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In this paper we compare and analyze the various diversity measures used in the 
Evolutionary Computation field. While each measure looks quite different from 
the others in form, we surprisingly found that the same basic method underlies 
all of them: the distance between all possible pairs of chromosomes/organisms 
in the population. This is true even of the Shannon entropy of gene frequencies. 
We then associate the different varieties of EC diversity measures to different 
diversity measures used in Biology. Finally we give an ( )O n  implementation 
for each of the diversity measures (where n is the population size), despite their 

basis in an 2( )O n  number of comparisons. 

1 Introduction 

In recent years there has been a growing interest in genetic diversity in the 
Evolutionary Computation field [1][2]. Diversity maintenance procedures are 
beginning to be emphasized, especially in the areas of multi-objective optimization 
[3], and dynamic environments in evolutionary systems[4][5]. 

There are many different diversity measures that can be found in the literature. The 
standard diversity measure is the sum of the Hamming distances between all possible 
pairs of chromosomes. Another popular measure is the use of the Shannon Entropy 
from Information Theory on gene frequencies. Even variance and standard deviation 
can be viewed as a diversity measure, especially when using real valued genes. This 
naturally leads to the question: which of these varied diversity measures is best? 

Surprisingly, there appear to be a deep similarity between all of the above different 
measures. In this paper we analyze all of the above diversity measures and expose this 
similarity. We also present efficient procedures for computing these diversity 
measures. For example the time complexity for the "all possible pairs" diversity 
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measure would naively be thought to be 2( )O n because there are 2( )O n  chromosome 
pairings in a population of size n. The algorithm we present computes the value in 

( )O n  time. 

2 All-Possible -Pairs Diversity 

The simplest definition of diversity comes from the answer to the question “how 
different is everybody from everybody else?” If every chromosome is identical, there 
is no difference between any two chromosomes and hence there is no diversity in the 
population. If each chromosome is completely different from one another, then those 
differences add, and the population should be maximally diverse. So the diversity of a 
population can be seen as the difference between all possible pairs of chromosomes 
within that population. 

While the above definition makes intuitive sense, there is one aspect not covered: 
what do we mean by different. If a pair of chromosomes is only different by one 
locus, it only seems reasonable that this pair should not add as much to the diversity 
of the population as a pair of chromosomes with every locus different. Consequently 
the difference between chromosomes can be seen as the Hamming distance or 
chromosome distance, where the Hamming distance is the sum of all loci where the 
two chromosomes have differing genes. Hence the population diversity becomes the 
sum of the Hamming distances between all possible pairs of chromosomes; see [6]. In 
cluster theory this is called the statistic scatter, see [7].  

Now, since the Hamming distance is symmetric, and is equal to 0 if the strings are 
the same, only the lower triangle in a chromosome-pairs table need be considered 
when computing the diversity. Consequently the all-possible-pairs diversity can be 
formalized as  

( )
1

1 1

Div hd( , )
n i

i j

i j

P c c
−

= =

= ∑∑  (1) 

 
where P is the population and chromosome 

i
c P∈  and n is the population size and 

hd(ci,cj) is the Hamming distance between two chromosomes. 

3 The Reformulation of the All-Possible -Pairs Diversity:  
A Linear Time Algorithm 

A problem with formula (1) is its time complexity. Since the Hamming distance 
between any two pairs takes ( )O l time and there are n2 possible pairs (actually 

( )1
2

1n n −  pairs when symmetry is taken into account), then the time complexity 
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when using (1) is ( )2O l n . Since the time complexity of the GA is ( )O l n⋅  

calculating the diversity every generation would be expensive. 
Fortunately a reformulation of definition (1) can be converted into an ( )O l n⋅  

algorithm to compute the all-possible-pairs diversity. This will be developed directly.  
It seems unlikely such an efficient algorithm would not already be present 

somewhere in the literature. Unfortunately, most mathematical textbooks that deal 
with sets of binary strings seem to be interested in the maximum of the distances 
between all possible pairs and not the average. Unlike the sum or average, the time 
complexity of the maximum Hamming Distance between all possible pairs cannot be 

reduced from ( )2O l n  to ( )O l n⋅  time, so the issue is ignored. While the maximum 

distance between all possible pairs of chromosomes can also be considered as a 
diversity measure on a GA population, it is not a particularly good one since it is too 
sensitive to outlier chromosomes, and does not give fine grain information about 
changes in the population. 

Gene Counts and the Gene Frequencies 

Before we can give the reformulation, we shall introduce two terms that will be 
extensively used throughout the paper: the gene count across a population, and the 
gene frequency of a population.  

The gene count c ( )k α  is the count across the population of all genes at locus k that 

equals the symbol α . This means that 

,
1

c ( ) ( )
n

k i k
i

α δ α
=

= ∑  (2) 

 
where 

,
( )

i k
δ α  is a Kronecker δ  that becomes 1 when the gene at locus k in 

chromosome i equals the symbol α, and otherwise is 0. The array of the gene counts 
of each locus will be called the gene count matrix1. 

 The gene frequency f ( )k α  is the ratio of the gene count to the size of the 
population. In other words, 

c ( )
f ( ) k

k
n

α
α =  (3) 

The array of the gene frequencies of each locus will be called the gene frequency 
matrix2. 

                                                                 
1 For non-evolutionary systems, such as those used for cluster analysis or symbolic machine 

learning, the gene count matrix could be called the symbol count matrix. 
2 Just as with the gene count matrix, the gene frequency matrix could be called the symbol 

frequency matrix when dealing with non-evolutionary systems.  
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The Reformulation 

With the notation in place we can present the alternate form of writing the all-
possible-pairs diversity: 

 
Theorem 1a: The all-possible-pairs diversity can be rewritten as 

( )
2

1

Div f ( ) (1 f ( ))
2

l

k k
k A

n
P

l α

α α
= ∀ ∈

= −∑ ∑  (4) 

Proof: Let us first examine a chromosome chi that at locus k has gene α . When 
computing all of the possible comparison pairs, the value 0 is obtained from 
comparisons of chi with any other chromosomes that also have the same gene α at 
locus k. There are f ( )kn α chromosomes with gene α  at locus k (including chi). 

Consequently there are f ( )kn n α− comparisons with chromosomes that do not have 

gene α  at locus k, and hence will return the value 1. So the component of the distance 
attributable to chi is f ( )kn n α− . Since there are f( )n α chromosomes that have the 

same gene at locus k, the total distance contributed by chromosomes with gene α at 

locus k is f ( )( f ( ))k kn n nα α− , which simplifies to 2 f ( )(1 f ( ))k kn α α− . Summing 

over all α  will give us double the comparison count (since we are adding to the count 
both hd ( , )k i jch ch  and hd ( , )k j ich ch ). So the true comparison count is 

2

2 f ( )(1 f ( ))
A

n
k k

α

α α
∀ ∈

−∑ . Averaging over all loci gives us the result we want.  

 
Theorem 1b: The normalized all-possible-pairs diversity can be rewritten as 
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where modr n a= ⋅ . 

Proof. To normalize this formula we must first find the maximum diversity 
value that can be obtained under any make-up of the population. Once this is found, 
the normalized diversity is just the regular diversity divided by this value. 
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Case 1) The alphabet size is strictly less than the size of the population ( a n< ) 
In this case the diversity becomes maximal when all gene frequencies are as equal as 
possible3, i.e. when 1f ( )

k aα = . Substituting this into the diversity equation (4) when 

modified slightly to handle the case when a does not evenly divide into n produces 

( )
2

2

( )
max(Div ) ( 1)

2

n r a r
P a

a n

−
= − − 

  
 (5) 

which gives us the result we want when divided into equation (4).  

Case 2) When the alphabet size is greater then or equal to the size of the population 
( a n≥ ) each frequency becomes 1

n . This is because there can only be the n different 

symbols in the population when maximally diverse. Also since |n n , 0r = . So, by 
setting a = n and r = 0 in equation (5) and simplifying, then dividing this maximum 
into equation (4), the result required is obtained.  

 
In most cases a n<  and |a n , so r is 0 and the normalized all-possible-pairs 

diversity can be written as  

1

Div( ) f ( ) (1 f ( ))
( 1)

l

k k

k A

a
P

l a α

α α
= ∀ ∈

= −
−

∑ ∑  (6) 

Since, in the majority of GA implementations a binary alphabet is used with an even 
population size (because crossover children fill the new population in pairs), the 
above equation becomes 

1

2
Div( ) f ( ) (1 f ( ))

l

k k
k A

P
l α

α α
= ∀ ∈

= −∑ ∑  (7) 

An ( )O l n⋅ All-Possible-Pairs Diversity Algorithm 

The normalized all-possible-pairs diversity measure (6) can be translated into an 
algorithm that computes this diversity in ( )O l n⋅  time. 

To keep its time complexity down, each alphabet symbol is replaced in the 
chromosome with its corresponding index in the alphabet set. For example, if the 
alphabet is { , , , }A a t c g= , then the corresponding indices are a=1, t=2, c=3 and g=4, 
and the chromosome aatccgctatag  becomes 112334321214. This is done to allow 
constant time indexing into the gene frequency array, based on the gene values. 

                                                                 
3 This can be proven easily by solving for each of the frequencies from the set of equations 

produced by Div( ) 0P∇ =  after taking into account the constraint f ( ) 1
k

α

α
∀

=∑ . 
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The calculation is done in two parts. First the gene frequencies are found in 
'findGeneFrequency' then the diversity is computed in 'APP_Diversity': 

function findGeneFrequencies(p, lgth, a) 

args: population p – a population of chromosome 
   int lgth –  the length of the chromosome   
 int a – the size of the alphabet 

vars: float[lgth,a] geneFreq; int[lgth,a] geneCount
 int[lgth] chr; int gene, i, j, k 

code: geneFreq := makeArray(float, lgth , a)
 geneCount := makeArray(int, lgth , a)
 initAllValues(geneCount, 0) 
 for each chr in p 
  for k := 1 to lgth 
   gene := chr[k] 
   geneCount[k,gene] := geneCount[k,gene] + 1
 for i := 1 to lgth 
  for j := 1 to a 
   geneFreq[i,j] := geneCount[i,j] / size(p)
 return geneFreq 

function APP_Diversity(p, lgth, a) 

args: same as in findGeneFrequencies( ) 

vars: float[lgth,a] geneFreq 
 int max; float diversity = 0 

code: geneFreq := findGeneFrequencies(p, lngth, a)
 max := lgth * (a – 1) / a assumes a | lgth;  
 if a doesn't divide lgth, use max from Theorem1b 
 for k := 1 to lgth 
  for α := 1 to a 
   diversity := diversity +  
             geneFreq[k,α] * (1-geneFreq[k,α]) 
 return diversity / max 

Finding the gene frequencies costs ( )O l n⋅  time while the actual diversity is 

calculated in ( )O l a⋅  time. Since the alphabet size is considered to be a constant of 
the system (this is definitely true with the standard binary alphabet), the overall time 
complexity is ( ) ( ) ( )O l n O l O l n⋅ + = ⋅ . This is optimal time for this problem (each 
chromosome must at least be looked at once to affect the diversity value), so the all-
possible-pairs diversity algorithm can be computed in ( )l nΘ ⋅  time. This is much 

faster than the 2( )O l n⋅  time that the original naïve all-possible-pairs algorithm 
would take. 
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4 Diversity as Informational Entropy 

In information theory, entropy is defined as [8] 

1
( ) ( )log

( )x A

H X p x
p x∈

= ∑  (8) 

where X is a discrete random variable with values taken from alphabet A and a 
probability mass function ( ) Pr{ }p x X x= = , x A∈ . Equating the population at a 

locus with X and the gene frequencies at that locus ( )
k

f α  with the probabilities 

( )p x , the entropic diversity at a locus can be written as: 

1
Div ( ) f ( )log

f ( )
k k

A k

P
α

α
α∈

= ∑  (9) 

Averaging over all loci gives the actual entropic diversity of the population: 

1

1 1
Div( ) f ( )log

f ( )

l

k

k A k

P
l α

α
α= ∈

= ∑∑  (10) 

To distinguish between the two different types of diversity, the all-possible-pairs 
diversity shall be symbolized by 

XDiv ( )P  and the entropic diversity by 
HDiv ( )P  (the 

X represents the complete Cartesian cross of the all possible pairs, and the H 
represents the entropy). 

The entropic diversity is closely tied to the all-possible-pairs diversity in behavior. 
Preliminary experiments done by the authors show that the correlation between the 
two is very close, although not identical to 1. If we compare the definition (4) of all-
possible-pairs diversity with the entropic diversity definition above, we see that aside 
from the constants in front, the two forms are remarkably similar. The only difference 
is the use of 1

f ( )log
k α  term in the entropic diversity instead of the (1 f ( ))

k
α−  term as 

used in the all-possible-pairs diversity. Furthermore both diversities can be seen as 
just the expected value of those terms. However, if we perform a Taylor expansion of 

1
f ( )log

k α  around 1α = , we get  

2 3(1 ( )) (1 ( )) (1 ( ))1
log (1 ( ))

f ( ) 2 3

i

k k k
k

k

f f f
f

i

α α α
α

α

− − −
= − + + + +L  (11) 

Notice that the first term in the Taylor series is the same as the one used in the all-
possible-pairs diversity definition. Also notice that the ot her terms are all less than 1 
and rapidly approach 0 and consequently the early terms will dominate. So we can 

now see that 
X

Div ( )P is just the first term in the Taylor expansion about 1 of 

HDiv ( )P , which accounts for the similarity in their behavior. 
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Now (1 f ( ))
k

α−  can be thought of as the “probability” that, if selected at random, 

the gene at this location won’t be α . The other terms then can be seen as the 
probability under random selection that gene α won’t be selected after i selections. 
Therefore, the diversity can be regarded as the expectation that the selected gene will 
be “some other gene”. Since in each generation the GA selects from the population 
multiple times, and since the Taylor series above rapidly converges, the entropic 
diversity is used as a more accurate measure of diversity. 

Finally, it is well known that the maximum of the Shannon entropy occurs under a 
uniform probability distribution. This, as we would expect, is the same as we found 
with the all-possible-pairs diversity. Consequently, the normalized form for the 
entropic diversity in the usual case when a n<  and |n a  is 

1

1 1
Div( ) f ( )log

log f ( )

l

k

k A k

P
l a α

α
α= ∈

= ∑∑  (12) 

(notice that if we choose the base of a for the logarithm, the original definition of 
entropic diversity (10) is already normalized). The corresponding formulae for the 
cases when a n<  but |n a/ , and when a n≥ ) are analogous to those developed for 
the all-possible-pairs diversity. 

5 The Diversity Measures as Used in Biology and EC 

Both of the all-possible-pairs formulations as well as the entropy diversity measure 
have been used in various biological fields of study such as genetics and ecology. 

This diversity definition is actually used in the field of molecular genetics, 
although modified slightly to reflect the fact that, in practice, one only has a sampling 
of DNA sequences from a population. The modified formula is proportional to the all-
possible-pairs definition of diversity, 

( )
1

1 1

2
Div hd( , )

( 1)

p i

i j

i j

P c c
l n n

−

= =

=
⋅ ⋅ −

∑∑  (13) 

and is called nucleotide diversity. For more details, see Molecular Evolution [9] pp. 
237-238. 

The reformulation of the all-possible-pairs diversity also has a biological 
interpretation; this time it is not in the recent area of molecular genetics, but in the 
older field of population genetics. Here the diversity is used to measure the variation 
of alleles in a population and is known as either the gene diversity or the expected 
heterozygocity. It is normally only defined for a single locus and is usually given in 

the form 21 a

a A

f
∀ ∈

− ∑ , where A is the set of alleles at that locus. Remember, an allele at 

a locus may comprise an entire sequence, or even many sequences of nucleotides and 
so is working at a much higher level than the nucleotide diversity, even though the 
underlying mathematics is identical. For details, see [8] pp. 52-53.  
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This version of the (normalized) all-possible-pairs diversity has appeared in the 
GA literature [10] with reference made to the biological definition of heterozygocity, 
although the formula given had been modified to deal with binary values only. In the 
paper, no attempts were made to connect this diversity definition with the standard 
all-possible-pairs formulation.  

The diversity measure based on the Shannon entropy also is commonly used in 
biology in the field of ecology, where it is used to compute the diversity of species, 
see [11] pp.7-8. While less common, entropic diversity has also been used for the 
genetic diversity of populations in the EC field [12].  

6 Diversity in Populations with Real Valued Genomes 

Until now we have concentrated our attention on populations with binary and 
symbolic gene valued chromosomes. There we found that many measures that are 
naively thought to be distinct are in fact connected by the underlying concept of an 
all-possible-pairs comparison. It would be reasonable to expect that the situation 
would be very different when considering real valued genes. However, this is not the 
case. 

At first one might think that the all-possible-pairs diversity for a locus k would be 

, ,

1 1

1
( , )

2

n n

i k j k

j i

D x x
= =

∑∑  (14) 

where D is the Euclidean distance between chromosomes. However, a simple 
summation of the distances is equivalent to taking the L1-norm of the all-possible-
pairs ‘vector’. Furthermore, since D is based on the L2-norm, it only makes sense to 
match the method of combination of all of the possible pairs with that used for the 
distance itself. There is nothing special about the averaging done by the L1-norm. 
Rather the L2-norm can be thought of as an ‘average’ that emphasizes the effects of 
larger differences. Consequently, using the L2-norm, the all-possible-pairs diversity at 
a locus k becomes 

2 2

, ,

1 1

1
( ) ( , )

2

n n

k i k j k

j i

Dv P D x x
= =

= ∑ ∑  (15) 

To obtain the actual all-possible-pairs diversity by combining all the diversities at the 
various loci, we again use the L2-norm producing 

2 2 2

, , , ,

1 1 1 1 1 1

1 1
( ) ( , ) ( )

2 2

l n n l n n

i k j k i k j k

k j i k j i

Dv P D x x x x
= = = = = =

= = −∑∑∑ ∑∑∑  (16) 
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Reformulating the Real Valued All-Possible-Pairs Diversity  
for a Linear Time Algorithm  

The above formula, coded as is, would produce an 2( )O l n⋅  algorithm. However, just 
as with systems that use symbolic genes, the formula can be rearranged to produce a 
program that has ( )O l n⋅  time complexity. For the symbolic gene systems, this was 
accomplished by introducing the frequency of a gene at a locus. While this cannot be 
used directly for systems using numeric genes, there is an analogous measure: the 
average gene value at a locus. This can be used to produce a reformulation of the all-
possible-pairs diversity: 

Theorem 2:  Let 
,

1

1 n

k i k
i

x x
n =

= ∑  and 2

1

2
,

1 n

k
i

i kx x
n =

= ∑ .  

 Then 2 2 22

1

( ) ( )( )
l

k k

k

Dv P n x x
=

= −∑  

Proof. 2 2

, ,
1 1 1

2 2

, , , ,
1 1 1 1 1 1 1 1 1

2 2

, , , ,
1 1 1 1 1 1 1

2

1
( ) ( )        from (15)
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¦  

  
 
Looking at the diversity equation in the theorem, we see that the all-possible-pairs 

diversity is dependent directly on population size and implicitly on the square of the 
chromosome length. Since intuitively the diversity of a population should not increase 
by simply duplicating the exact population or by exactly duplicating genes, we will 
define the true diversity as  

22

1

1
( ) ( ( ) )

l

k k

k

Div P x x
l =

= −∑  (17) 

which is simply the all-possible-pairs diversity divided by the population size and 
chromosome length. 

We will now turn to the time complexity of an algorithm that implements the 
above definition of diversity. Since the average gene value, 

k
x , and the average of 
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the gene value squared, 2
k

x , can be computed in ( )O n  time for a single locus, and 

since there are l loci, all of the average gene values and gene values squared can be 
computed in ( )O l n⋅  time. Furthermore, once the average gene values are obtained, 
the diversity squared can be computed in ( )O l  time. Consequently the total time 

complexity of an algorithm to find the squared diversity is ( )O l n⋅ . 

All-Possible-Pairs Diversity and Statistical Variance 

The common statistical measure for scatter around the mean is the variance (the 
square root of which is the standard deviation).  The definition of the variance is the 
sum of the squared difference between each value and the overall 

mean: 2 2
( ) [( ) ]Y E Yσ µ= − , where ( )E Yµ = is the expected value of the random 

variable Y also called the mean. If the probability of each value in Y is unknown then 

if Y is tested by taking n samples, then 
1

1
( )

n

i
i

E Y Y
n =

= ∑ , which is called the sample 

mean and is frequently written as Y . The sample variance would therefore be 

2 2 2

1

1
( ) ( ) ( )

n

i
i

VarY Y Y Y Y
n =

= − = −∑  (18) 

This is a well-known result and can be found in any statistical textbook. 
Now compare the above sample variance with (17) the linear time representation of 

the all-possible-pairs diversity formula. What we have is the square root variance in 
the population of each gene averaged across all loci. In other words the all-possible-
pairs diversity corresponds to the 'average' standard deviation of each gene in a 
chromosome. 

7 Conclusion 

Many diversity measures exist in both the biological and EC literature: gene diversity 
or expected heterozygocity, nucleotide diversity, entropy and variance and standard 
deviation. In this paper we have shown that all are restatements or slight variants of 
the basic sum of the distances between all possible pairs of the elements in a system. 
Consequently, experiments need not be done to distinguish between the various 
measures, trying to find which of them provides a better measure of diversity, as they 
are really all the same measure. 

By recognizing how all of the diversity measures have been formed, different 
diversity measures of this family can easily be created: merely change the distance 
measure used between the pairs. In the diversity measured examined in this paper, the 
Hamming Distance was used for binary and symbolic chromosomes while the 
Euclidean Distance was used for chromosomes with real valued genes.  
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However, we have pointed out that care must be taken to match the way the 
distances are to be combined. If the distance is formed by the combination of 
differences of component parts, the method used to combine the distances should 
match the method used to combine the parts. For example, the Hamming distance 
uses the L1-norm to combine the differences between genes and so the L1-norm was 
used to combine the distances between chromosomes; the L2-norm is used to 
combine the differences between genes in the Euclidean distances used for real valued 
genomes and so the L2-norm was used to combine the corresponding distances 
between pairs of chromosomes with real valued genes. 

Finally we have shown that care must be taken when implementing all-possible-

pair style diversity measures, as it is frequently easy to take the 2( )O n  comparisons 

and manipulate them so that it takes only ( )O n time to compute. We have given the 

associated ( )O n algorithms for all the diversity measures studied in this pap er. 
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