Distances between Populations

Mark Wineberg and Franz Oppacher

Computing and Information Science
University of Guelph
Gueph, Canada
wineberg@cisuogue ph.ca

School of Computer Science
Carleton University
Ottawa, Canada
oppacher@scs.carleton.ca

Gene space, as it is currently formulated, cannot provide a solid bads for
investigating the behavior of the GA. We instead propose an approach that
takes population effects into account. Starting from a discussion of diversity,
we devdop a distance measure between populations and thereby a population
metric space. We finaly argue that one specific parameterization of this
measure is particularly appropriate for use with GAs.

1. Introduction: The Need for a Population Metric

All previous atempts to characterize gene space have focused exclusvely on the
Hamming distance and the hypercube. However, this ‘chromosome space cannot fully
account for the behavior of the GA.

An andysis of the GA using chromosome space implicitly assumes that he fitness
function aone determines where the GA will search next. This is not correct. The
effect that the population has on the sdlection operation can easly be seen in the
following (obvious) examples. In fitness proportiona sdection (fps) the fitress
values associsted with a chromosome cannot be derived from the fitness function
acting on the chromosome done, but dso takes into account the fitness of dl other
members in the population. This is because the probability of sdection in fps is based
on the ratio of the ‘fitness of the individua to that of the total population. This
dependence on population for the probability of selection is true not just for fitness
proportional sdlection, but aso for rank sdlection as the ranking structure depends on
which chromosomes are in the population, and tournament sdection since that can be
reduced to a subsat of al polynomid rank sdections. Findly, and most glaringly, the
probability of sdecting a chromosome that is not in the populetion is zero; tis is true
no matter the fitness of the chromosome! Consequently the fitness value associated
with the chromosome is meaningless when taken independently of the population.

As the above examples demondrate, any metric that is used to andyze the behavior
of the GA mug include population effects. These effects are not made evident if only
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the chromosome space is examined. Therefore the metric used mugt incdude more
information than just the distance between chromosomes, we must look to the
population as awhole for our unit of measure. In other words, we need a distance
between populations.

There are four sections in this paper. The firs section examines the well-known
population measure ‘diversity’ since the definitions and methodologies developed for
it will form the basis of the distance measures. In the two sections after, two different
gpproaches are introduced that attempt to determine the distance between populations.
The first approach, the dl-possblepars approach, is a naturd extenson of the
traditiona diversty definition. The second approach describes the mutation-change
distance between populaions. In the final section, a synthess of these two distance
concepts is developed eventudly leading to a single definition of the distance between
populations

2. Diversity

Before atempting to find a relevant distance between populations, it will be
instructive to first discuss the related concept of ‘diversity’.

There are three reasons for this. First, diversty is a known measure of the
population that is independent of the fitness function. Since the distance between
populations should likewise be independent of the fitness, useful insights may be
derived from a dudy of diversity. Second, severa techniques shdl be introduced in
this section thet will become important later when discussing the distance between
populations. Findly, the concept of diversity itsalf will be used in the andyss of the
distance between populations.

3. All-Possible-Pairs Diversity

The smplest definition of diversty comes from the answer to the question “how
different is everybody from everybody ese?’ If every chromosome is identicd, there
is no difference between any two chromosomes and hence there is no diversity in the
population. If each chromosome is completely dfferent from any other, then those
differences add, and the population should be maximdly diverse. So the diversty of a
population can be seen as the difference between dl possble pairs of chromosomes
within that population.

While the above definition makes intuitive sense, there is one aspect not covered:
what do we mean by different? If a pair of chromosomes is only different by one
locus, it only seems reasonable that this pair should not add as much to the diversity
of the population as a pair of dromosomes with every locus different. Consequently
the difference between chromosomes can be seen as the Hamming distance or
chromosome distance, and hence the populaion diversty becomes the sum of the
Hamming distances between dl possble pairs of chromosomes [1]. In cluster theory
thisiscaled the Satidtic scatter [2].
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Now, since the Hamming distance is symmetric, and is equa to O if the strings are
the same, only the lower (or, by symmetry, only the upper) triangle in a chromosome-
pairstable need be consdered when computing the diversity. Consequently the al-
possible-pairs diversty can beformalized as

, 3 &
Div(P)=a a hd(,c,) 1)

i=1 j=1

where P is the population, n is the populaion size, chromosome C, T P, listhelength
of achromosome and hd(c;,G;) isthe Hamming distance between chromosomes.

The Reformulation of the All-Possible-Pair s Diversity:
A Linear TimeAlgorithm

A problem with formula (1) is its time complexity. Since the Hamming distance
between any two pairs takes O(l)time and there are n® possible pairs (actually

lzn(n -1) pairs when symmetry is taken into account), then the time complexity
when usng (1) is Ol n°). Since the time complexity of the GA is O(Ixn)
cdculating the diversity every generation would be expensive.

Fortunately, a reformulation of definition (1) can be converted into an O(l *n)
agorithm to compute the al-possible-pairs diversity.

Gene Counts and the Gene Frequencies

We will now introduce two terms that not only will be used to reformulate the
definition of the dl-possiblepars diversty, but adso will become ubiquitous
throughout this paper. They ae the gene caunt across a population, and the gene
frequency of a population.

The gene count c,(a) is the count across the population of &l genes a locus k

that equal the symbol a . Thismeansthat

c@)=ad, () @

i=1

where d, @) is a Kronecker d that becomes 1 when the gene a locus k in

chromosome i equals the symbol a, and otherwise is 0. Later in the paper we will
frequently write c (a) &s c, ,, orjustas c, if thelocuskisunderstood in the context.

The array of the gene counts of each locus will be called the gene count matrix.

The gene frequency f(a) is the ratio of the gene count to the size of the
population. In other words,

() = lna) &)
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Again, later in the paper we will frequently write f(a) as f
locusk is understood in the context.

orjustas f if the

K’

The aray of the gene frequencies of each locus will be cdled the gene frequency
matrix.

The Reformulation
With the notation in place we can present the dternate form of writing the al-
possible-pairs diversity:

Theorem L The al-possible pairsdiversity can berewritten as

Div(P) :2—151 at@ @ te) (4)

k=1 "alA
Proof. Let us firsd examine a chromosome ¢ that a locus k has gene a. When
computing al of the possble comparison pairs, O is obtained when compared to dl of
the other chromosomes that aso have gene a a locus k. There are nf, (@) of those.
Consequently there are  n - nf (a)comparisons that will return the value 1. So the
component of the distance attributéble to G is n- nf(a). Snce thee ae
nf@)chromosomes that have the same distance component, the totad distance
contributed by chromosomes with gene a at locus k is nf (a)(n- nf, @)), which

smplifies to n’ f(@)1- f,@)). Summing over dl a will give us double the
comparison count (since we are adding to the count both hd,(c ,c;) ad hd(c,c;))

So the true comparison count is "72 é, f.@)d- f, @)). Averaging over dl lod gives
"al A
us the result we want. |
Normdizing (4) assuming that the aphabet size a < n and that a divides into n
evenly, we get

DIVP) =—— & & f.(a) (- f(a)) . 5)

I(@-1) ivaia

Since in the maority of GA implementations a binary aphabet is used with an even
population size (because crossover children fill the new populetion in pairs), the
above eguation becomes

2

| aafea) a-f@) . ©)

k=1"alA

Div(P) =

The gere frequencies can be precomputed for a population in O(l >n) time.
Consequently, the formula above can be computed in O(a:l *n), which reduces to
O(I*n) snce a is a constant of the system (usudly equa to 2). Thus we show that
the dl-possiblepairs diversity can be computed in O(l *n) time, which is much faster
than the O(l x”) timethat the origina naive al-possible-pairs agorithm would take.
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4. An All-Possible -Pairs “ Distance” Between Populations

The obvious extenson of the dl-possblepars diversty of a single population
would be an dl-possible-pairs distance between populations. Here we would teke the
Cartesan product between the two populations producing dl possible pars of
chromosomes, teke the Hamming disance between each of those pars of
chromosomes, and sum the results. Since there are O(n >m) such pairs (where n and

m are the two population sizes) then assuming mu n, there would be O(n®)
distances being combined. Consequently the esulting summation, if it turns out to be
adigtance, would be asquared digance. So famaly we have:

non
Dig{P,P,) :\/é A hd(chr1, chr2,) @)

where P and P are populations with population sizes of n; and n, respedively,

1 2
chrl 1 B and chr2, TP, and iand j are indices into their respective population. The
reason we are using the function name Dist¢ instead of Dist shall be eqlained in the
next subsection. This ‘distance between populations is used in some pattern
recognition agorithms and iscalled theaverage proximity functiort.
Following the same argument as with diversty presented when reformuleting the

diversity to become a linear dgorithm, a frequency-based verson of the same formula
can be produced:

Dia¢(l—‘;,P2):Jn—|m a4 f.@a-f, @) C)

k=1 "al A

where f, (a) is the gene frequency of the gene a at locus k across population Py, and
f,, (@) isthecorresponading gene frequency for population P2

Problems

While initidly attractive for its smple intuitiveness, the dl-possiblepars “distance’
is unfortunately not a distance. While it is symmetric and non-negaive, thus obeying
distance properties M 2 and M 3, it fails on propertiesM 1 and M 2.

The failure of property M is readily seen. My states that the distance must be O iff
the populdions are identica; consequently the dl-possiblepars “disgance’ of a
population to itsdlf should be equa to 0. Instead it is actudly the al-possble-pairs
diversity measure, which is typicdly greater than 0. In fact, the diversty only equas O
when al of the chromosomesin the population are identical!

Furthermore the dl-possible-pairs “digance’ dso fals to saisfy My, the triangle
inequality. This can be seen from the following example. Let A be a binary aphabet

1 [3] pg. 378.
2 See Appendix A.
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{0, 1} from which the chromosomes in dl three populations that form the triangle
will be drawn. Let populations P and P, both have a population size of 2 and P, have
in it only a single chromosome. To make the Stuation even smpler, in al populations
let each chromosome consgt of only 1 locus Now look a an example where the
population make-up is asfollows:

R ={<chr,,0><chr,,0>},

R ={<chr,,05)

R ={<chr,1><chr,,1>}.

The corresponding gene frequencies ae 1 (0) =1, f(1)=0, f(0)=1, (D=0,
f(0)=0 ad f(1) =1. Usng the dl-possible-pairs “distance’ definition (8) we can
clolse  tha  DistP.P) +DistP,P) =v0+v2=v2, ad tha

Dist(P,P) = \/:1 =2. Conzquently Dist(P,P) + Dist(P,,P,) <Dist(P,P) ad s
the triangle inequdity does nat hold.

Thus the al-posshle-pairs “disance’ cannot be conddered a metrics. It is for this
reason that we put the prime after the ‘distance function’ that has been developed so
fa.

Correcting the All-Possible-Pair s Population Distance

We will now modify the formulato turn it into atrue distance.

We shdl firg ded with the failure to meet the triangle inequdity. Definition (8)
was written to be as general as possible. Consequently, it dlows for the comparison of
two populations of unequal size. In the counte-example showing the inapplicability
of the triangle inequality, unequa sized populations were used. When populations of
equal size are eamined no counter-example presents itself. This holds even when the
largest distance between P, ad P, is constructed and with a P, specialy chosen to
produce the smallest distance to both P, and P,. Generdizing this, we could redefine
the definition (8) such that smal populations are inflated in size while ill keeping
the equivdent population makeup. The same effect can be produced by dividing
definition (8) by the population sizes, or in other words through normdization.

Now let us address the problem of nonzero sdf-distances. As noted in the
previous subsection, this property fails because the sdf-disance, when compaing al
possble pars, is the dl-possble-pairs diversity, which need not be zero. To rectify
the dtuation we could smply subtract out the self-distances of the two populations
from the al-possble-pairs distance equetiorf. Again we are removing the problems
through normdization.

3 It is not even a measure. See [3] pg. 378 under the properties of the average proximity
function.
a-1

4 The a termin front of the two normalized diversities in the resulting distance equation is

a renormalization factor. It is needed to ensure that the resulting distance cannot go below
zero, i.e. the distance stays normalized as required.
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To summarize the above, looking firg only & a sngle locus and normdizing the
sguared distance (which smplifies the calculation) we get:

> a-1 a-1
pist (R, P) = (Dis¥®,P,)) - — Div,(P)- ——=Div,(R) ©)

Now, let us subdtitute (8), the definition of DistG(F;,Pz), into the above equation.

a

Also let  Div, (P) :ﬁ é f.@)x(l- f @), the normalized diversity from the
a- "alA

diversity reformulation section modified for asingle locus. Then (9) becomes

Dist, ,(P,P) :‘/é a(, @-f,@) (10)

"alA

(the use of the L2 subscript will become apparent in the next section).
Notice that the above distance is properly normalized®. Furthermore, this process
has actualy produced a distance (or rather a pseudo-distance):

Theorem 2 Thefunction Dist, (R,P,) isapseudo-distancea alocusk
Proof  First notice that f, (a)- f, (&) forms a set of vector spaces (with k being

the index of the set). Now JE?I (flvk(a) -f,.@ ))2 is the L,-norm on those vector
spaces. As noted in Appendix B, we know that the norm of a difference between two
vectors V- w|| obeys al distance properties. Consequently, the equation

Jé (flvk(a)- f, @ ))2 is a distance. Any distance multiplied by a congant (in this

"a 1A
cae =) remans a disance. However, Dist ,(P,P) is a disance between gene
7; 1, k\T1r T2

frequency marices, and of course there is a many-toone rdaionship between
populations and a gene frequency matrix. For example, you can crossover members of
a population thus producing a new population with different members in it but with
the same gene frequency matrix. Hence you can have two digtinct populations with a
distance of O between them. Consequently, Dist, ,(R,P,) is a distance for gene

frequency matrices, but only a pseudo-distance for populations. ]

Using the l-norm, we can combine the distances for the various loci into a single
pseudo-disance:

Dist, (R, P) =712—|‘/é a (.@- @) . 1)

k=1"al A

While it would be nice to have an actud disance insead of a pseudo-distance
between populations, most properties of metrics are true of pseudo-metrics as well.

® Themaximumoccurswhen f @ ) =f, (a,)=1lad f @ *a)=f, (@*a,)=0.
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Furthermore, dnce the digances between gene frequency marices ae actud
distances, their use connotes a pogtioning in gene space, dbeit with some loss of
information.

5. The Mutational-Change Distance Between Populations

While, in the section above, we were able to derive a population distance usng an dl-
possiblepairs approach, it is a bit disgppointing that to do so we needed to perform
adhoc modifications. In this section we will approach the mater from a different
perspective. We will define the distance between populaions as the minima number
of mutationsit would take to transform one population into the other.

The above definition of populaion digance is the generdization of the Hamming
disance between chromosomes. With the distance between chromosomes we ae
looking a the number of mutations it tekes to transform one chromosome into the
other; with the distance between populations we directly subgtitute into the entire
population each mutationa change to creste an entirely new population.

There are, of course, many different ways to change one population into another.
We could change the firg chromosome of the firg population into the first
chromosome of the other population; or we could change it into the other population’s
fifth chromosome. However, if we jus examine one locus it must be true that the
gene counts of the first population must be transformed into those of the second by
the end of the process. The number of mutations that must have occurred is just the
absolute differencein the gene counts (divided by 2 to remove double counting).

There is one dight problem with the above definition. It only makes sense if the
two populations are the same sze If they are of different Sze, no amount of
mutations will transform one into the other. To correct for that, we transform the size
of one popul ation to equal that of the other.

To give the intuition behind the process that will be used, imagine wo populations,
one double the size of the other. If we want to enlarge the ssoond population to the
sze of the first population, the most obvious approach is to duplicate eech
chromosome. The effect that this has is the matching of the size of the second
population to the first while gtill maintaining al of its origind gene frequencies. Snce
a populaion will not aways be a multiple of the other, we duplicate each population
n times, where n is the other population's size. Now both populations will have the
same population size. So the duplication factor in front of the first population is N,

the duplication factor in front of the second population is N, and the common

populdtion size is nn,. So we can now define the mutationa-change distance
between two populations a alocus as
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Dist ,(R.P)= & |n,c,.@)- n,c, (a)

"a,alA
@) c,@)
:nlnzé Cpi | 2k
"a,al A nl n2
o
=nn, a |f1,k(a)_ f2|<(a)|
"a,al A
which, when normalized, becomes
) 1o
pist ,(RP) == & k,@)- 1, (@) 12)
"a,al A

Notice the similarity between the above and the dl-possible-pars disance a a locus
(10). We badicaly have the same dtructure except that the Lrnorm is replaced by the
L-norm (hence the use of the Iy and L, subscripts). Therefore, the argument that was
used to prove Theorem 2 gpplies here as well. Consequently the mutational-change
digance between populations at alocusis also a pseudo-distance.

Findly, averaging across the loci produces the mutationd-change pseudo-distance
between populations:

14 o
pis, P.P)==a a I, @-f, @) (13)

2' k=1"aa lA

6. TheLk-Normsand the Distance Between Populations

In the previous two sections we have seen two different distances (actualy pseudo-
distances) between populations deived through two very different approaches. Yet
there seems to be the same underlying structure in esch: the norm of the differences
between gene frequencies. In one case the norm was the L-norm, in the other the Ly-
norm, otherwise the two results were identica. Generdizing this, we can define an
Lidistance on the population:

pist, (P.P) :‘/2—1|§ alk@-f el (14)
ad
pist, (R,R) = max (i, @)- , @)) - 1s)

LT[0

Interestingly, the L, -distance restricted to a single locus can be recognized as the

Kolmogorov-Smirnov  test. The K-S test is the sandard non-parametric test to
determine whether there is a difference between two probability distributions.
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Redizing that there are an infinite number of possble distance measures between
populations, the question naturdly arises is one of the distance measures preferable
or will any onedo?

Of course, to a grest degree the choice of distance measure depends on matching

its properties to the purpose behind creeting that distance measure in the first place
i.e. different distances may or may not be gpplicablein different Situations.
That being sad, there is a property possessed by the distance based on the lLi-norm
which none of the others possess, making it the preferable distance. This property
becomes evident in the following example Let us examine 4 populaions, the
chromosomes in each populdion are composed of a single gene drawn from the
quaternary aphabet {at, c, g}. The 4 populations are:

P, ={< dwr,a> <chr,a><chr,a> <chr,a>}

P, ={< chr,c>, <chr,,c > <chr,c> <ch,,c>}

P ={<chr,a> <chr,a> <chrt> <chr,t>}

P, ={<chrc> <chr,c> <chr,g> <chr,,g>}

and so
.(@=1 f,®=0 f,(©=0 TfJ(9=0
f,@=0 f®=0 f,(©=1 f(9=0
f,@=3 f.0=0 f,(9=3 f,(@=0
L,@=0 f,(0=; f,(0=0 f,(@ =7

Now, lets look a the two distances Dist, (P,,P,) ad Dist, (R,,,R,,)- In both cases

the populaions have no genes in common. We should therefore expect the distance
between both pairs of populations to be the maxmum distance that can be produced.
It is true that the diversity within each of the first two populations is 0, while the
diversty within each of the second two is greater than O; however that should have
nothing to do with the distances between the populations. One epects both distances
to be equaly maximal. Working out the distances from the equation

1o «
Dist, (P, R) = \/_ alt@-f@l

“a,al A

weget

1

L )
& 1) +2 x2X0)5 =1 ad

Dist_ (R,.P,) =&

k-1

@ o0

Dist, (R,.P) =g 4% g5
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The only vadue of k for which the two distances will be equd (and dnce 1 is the
maximum, they will be both maxima) is when k=1. For the L_-norm,

Dist, (P,,P,) =1 ad Dist (P,,P,) =3, 0 it is only under the L-norm that the

two distances are egua and maximal. The above property of the Li-norm holds for
any aphabet and population sizes.

7. Conclusion

The purpose of this paper is to develop a distance measure between populations. To
do s0 we firg investigated population diversty. Using our andysis of diversty as a
template, we defined two notions of population distance, which we then generdized
into the Lr distance set. We picked the L-distance as the most gppropriate measure
for GAs because it is the only measure that consstently gives maximum distance for
populations without shared chromosomes. This distance forms a metric gpace on
populations that supersedes the chromosomebased gene space We fed that this
enhancement to the formulation of gene space is important for the further
understanding of the GA.
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9. Appendix A: Distancesand Metrics

While the concept of ‘distance’ and ‘metric space’ is very wdl known, there are many
equivdent but differing definitions found in textbooks. A metric space is a set of
points with an associaed “distance function” or “metric’ on the set. A distance

function d acting on a set of points Xissuchthat d: X X ® R, and that for any
pair of points x, y1 X , thefollowing four properties hold:

M1 d(x,y)=0iffx:y
M., d(x,y)=d(y,x) (Symmetry)
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Ms d(x,y)20
and for any 3 points x,y, z1 X,
My d (x, y)+d(y,z)3 d(x,z) (Triangle Inequality)

If for xty, d(x,y)=0, which is a violaion of M1, then d is caled a pseudo-
distance or pseudo-metric. If M2 does not hold, i.e. the ‘distance’ is not symmetric,
than d is cdled a quasrmetric. If My (the triangle inequdity) does not hold, dis cdled
a semi-metric. Finaly note that if d is a proper metric then Ms is redundant, since it
can be derived from the three other propertieswhen zis set equa toxin Ma.

10. Appendix B: Norms

Norms are dso a commonly known set of functions. Since we make use of norms so
extensvely, we fet that a brief summary of the various properties of norms would be
helpful. A norm is a function applied to a vector in a vector space that has specific
properties. From the Schaum’s Outline on Topology® the following definition is
given: “Let V be a red linear vector space ...[then g function which assigns to each

vector V1 V' the red number IV isa normon V iff it stisfies, for dl v,w 1 V and
kT R, thefollowing axioms

N1 V|2 0and |v| =0iffv="0
N2 v+ wl £+l
Ns [ =1 M

The norm properties hold for each of the following well -known (indexed) functions:

L - nom=[<a,...a, 5| =/ fal .

Tekingthelimitas k ® ¥ of theL \-norm producesthe L, -norm:

).

The norm combines the vaues from the various dimensons of the vector into a
single number, which can be thought of as the magnitude of the vector. This vaue is
closdly related to the distance measure. In fact, it is well known tha the norm of the
difference between any two vectorsisametric.

a

m

L, -norm = max( al,|a,] ..

6 [4] pg. 118.



