costs O(Ixn) time while the actua diversty is
cdculaed in O(Ixa) time. Since the aphabet Sze is conddered to be a congtant of
the system (this is definitely true with the standard binary aphabet), the overdl time
complexity is O(I>xn)+0O(I) =O(Ixn) . This is optimal time for this prodem (each
chromosome must a least be looked a once to affect the diversity vaue), so the al-
possiblepars diversity agorithm can be computed in Q(l ) time. This is much

fagter than the O(Ixn’) time that the origind naive dl-possiblepars agorithm
would take.
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4 Diverdty as|Informational Entropy

In information theory, entropy is defined as[8]
1
H(X) =4 p(x)log—— (®)
iA p(x)

where X is a discrete random varidble with vaues taken from aphabet A ad a
probability mass function p(x) =Pr{X = x}, x1 A. Equaing the populaion a a
locus with X and the gene frequencies a that locus f (a) with the probabilities
p(x) , theentropic diversity a alocus can be written as:

. [o]
Div,(P)=Qa f, @)log )
al A fk (a )
Averaging over dl loci givesthe actud entropic diversity of the population:
_ 1lé o
Div(P) =-a a f, @)log (10)

k=1 alA fk )

To diginguish between the two different types of diversty, the dl-possble-pairs
diversity shall be symbolized by Div, (P) and the entropic diversity by Div,(P) (the
X represents the complete Cartesan cross of the all possble pars, and the H
represents the entropy).

The entropic diversity is closely tied to the al-possiblepairs diversity in behavior.
Preliminary experiments done by the authors show that the correation between the
two is very close, dthough not identica to 1. If we compare the definition (4) of dl-
possible-pairs diversty with the entropic diversty definition above, we see tha aside
from the congtants in front, the two forms are remarkably smilar. The only difference

is the use of Iogfk% term in the entropic diversity instead of the (1- f, @)) temas

used in the dl-posshle-pairs diversty. Furthermore both diversties can be seen as
just the expected value of those terms. However, if we perform a Taylor expansion of

Iogfk% aound a =1,weget

11)

og— a- @), a- @), @ fe)
- .

=(@1- f @)+
3 i

@)

Notice that the firgt term in the Taylor series is the same as the one used in the al-
possiblepairs diversity definition. Also notice that the other terms are dl less than 1
and rapidly gpproach 0 and consequently the early terms will dominate. So we can

now see that Div (P)is just the first term in the Taylor expanson about 1 of
Div,, (P) , which accounts for the Smilarity in their behavior.
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Now (1-f, @)) can be thought of as the “probability” that, if selected a random,

the gene a this location won't be a. The other terms then can be seen as the
probability under random selection that gene a won't be sdlected after i sdections.
Therefore, the diversity can be regarded as the expectation that the sdected gene will
be “some other gené’. Since in each generation the GA sdects from the population
multiple times, and since the Taylor series above rapidly converges, the entropic
diversity isused as a more accurate messure of diversty.

Findly, it is well known thet the maximum of the Shannon entropy occurs under a
uniform probability distribution. This, as we would expect, is the same as we found
with the dl-possble-pairs diversty. Consequently, the normaized form for the
entropicdivasty intheusud casewhen a<nand n|a is

1 g o
Div(P) :Wa af.e)log

k=1 ai A fk )

1

12)

(notice that if we choose the base of a for the logarithm, the origind definition of
etropic diversity (10) is dready normdized). The corresponding formulae for the
cassswhen a<n but njJa, ad when a3 n) are andogous to those developed for

the dl-possiblepairs diversity.

5 TheDiversity MeasuresasUsed in Biology and EC

Both of the dl-possble-pairs formulations as well as the entropy diversity measure
have been usad in various biological fields of study such as genetics and ecology.

This diverdty definition is actudly used in the fidd of molecular genetics
dthough modified dightly to reflect the fact that, in practice, one only has a sampling
of DNA sequences from a population. The modified formula is proportiond to the all-
possiblepairs definition of diversity,

Div (P) =#§ é hd(c ,c ) 13)
l m>(n' 1) i=1 j=1 l

and is cdled nudeotide diversty. For more details, see Molecular Evolution [9] pp.
237-238.

The reformulaion of the dl-possblepars diversty dso has a biologicd
interpretetion; this time it is not in the recent area of molecular genetics, but in the
older fidd of population genetics. Here the diversty is used to measure the variation
of dldes in a population and is known as ether the gene diversity or the expected
heterozygocity. It is normaly only defined for a single locus and is usudly given in

the form 1- é f: , where Ais the st of dldes a that locus. Remember, an dlde a
a locus may comprise an entire sequence, or even many sequences of nucleotides and
2 is working a a much higher levd than the nudeotide diversity, even though the
underlying mathematicsisidentical. For details, see[8] pp. 52-53.
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This verson of the (normalized) al-possible-pairs diversty has appeared in the
GA literature [10] with reference made to the biologicd definition of heterozygocity,
dthough the formula given had been modified to dedl with binary vaues only. In the
paper, no attempts were made to connect this diversity definition with the standard
dl-possible-pairs formulation.

The diversity measure based on the Shannon entropy dso is commonly used in
biology in the field of ecology, where it is used to compute the diversity of species,
see [11] pp.7-8. While less common, entropic diversty has adso been used for the
genetic diversity of populationsin the EC fidd [12].

6 Diversity in Populationswith Real Valued Genomes

Until now we have concentrated our attention on populations with binary and
symbolic gene vaued chromosomes. There we found that many measures that are
naively thought to be digtinct are in fact connected by the underlying concept of an
dl-possiblepairs comparison. It would be reasonable to expect that the gtuation
would be very different when conddering red vaued genes. However, this is not the
cae.
At first one might think that the all-possible-pairs diversity for alocus k would be

19 4
_a a D()ﬂ‘k ’Xi,k) (14)

j=1 =t

where D is the Euclidean distance between chromosomes. However, a smple
summation of the distances is equivaent to teking the Li-norm of the dl-possible-
pairs ‘vector'. Furthermore, since D is based on the L>norm, it only makes sense to
match the method of combinatiion of al of the possible pairs with that used for the
digance itsdlf. There is nothing specid about the averaging done by the Li-norm.
Rather the Lynorm can be thought of as an ‘average tha emphasizes the effects of
larger differences. Consequently, using the ly-norm, the al-possiblepairs diversty at
alocus k becomes

) 1¢ 8 ,
DVk (P) :_a a D ()q,kixj,k) (15)

j=1 =

To obtain the actud dl-possiblepairs diversity by combining al the diversities at the
variousloci, we again usethe L ,-norm producing

, 14 8 8 14 8 4 ,
Dvi(P)=—aaab (X,wxj,k)=za aa (.- x,) (16)

k=1 j=1 i=1 k=1 j=1 i=1
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Reformulating the Real Valued All-Possible-PairsDiversity
for aLinear TimeAlgorithm

The above formula, coded as is, would produce an O(Ixnz) agorithm. However, just

as with systems that use symbolic genes, the formula can be rearranged to produce a
program that hasO(Ixn) time complexity. For the symbolic gene systems, this was
accomplished by introducing the frequency of a gene & a locus While this cannot be
used directly for sysems using numeric genes, there is an anadlogous measure: the
average gene vaue a a locus. This can be used to produce a reformulation of the dl-
possiblepairs diverdty:

— d
Theorem2 Let x =—@a x, ad X =

ik k

a )ﬁzk

3|I—‘

Proof. DV’ (P) = 3 é é (x,-x,)" from(15)
g & & 14 4 & d &4 &
aaax.,t~—aaax,-aaax,.x,

k=1 j=1 i=1 2 o j= =1 k=1 j=1 i=1

3
05

4 8, ..
aax_k"'— a-x a-%xm |k

n25—2+n§—2 "8 ()

=— —a X - X

2 k=1)g< 2 k1 “ k=1

—nzé(n x)?) !

Looking a the diversity equation in the theorem, we see that the dl-possible-pairs
diversity is dependent directly on populatiion size and implicitly on the sguare of the
chromosome length. Since intuitively the diversty of a population should not increase
by smply duplicating the exact populaion or by exactly duplicaing genes, we will
define the true diversity as

, 1ld — _,

DIV(F’)—l— a (- (%)) a7

which is smply the dl-possble-pairs diversty divided by the population sze and
chromosome length.

We will now turn to the time complexity of an agorithm that implements the
aove definition of diversty. Snce the average gene vdue, x , and the average of
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the gene vaue sguared, X7, can be computed in O(n) time for a single locus, and
since there are | lodi, dl of the average gene vaues and gene vaues squared can be
computed in O(Ixn) time Furthermore, once the average gene vaues are obtained,
the diversity sguared can be computed in O(l) time. Consequently the total time
complexity of an agorithm to find the squared diversity is O( Ixn) .

All-Possible-Pairs Diversity and Statistical Variance

The common detistical measure for scatter around the mean is the varianee (the
sguare root of which is the standard deviation). The definition of the variance is the
sum of the oquared difference between esch vdue and the ovedl
mean:s “(Y) =E[(Y - m°], where m=E(Y)is the expected veue of the random
vaiable Y dso cdled the mean. If the probability of each vadue in Yis unknown then

14
if Y is tested by teking n samples, then E(Y)=—aQ Y , which is cdled the sample
n i=1

mean and isfrequently written as Y . The sample variance would therefore be

Vat) == 4 (/- 7)' =) -7 18
Thisisawell-known result and can befound in any statistical textbook.

Now compare the above sample variance with (17) the near time representation of
the dl-possblepars diversty formula What we have is the square root variance in
the population of esch gene averaged across dl loci. In other words the dl-possible-
pars diversty correponds to the 'averageé dandard devigion of esch gene in a
chromosome.

7 Conclusion

Many diversty measures exig in both the biologicad and EC literature: gene diversty
or expected heterozygocity, nucleotide diversity, entropy and variance and standard
deviation. In this paper we have shown that al are restatements or dight variants of
the basc sum of the distances between al possible pairs of the dements in a system.
Consequently, experiments need not be done to didinguish between the various
measures, trying to find which of them provides a better measure of diversty, as they
aeredly al the same measure.

By recognizing how dl of the diversty measures have been formed, different
diversty messures of this family can eedly be crested: merdy change the digtance
measure used ketween the pairs. In the diversty measured examined in this paper, the
Hamming Distance was used for binary and symbolic chromosomes while the
Euclidean Distance was used for chromosomes with redl vaued genes.
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However, we have pointed out that care must be taken to match the way the
digances ae to be combined. If the distance is formed by the combination of
differences of component parts, the method used to combine the distances should
match the method used to combine the parts. For example, the Hamming digance
uses the L1-norm to combine the differences between genes and 0 the L1-norm was
used to combine the distances between chromosomes, the L2-norm is used to
combine the differences between genes in the Eudlidean distances used for red vadued
ggomes and o0 the L2norm was used to combine the corresponding distances
between pairs of chromosomeswith redl vaued genes.

Findly we have shown that care must be taken when implementing al-possible-

pair syle diversity measures, as it is frequently easy to take the O(n’) comparisons
and manipulate them so that it takes only O(n) time to compute. We have given the
associated O(n) agorithmsfor dl the diversity measures studied in this pap .
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