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Gene space, as it is currently formulated, cannot provide a solid basis for 
investigating the behavior of the GA. We instead propose an approach that 
takes population effects into account. Starting from a discussion of diversity, 
we develop a distance measure between populations and thereby a population 
metric space. We finally argue that one specific parameterization of this 
measure is particularly appropriate for use with GAs. 

1. Introduction: The Need for a Population Metric  

All previous attempts to characterize gene space have focused exclusively on the 
Hamming distance and the hypercube. However, this 'chromosome space' cannot fully 
account for the behavior of the GA. 

An analysis of the GA using chromosome space implicitly assumes that the fitness 
function alone determines where the GA will search next. This is not correct. The 
effect that the population has on the selection operation can easily be seen in the 
following (obvious) examples:  In fitness proportional selection (fps) the fitness 
values associated with a chromosome cannot be derived from the fitness function 
acting on the chromosome alone, but also takes into account the fitness of all other 
members in the population. This is because the probability of selection in fps is based 
on the ratio of the ‘fitness’ of the individual to that of the total population. This 
dependence on population for the probability of selection is true not just for fitness 
proportional selection, but also for rank selection as the ranking structure depends on 
which chromosomes are in the population, and tournament selection since that can be 
reduced to a subset of all polynomial rank selections. Finally, and most glaringly, the 
probability of selecting a chromosome that is not in the population is zero; this is true 
no matter the fitness of the chromosome! Consequently the fitness value associated 
with the chromosome is meaningless when taken independently of the population. 

As the above examples demonstrate, any metric that is used to analyze the behavior 
of the GA must include population effects. These effects are not made evident if only 
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the chromosome space is examined. Therefore the metric used must include more 
information than just the distance between chromosomes; we must look to the 
population as a whole for our unit of measure. In other words, we need a distance 
between populations. 

There are four sections in this paper. The first section examines the well-known 
population measure ‘diversity’ since the definitions and methodologies developed for 
it will form the basis of the distance measures.  In the two sections after, two different 
approaches are introduced that attempt to determine the distance between populations. 
The first approach, the all-possible-pairs approach, is a natural extension of the 
traditional diversity definition. The second approach describes the mutation-change 
distance between populations. In the final section, a synthesis of these two distance 
concepts is developed eventually leading to a single definition of the distance between 
populations 

2. Diversity 

Before attempting to find a relevant distance between populations, it will be 
instructive to first discuss the related concept of ‘diversity’.  

There are three reasons for this. First, diversity is a known measure of the 
population that is independent of the fitness function. Since the distance between 
populations should likewise be independent of the fitness, useful insights may be 
derived from a study of diversity. Second, several techniques shall be introduced in 
this section that will become important later when discussing the distance between 
populations. Finally, the concept of diversity itself will be used in the analysis of the 
distance between populations. 

3. All-Possible -Pairs Diversity 

The simplest definition of diversity comes from the answer to the question “how 
different is everybody from everybody else?” If every chromosome is identical, there 
is no difference between any two chromosomes and hence there is no diversity in the 
population. If each chromosome is completely different from any other, then those 
differences add, and the population should be maximally diverse. So the diversity of a 
population can be seen as the difference between all possible pairs of chromosomes 
within that population. 

While the above definition makes intuitive sense, there is one aspect not covered: 
what do we mean by different? If a pair of chromosomes is only different by one 
locus, it only seems reasonable that this pair should not add as much to the diversity 
of the population as a pair of chromosomes with every locus different. Consequently 
the difference between chromosomes can be seen as the Hamming distance or 
chromosome distance, and hence the population diversity becomes the sum of the 
Hamming distances between all possible pairs of chromosomes [1]. In cluster theory 
this is called the statistic scatter [2].  
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Now, since the Hamming distance is symmetric, and is equal to 0 if the strings are 
the same, only the lower (or, by symmetry, only the upper) triangle in a chromosome-
pairs-table need be considered when computing the diversity. Consequently the all-
possible-pairs diversity can be formalized as 
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n i

i j

i j

P c c
−

= =

= ∑∑  (1) 

where P is the population, n is the population size, chromosome c
i

∈P , l is the length 
of a chromosome and hd(ci,cj ) is the Hamming distance between chromosomes. 

The Reformulation of the All-Possible-Pairs Dive rsity:  
A Linear Time Algorithm 

A problem with formula (1) is its time complexity. Since the Hamming distance 
between any two pairs takes O(l ) time and there are n2 possible pairs (actually 
1

2
n n −1( )  pairs when symmetry is taken into account), then the time complexity 

when using (1) is O l n
2( ). Since the time complexity of the GA is ( )O l n⋅  

calculating the diversity every generation would be expensive. 

Fortunately, a reformulation of definition (1) can be converted into an O(l ⋅ n )  
algorithm to compute the all-possible-pairs diversity. 

Gene Counts and the Gene Frequencies 
We will now introduce two terms that not only will be used to reformulate the 

definition of the all-possible-pairs diversity, but also will become ubiquitous 
throughout this paper. They are the gene count across a population, and the gene 
frequency of a population.  

The gene count c
k
(α)  is the count across the population of all genes at locus k 

that equal the symbol α . This means that 

c
k
(α) = δ

i,k
(α)

i =1

n

∑  (2) 

 
where δ i, k (α)  is a Kronecker δ  that becomes 1 when the gene at locus k in 

chromosome i equals the symbol α, and otherwise is 0. Later in the paper we will 
frequently write c

k
(α)  as cα ,k

, or just as c
α
 if the locus k is understood in the context.  

The array of the gene counts of each locus will be called the gene count matrix. 

The gene frequency f
k
(α)  is the ratio of the gene count to the size of the 

population. In other words, 

f
k
(α ) =

c
k
(α)

n
 (3) 
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Again, later in the paper we will frequently write f
k
(α)  as f

α |k
, or just as f

α
 if the 

locus k is understood in the context. 

The array of the gene frequencies of each locus will be called the gene frequency 
matrix. 

The Reformulation 
With the notation in place we can present the alternate form of writing the all-
possible-pairs diversity: 

Theorem 1: The all-possible-pairs diversity can be rewritten as 

Div P( ) =
n 2

2 l
f

k
(α) (1 − f

k
(α))

∀α ∈A

∑
k=1

l

∑  (4) 

Proof: Let us first examine a chromosome ci that at locus k has gene α . When 
computing all of the possible comparison pairs, 0 is obtained when compared to all of 
the other chromosomes that also have gene α  at locus k. There are n fk(α) of those. 
Consequently there are n − n fk(α) comparisons that will return the value 1. So the 
component of the distance attributable to ci is n − n fk(α) . Since there are 
n f(α ) chromosomes that have the same distance component, the total distance 
contributed by chromosomes with gene α  at locus k is n fk (α)(n − n fk (α )) , which 

simplifies to n2 fk(α)(1 − fk (α )) . Summing over all α will give us double the 
comparison count (since we are adding to the count both hdk (ci ,c j )  and hdk (c j ,c i ) ). 

So the true comparison count is n2

2 fk (α)(1 − fk (α))
∀α ∈A

∑ . Averaging over all loci gives 

us the result we want.  
Normalizing (4) assuming that the alphabet size a < n and that a divides into n 

evenly, we get 

Div(P) =
a

l (a −1)
f

k
(α) (1 − f

k
(α))

∀α ∈A

∑
k =1

l

∑   . (5) 

Since in the majority of GA implementations a binary alphabet is used with an even 
population size (because crossover children fill the new population in pairs), the 
above equation becomes 

Div(P) =
2

l
f

k
(α ) (1 − f

k
(α ))

∀α ∈A

∑
k =1

l

∑   . (6) 

The gene frequencies can be pre-computed for a population in O(l ⋅ n )  time. 
Consequently, the formula above can be computed in O(a ⋅ l ⋅ n ) , which reduces to 
O(l ⋅ n )  since a is a constant of the system (usually equal to 2). Thus we show that 
the all-possible-pairs diversity can be computed in O(l ⋅ n )  time, which is much faster 
than the O (l ⋅ n 2 )  time that the original naïve all-possible-pairs algorithm would take. 
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4. An All-Possible -Pairs “Distance” Between Populations  

The obvious extension of the all-possible-pairs diversity of a single population 
would be an all-possible-pairs distance between populations. Here we would take the 
Cartesian product between the two populations producing all possible pairs of 
chromosomes, take the Hamming distance between each of those pairs of 
chromosomes, and sum the results. Since there are O(n ⋅ m)  such pairs (where n and 

m  are the two population sizes) then assuming m ∝ n , there would be O(n2 )  
distances being combined. Consequently the resulting summation, if it turns out to be 
a distance, would be a squared distance.  So formally we have: 

Dis ′ t P1 ,P2( ) = hd(chr1 i ,chr2 j )
j =1

n2

∑
i =1

n1

∑  (7) 

where P
1
 and P

2
 are populations with population sizes of n1 and n2 respectively, 

chr1
i

∈P
1
 and chr2

j
∈P

2
, and i and j are indices into their respective population. The 

reason we are using the function name Dist′  instead of Dist  shall be explained in the 
next subsection. This ‘distance’ between populations is used in some pattern 
recognition algorithms and is called the average proximity function1. 

Following the same argument as with diversity presented when reformulating the 
diversity to become a linear algorithm, a frequency-based version of the same formula 
can be produced: 

Dis ′ t P
1
,P

2
( ) =

nm

l
f
1 , k

(α) (1 − f
2 ,k

(α ))
∀α ∈A

∑
k =1

l

∑  (8) 

where f
1,k

(α )  is the gene frequency of the gene α at locus k across population P1, and 

f2,k (α )  is the corresponding gene frequency for population P2. 

Problems 

While initially attractive for its simple intuitiveness, the all-possible-pairs “distance” 
is unfortunately not a distance. While it is symmetric and non-negative, thus obeying 
distance properties M2 and M3, it fails on properties M1 and M 42.  

The failure of property M1 is readily seen. M1 states that the distance must be 0 iff 
the populations are identical; consequently the all-possible-pairs “distance” of a 
population to itself should be equal to 0. Instead it is actually the all-possible-pairs 
diversity measure, which is typically greater than 0. In fact, the diversity only equals 0 
when all of the chromosomes in the population are identical!  

Furthermore the all-possible-pairs “distance” also fails to satisfy M4, the triangle 
inequality. This can be seen from the following example. Let A  be a binary alphabet 

                                                                 
1  [3] pg. 378. 
2  See Appendix A. 
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{0, 1} from which the chromosomes in all three populations that form the triangle 
will be drawn. Let populations P

1
 and P

3
 both have a population size of 2 and P

2
 have 

in it only a single chromosome. To make the situation even simpler, in all populations 
let each chromosome consist of only 1 locus. Now look at an example where the 
population make-up is as follows: 

P1 = { < chr1, 0 ,0 >, < chr1,1, 0 >} , 

P2 = {< chr2,0 ,0 >}  

P3 = {< chr3, 0 ,1 >,< chr3, 1,1 >} . 

The corresponding gene frequencies are f
1
(0) = 1 , f

1
(1) = 0 , f

2
(0) = 1 , f

2
(1) = 0 , 

f
3
(0) = 0  and f

3
(1) =1 . Using the all-possible-pairs “distance” definition (8) we can 

calculate that Dist(P
1
, P

2
) + Dist(P

2
,P

3
) = 0 + 2 = 2 , and that 

Dist(P
1
, P

3
) = 4 = 2 . Consequently Dist(P

1
, P

2
) + Dist(P

2
,P

3
) < Dist(P

1
, P

3
)  and so 

the triangle inequality does not hold.  

Thus the all-possible-pairs “distance” cannot be considered a metric3. It is for this 
reason that we put the prime after the ‘distance function’ that has been developed so 
far. 

Correcting the All-Possible-Pairs Population Distance 

We will now modify the formula to turn it into a true distance. 
We shall first deal with the failure to meet the triangle inequality. Definition (8) 

was written to be as general as possible. Consequently, it allows for the comparison of 
two populations of unequal size. In the counter-example showing the inapplicability 
of the triangle inequality, unequal sized populations were used. When populations of 
equal size are examined no counter-example presents itself. This holds even when the 
largest distance between P1 and P3 is constructed and with a P2 specially chosen to 
produce the smallest distance to both P1 and P3. Generalizing this, we could redefine 
the definition (8) such that small populations are inflated in size while still keeping 
the equivalent population make-up. The same effect can be produced by dividing 
definition (8) by the population sizes, or in other words through normalization. 

Now let us address the problem of non-zero self-distances. As noted in the 
previous subsection, this property fails because the self-distance, when comparing all 
possible pairs, is the all-possible-pairs diversity, which need not be zero. To rectify 
the situation we could simply subtract out the self-distances of the two populations 
from the all-possible-pairs distance equation4. Again we are removing the problems 
through normalization.  

                                                                 
3  It is not even a measure. See [3] pg. 378 under the properties of the average proximity 

function. 
4  The a−1

2a  term in front of the two normalized diversities in the resulting distance equation is 
a re-normalization factor. It is needed to ensure that the resulting distance cannot go below 
zero, i.e. the distance stays normalized as required. 
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To summarize the above, looking first only at a single locus and normalizing the 
squared distance (which simplifies the calculation) we get: 

Distk

2
(P1, P2) = Dis ′ t k (P1,P2 )( )2

−
a − 1

2a
Divk (P1) −

a −1

2a
Div k (P2)  (9) 

Now, let us substitute (8), the definition of Dis ′ t P
1
,P

2
( ), into the above equation. 

Also let Div
k
(P ) =

a

(a − 1)
f

k
(α ) ⋅ (1 − f

k
(α ))

∀α ∈A

∑ , the normalized diversity from the 

diversity reformulation section modified for a single locus. Then (9) becomes  

Dist
L 2 ,k (P

1
, P

2
) =

1

2
f
1 ,k

(α) − f
2 ,k

(α )( )2

∀α ∈A

∑  (10) 

(the use of the L2 subscript will become apparent in the next section).  
Notice that the above distance is properly normalized5. Furthermore, this process 

has actually produced a distance (or rather a pseudo-distance): 

Theorem 2:  The function DistL 2 ,k (P1, P2)  is a pseudo-distance at a locus k. 

Proof:  First notice that f1,k (α) − f2 ,k (α ) forms a set of vector spaces (with k being 

the index of the set). Now f
1 , k

(α) − f
2 ,k

(α )( )2

∀α ∈A

∑ is the L2-norm on those vector 

spaces. As noted in Appendix B, we know that the norm of a difference between two 
vectors v − w  obeys all distance properties. Consequently, the equation 

f
1 , k

(α) − f
2 ,k

(α )( )2

∀α ∈A

∑ is a distance. Any distance multiplied by a constant (in this 

case 1

2
) remains a distance. However, Distl2 ,k (P1, P2)  is a distance between gene 

frequency matrices, and of course there is a many -to-one relationship between 
populations and a gene frequency matrix. For example, you can crossover members of 
a population thus producing a new population with different members in it but with 
the same gene frequency matrix. Hence you can have two distinct populations with a 
distance of 0 between them. Consequently, DistL 2 ,k (P1 ,P2 )  is a distance for gene 

frequency matrices, but only a pseudo-distance for populations.   

Using the L2-norm, we can combine the distances for the various loci into a single 
pseudo-distance: 

Dist
L 2

(P
1
, P

2
) =

1

2l
f
1 ,k

(α) − f
2, k

(α)( )2

∀α ∈A

∑
k=1

l

∑   . (11) 

 While it would be nice to have an actual distance instead of a pseudo-distance 
between populations, most properties of metrics are true of pseudo-metrics as well. 
                                                                 
5  The maximum occurs when f

1| k
(α

1
) = f

2 | k
(α

2
) = 1 and f

1| k
(α ≠ α

1
) = f

2| k
(α ≠ α

2
) = 0 . 
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Furthermore, since the distances between gene frequency matrices are actual 
distances, their use connotes a positioning in gene space, albeit with some loss of 
information. 

5. The  Mutational-Change Distance Between Populations  

While, in the section above, we were able to derive a population distance using an all-
possible-pairs approach, it is a bit disappointing that to do so we needed to perform 
ad-hoc modifications. In this section we will approach the matter from a different 
perspective. We will define the distance between populations as the minimal number 
of mutations it would take to transform one population into the other.  

The above definition of population distance is the ge neralization of the Hamming 
distance between chromosomes. With the distance between chromosomes we are 
looking at the number of mutations it takes to transform one chromosome into the 
other; with the distance between populations we directly substitute into the entire 
population each mutational change to create an entirely new population.  

There are, of course, many different ways to change one population into another. 
We could change the first chromosome of the first population into the first 
chromosome of the other population; or we could change it into the other population’s 
fifth chromosome. However, if we just examine one locus, it must be true that the 
gene counts of the first population must be transformed into those of the second by 
the end of the process. The number of mutations that must have occurred is just the 
absolute difference in the gene counts (divided by 2 to remove double counting). 

There is one slight problem with the above definition. It only makes sense if the 
two populations are the sam e size. If they are of different size, no amount of 
mutations will transform one into the other. To correct for that, we transform the size 
of one population to equal that of the other.  

To give the intuition behind the process that will be used, imagine two populations, 
one double the size of the other. If we want to enlarge the second population to the 
size of the first population, the most obvious approach is to duplicate each 
chromosome. The effect that this has is the matching of the size of the second 
population to the first while still maintaining all of its original gene frequencies. Since 
a population will not always be a multiple of the other, we duplicate each population 
n times, where n is the other population's size. Now both populations will have the 
same population size. So the duplication factor in front of the first population is n2 , 
the duplication factor in front of the second population is n1, and the common 
population size is n

1
n

2
. So we can now define the mutational-change distance 

between two populations at a locus as 
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Dist
L 1, k

(P
1
, P

2
) = n

2
c

1,k
(α ) − n

1
c

2,k
(α)

∀α ,α ∈A

∑

= n
1
n

2

c1, k (α )

n
1

−
c 2, k (α)

n
2∀α , α ∈A

∑

= n
1
n

2
f
1 ,k

(α ) − f
2, k

(α)
∀α , α ∈A

∑

 

which, when normalized, becomes 

Dist
L 1,k

(P
1
, P

2
) =

1

2
f
1 , k

(α ) − f
2,k

(α)
∀α ,α ∈A

∑  (12) 

Notice the similarity between the above and the all-possible-pairs distance at a locus 
(10). We basically have the same structure except that the L2-norm is replaced by the 
L1-norm (hence the use of the L1 and L2 subscripts). Therefore, the argument that was 
used to prove Theorem 2 applies here as well. Consequently the mutational-change 
distance between populations at a locus is also a pseudo-distance. 

Finally, averaging across the loci produces the mutational-change pseudo-distance 
between populations: 

Dist
L 1

(P
1
,P

2
) =

1

2l
f

1, k
(α) − f

2, k
(α )

∀α ,α ∈A

∑
k =1

l

∑  (13) 

6. The Lk-Norms and the Distance Between Populations 

In the previous two sections we have seen two different distances (actually pseudo-
distances) between populations derived through two very different approaches. Yet 
there seems to be the same underlying structure in each: the norm of the differences 
between gene frequencies. In one case the norm was the L1-norm, in the other the L2-
norm, otherwise the two results were identical. Generalizing this, we can define an 
Lk-distance on the population: 

Dist
L k

(P
a
,P

b
) =

1

2 l
f

a ,i
(α) − f

b, i
(α )

k

∀α , α ∈A

∑
i =1

l

∑k  (14) 

and 

Dist
L ∞

(P
a
, P

b
) = max

∀α ,α ∈A
∀i, i ∈[ 1, l]

f
a ,i

(α ) − f
b,i

(α )( )  . (15) 

Interestingly, the L -distance
∞

 restricted to a single locus can be recognized as the 

Kolmogorov-Smirnov test. The K-S test is the standard non-parametric test to 
determine whether there is a difference between two probability distributions. 
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Realizing that there are an infinite number of possible distance measures between 
populations, the question naturally arises: is one of the distance measures preferable 
or will any one do?  

Of course, to a great degree the choice of distance measure depends on matching 
its properties to the purpose behind creating that distance measure in the first place; 
i.e. different distances may or may not be applicable in different situations.  
That being said, there is a property possessed by the distance based on the L1-norm 
which none of the others possess, making it the preferable distance. This property 
becomes evident in the following example. Let us examine 4 populations; the 
chromosomes in each population are composed of a single gene drawn from the 
quaternary alphabet {a, t, c, g}. The 4 populations are: 

P
1a

= {< chr
1
, a >, < chr

2
,a >, < chr

3
,a >, < chr

4
,a >}

P
1b

= {< chr
1
, c >, < chr

2
,c >, < chr

3
,c >, < chr

4
,c >}

P
2a

= { < chr
1
,a >, < chr

2
, a >, < chr

3
, t >, < chr

4
, t >}

P
2b

= { < chr
1
,c >, < chr

2
, c >, < chr

3
, g >, < chr

4
,g >}

 

and so 

f1 a (a) =1, f1a (t ) = 0, f1a (c) = 0, f1 a (g) = 0,

f
1 b

(a) = 0, f
1b

(t ) = 0, f
1b

(c) = 1, f
1 b

(g) = 0,

f
2a

(a) = 1

2
, f

2a
(t) = 0, f

2 a
(c) = 1

2
, f

2a
(g) = 0,

f
2b

(a) = 0, f
2b

(t) = 1

2
, f

2 b
(c) = 0, f

2b
(g) = 1

2
.

 

Now, lets look at the two distances DistL k
(P1 a , P1 b )  and DistL k

(P2 a ,P2 b ) . In both cases 

the populations have no genes in common. We should therefore expect the distance 
between both pairs of populations to be the maximum distance that can be produced. 
It is true that the diversity within each of the first two populations is 0, while the 
diversity within each of the second two is greater than 0; however that should have 
nothing to do with the distances between the populations. One expects both distances 
to be equally maximal. Working out the distances from the equation 

 Dist
L k

(P
a
, P

b
) =

1

2
f

a
(α ) − f

b
(α )

∀α , α∈A

∑ k
k   

we get  

 Dist
LK

(P
1a

,P
1b

) =
1

2
⋅ 2 ⋅ (1) k +

1

2
⋅ 2 ⋅ (0) k 

 
 
 

1

k

= 1 and 

Dist
LK

(P
2 a

, P
2b

) =
1

2
⋅ 4 ⋅

1

2
 
 

 
 

k 
  

 
  

1

k

= 2
k −1

k  
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The only value of k for which the two distances will be equal (and since 1 is the 
maximum, they will be both maximal) is when k =1 . For the L

∞
- norm , 

DistL ∞
(P1 a ,P1 b) =1  and Dist

L ∞
(P

2a
, P

2b
) = 1

2
, so it is only under the L1-norm that the 

two distances are equal and maximal. The above property of the L1-norm holds for 
any alphabet and population sizes. 

7. Conclusion 

The purpose of this paper is to develop a distance measure between populations. To 
do so we first investigated population diversity. Using our analysis of diversity as a 
template, we defined two notions of population distance, which we then generalized 
into the Lk- distance set. We picked the L1-distance as the most appropriate measure 
for GAs because it is the only measure that consistently gives maximum distance for 
populations without shared chromosomes. This distance forms a metric space on 
populations that supersedes the chromosome-based gene space. We feel that this 
enhancement to the formulation of gene space is important for the further 
understanding of the GA. 
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9. Appendix A: Distances and Metrics 

While the concept of ‘distance’ and ‘metric space’ is very well known, there are many 
equivalent but differing definitions found in textbooks. A metric space is a set of 
points with an associated “distance function” or “metric” on the set. A distance 
function d acting on a set of points X is such that :d X X R× → , and that  for any 
pair of points ,x y X∈ , the following four properties hold: 

M1 ( ), 0 iff d x y x y= =  

M2 ( ) ( ), ,d x y d y x=  (Symmetry) 
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M3 ( ), 0d x y ≥  

and for any 3 points , ,x y z X∈ ,  

M4 ( ) ( ), , ( , )d x y d y z d x z+ ≥  (Triangle Inequality) 

If for x y≠ , ( ), 0d x y = , which is a violation of M1, then d is called a pseudo-

distance or pseudo-metric. If M2 does not hold, i.e. the ‘distance’ is not symmetric, 
than d is called a quasi-metric. If M4 (the triangle inequality) does not hold, d is called 
a semi-metric. Finally note that if d is a proper metric then M3 is redundant, since it 
can be derived from the three other properties when z is set equal to x in M4. 

10. Appendix B: Norms  

Norms are also a commonly known set of functions. Since we make use of norms so 
extensively, we felt that a brief summary of the various properties of norms would be 
helpful. A norm is a function applied to a vector in a vector space that has specific 
properties. From the Schaum’s Outline on Topology6 the following definition is 
given: “Let V be a real linear vector space …[then a] function which assigns to each 
vector v ∈V  the real number v  is a norm on V iff it satisfies, for all v,w ∈V  and 

k ∈R , the following axioms: 
N1 0 and 0 iff 0v v v≥ = =  

N2 v w v w+ ≤ +  

N3 kv k v=  

The norm properties hold for each of the following well-known (indexed) funct ions: 

 1
, ,

k
k

k m i
L norm a a a− = < > = ∑… . 

Taking the limit as k → ∞  of the Lk-norm produces the L -norm
∞

:  

 ( )
1 2

L -norm max , ,...,
m

a a a
∞

= . 

The norm combines the values from the various dimensions of the vector into a 
single number, which can be thought of as the magnitude of the vector. This value is 
closely related to the distance measure. In fact, it is well known that the norm of the 
difference between any two vectors is a metric. 

                                                                 
6  [4] pg. 118. 


