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ABSTRACT 

Gene space, as it is currently formulated, cannot provide a 
solid basis fo r investigating the behavior of the GA. We 
instead propose an approach that takes population effects 
into account. Starting from a discussion of diversity, we 
develop a distance measure between populations and 
thereby a population metric space. We finally argue that 
one specific parameterization of this measure is 
particularly appropriate for use with GAs. 

KEYWORDS 
Intelligent and Hybrid Control Systems  
Genetic Algorithms and Evolutionary Control 

1. INTRODUCTION: THE NEED FOR A 
POPULATION METRIC 

All previous attempts to characterize gene space have 
focused exclusively on the Hamming distance and the 
hypercube. However, this 'chromosome space' cannot 
fully account for the behavior of the GA. 

An analysis of the GA using chromosome space implicitly 
assumes that the fitness function alone determines where 
the GA will search next. This is not correct. The effect 
that the population has on the selection operation can 
easily be seen in the following (obvious) examples:  In 
fitness proportional selection (fps) the fitness values 
associated with a chromosome cannot be derived from the 
fitness function acting on the chromosome alone, but also 
takes into account the fitness of all other members in the 
population. This is because the probability of selection in 
fps is based on the ratio of the ‘fitness’ of the individual 
to that of the total population. This dependence on 
population for the probability of selection is true not just 
for fitness proportional selection, but also for rank 
selection as the ranking structure depends on which 
chromosomes are in the population, and tournament 
selection since that can be reduced to a subset of all 
polynomial rank selections. Finally, and most glaringly, 
the probability of selecting a chromosome that is not in 
the population is zero; this is true no matter the fitness of 
the chromosome! Consequently the fitness value 
associated with the chromosome is meaningless when 
taken independently of the population. 

As the above examples demonstrate, any metric that is 
used to analyze the behavior of the GA must include 
population effects. These effects are not made evident if 
only the chromosome space is examined. Therefore the 
metric used must include more information than just the 
distance between chromosomes; we must look to the 
population as a whole for our unit of measure. In other 
words, we need a distance between populations. 

There are four sections in this paper. The first section 
examines the well-known population measure ‘diversity’ 
since the definitions and methodologies developed for it 
will form the basis of the distance measures.  In the two 
sections after, two different approaches are introduced 
that attempt to determine the distance between 
populations. The first approach, the all-possible-pairs 
approach, is a natural extension of the traditional diversity 
definition. The second approach describes the mutation-
change distance between populations. In the final section, 
a synthesis of these two distance concepts is developed 
eventually leading to a single definition of the distance 
betwe en populations 

2. DIVERSITY 

Before attempting to find a relevant distance between 
populations, it will be instructive to first discuss the 
related concept of ‘diversity’.  

There are three reasons for this. First, diversity is a known 
measure of the population that is independent of the 
fitness function. Since the distance between populations 
should likewise be independent of the fitness, useful 
insights may be derived from a study of diversity. Second, 
several techniques shall be introduced in this section that 
will become important later when discussing the distance 
between populations. Finally, the concept of diversity 
itself will be used in the analysis of the distance between 
populations. 

3. ALL-POSSIBLE-PAIRS DIVERSITY 

The simplest definition of diversity comes from the 
answer to the question “how different is everybody from 
everybody else?” If every chromosome is identical, there 
is no difference between any two chromosomes and hence 



 
 

there is no diversity in the population. If each 
chromosome is completely different from any other, then 
those differences add, and the population should be 
maximally diverse. So the diversity of a population can be 
seen as the diffe rence between all possible pairs of 
chromosomes within that population. 

While the above definition makes intuitive sense, there is 
one aspect not covered: what do we mean by different? If 
a pair of chromosomes is only different by one locus, it 
only seems reasonable that this pair should not add as 
much to the diversity of the population as a pair of 
chromosomes with every locus different. Consequently 
the difference between chromosomes can be seen as the 
Hamming distance or chromosome distance, and hence 
the population diversity becomes the sum of the 
Hamming distances between all possible pairs of 
chromosomes [1]. In cluster theory this is called the 
statistic scatter [2].  

Now, since the Hamming distance is symmetric, and is 
equal to 0 if the strings are the same, only the lower (or, 
by symmetry, only the upper) triangle in a chromosome-
pairs-table need be considered when computing the 
diversity. Consequently the all-possible-pairs diversity 
can be formalized as  

Div P( ) = hd(c
i
,c

j
)

j =1

i −1

∑
i =1

p

∑  (1) 

where P is the population, chromosome c
i

∈P  and hd( ) 
is the Hamming distance. 

The Reformulation of the All-Possible-Pairs Dive rsity:  
A Linear Time Algorithm 

A problem with formula (1) is its time complexity. 
Since the Hamming distance between any two pairs takes 
O (l ) time and there are n2 possible pairs (actually 
1

2 n n − 1( ) pairs when symmetry is taken into account), 

then the time complexity when using (1) is O l n
2( ). 

Since the time complexity of the GA is ( )O l n⋅  
calculating the diversity every generation would be 
expensive. 

Fortunately, a reformulation of definition (1) can be 
converted into an O (l ⋅ n )  algorithm to compute the all-
possible-pairs diversity. 

Gene Counts and the Gene Frequencies 

We will now introduce two terms that not only will 
be used to reformulate the definition of the all-possible-
pairs diversity, but also will become ubiquitous 
throughout this paper. They are the gene count  across a 
population, and the gene frequency of a population.  

The gene count c
k
(α)  is the count across the 

population of all genes at locus k  that equal the symbol α. 
This means that 

c
k
(α) = δ

i, k
(α)

i =1

n

∑  (2) 

 
where δ i ,k (α)  is a Kronecker δ  that becomes 1 when the 
gene at locus k  in chromosome i equals the symbol α, and 
otherwise is 0. Later in the paper we will frequently write 
c

k
(α)  as cα ,k , or just as c

α  if the locus k is understood in 
the context.  

The array of the gene counts of each locus will be 
called the gene count matrix. 

The gene frequency fk(α )  is the ratio of the gene 
count to the size of the population. In other words, 

f
k
(α ) =

c
k
(α)

n
 (3) 

Again, later in the paper we will frequently write f
k
(α )  as 

fα |k , or just as fα  if the locus k is understood in the 
context. 

The array of the gene frequencies of each locus will 
be called the gene frequency matrix. 

The Reformulation 

With the notation in place we can present the alternate 
form of writing the all-possible-pairs diversity: 

Theorem 1: The all-possible-pairs diversity can be 
rewritten as 

Div P( ) =
n

2

2 l
f

k
(α) (1 − f

k
(α))

∀α ∈A

∑
k =1

l

∑  (4) 

Proof: Let us first examine a chromosome ci that at 
locus k  has gene α. When computing all of the possible 
comparison pairs, 0 is obtained when compared to all of 
the other chromosomes that also have gene α at locus k . 
There are n fk(α)of those. Consequently there are 
n − n fk (α ) comparisons that will return the value 1. So 
the component of the distance attributable to ci is 
n − n fk (α ) . Since there are n f(α ) chromosomes that 
have the same distance component, the total distance 
contributed by chromosomes with gene α at locus k  is 
n fk(α)(n − n fk (α )) , which simplifies to 

n
2

fk(α)(1 − fk (α )) . Summing over all α will give us 
double the comparison count (since we are adding to the 
count both hdk (ci ,c j )  and hdk (c j ,c i ) ). So the true 



comparison count is n2

2 fk (α)(1 − fk (α))
∀α ∈A

∑ . Averaging 

over all loci gives us the result we want.  

Normalizing (4) assuming that a < n and that a divides 
into n evenly, we get 

Div(P) =
a

l (a − 1)
f

k
(α) (1 − f

k
(α))

∀α ∈A

∑
k =1

l

∑   . (5) 

Since in the majority of GA implementations a binary 
alphabet is used with an even population size (because 
crossover children fill the new population in pairs), the 
above equation becomes 

Div(P) =
2

l
fk (α ) (1 − fk (α))

∀α ∈A

∑
k =1

l

∑   . (6) 

The gene frequencies can be pre-computed for a 
population in O (l ⋅ n )  time. Consequently, the formula 
above can be computed in O(a ⋅ l ⋅n) , which reduces to 
O(l ⋅ n )  since a is a constant of the system (usually equal 
to 2). Thus we show that the all-possible-pairs diversity 
can be computed in O(l ⋅ n )  time, which is much faster 
than the O(l ⋅n 2 )  time that the original naïve all-possible-
pairs algorithm would take. 

4. AN ALL-POSSIBLE-PAIRS “DISTANCE” 
BETWEEN POPULATIONS 

The obvious extension of the all-possible-pairs 
diversity of a single population would be an all-possible-
pairs distance between populations. Here we would take 
the Cartesian product between the two populations 
producing all possible pairs of chromosomes, take the 
Hamming distance between each of those pairs of 
chromosomes, and sum the results. Since there are 
O(n ⋅ m)  such pairs (where n and m are the two 
population sizes) then assuming m ∝ n , there would be 
O(n 2 )  distances being combined. Consequently the 
resulting summation, if it turns out to be a distance, would 
be a squared distance.  So formally we have: 

Dis ′ t P
1
,P

2
( ) = hd(chr1

i
,chr2

j
)

j =1

n 2

∑
i =1

n1

∑  (7) 

where P
1  and P

2  are populations with population sizes of 
n1 and n2 respectively, chr1i ∈P1  and chr2 j ∈P2 , and i 
and j are indices into their respective population. The 
reason we are using the function name Dist′  instead of 
Dist  shall be explained in the next subsection. This 
‘distance’ between populations is used in some pattern 

recognition algorithms and is called the average proximity 
function1. 

Following the same argument as with diversity presented 
when reformulating the diversity to become a linear 
algorithm, a frequency-based version of the same formula 
can be produced: 

Dis ′ t P1 ,P2( ) =
nm

l
f1 , k (α) (1 − f2 ,k (α ))

∀α ∈A

∑
k=1

l

∑  (8) 

where f1,k (α )  is the gene frequency of the gene α at locus 
k  across population P1, and f2, k (α )  is the corresponding 
gene frequency for population P2. 

Problems  

While initially attractive for its simple intuitiveness, the 
all-possible-pairs “distance” is unfortunately not a 
distance. While it is symmetric and non-negative, thus 
obeying distance properties M2 and M3, it fails on 
properties M1 and M42.  

The failure of property M1 is readily seen. M1 states that 
the distance must be 0 iff the populations are identical; 
consequently the all-possible-pairs “distance” of a 
population to itself should be equal to 0. Instead it is 
actually the all-possible-pairs diversity measure, which is 
typically greater than 0. In fact, the diversity only equals 0 
when all of the chromosomes in the population are 
identical!  

Furthermore the all-possible-pairs “distance” also fails to 
satisfy M4, the triangle inequality. This can be seen from 
the following example. Let A  be a binary alphabet {0, 1} 
from which the chromosomes in all three populations that 
form the triangle will be drawn. Let populations P1  and 
P

3  both have a population size of 2 and P
2  have in it only 

a single chromosome. To make the situation even simpler, 
in all populations let each chromosome consist of only 1 
locus. Now look at an example where the population 
make-up is as follows: 

P1 = { < chr1, 0 ,0 >, < chr1, 1, 0 >} , 
P2 = {< chr2, 0 ,0 >}  

P3 = {< chr3, 0 ,1 >,< chr3, 1,1 >} . 

The corresponding gene frequencies are f
1
(0) = 1 , 

f
1
(1) = 0 , f

2
( 0) = 1 , f

2
(1) = 0 , f

3
( 0) = 0  and f

3
(1) = 1 . 

Using the all-possible-pairs “distance” definition (8) we 

                                                                 

1  [3] pg. 378. 

2  See Appendix A. 



 
 

can calculate that 

  Dist(P
1
, P

2
) + Dist(P

2
,P

3
) = 0 + 2 = 2 ,  

and that  Dist(P1,P3 ) = 4 = 2 .  
Consequently Dist(P

1
, P

2
) + Dist(P

2
,P

3
) < Dist(P

1
, P

3
)  and 

so the triangle inequality does not hold.  

Thus the all-possible-pairs “distance” cannot be 
considered a metric3. It is for this reason that we put the 
prime after the ‘distance function’ that has been 
developed so far. 

Correcting the All-Possible-Pairs Population Di stance 

We will now modify the formula to turn it into a true 
distance. 

We shall first deal with the failure to meet the triangle 
inequality. Definition (8) was written to be as general as 
possible. Consequently, it allows for the comparison of 
two populations of unequal size. In the counter-example 
showing the inapplicability of the triangle inequality, 
unequal sized populations were used. When populations 
of equal size are examined no counter-example presents 
itself. This holds even when the largest distance between 
P1 and P3 is constructed and with a P2 specially chosen 
to produce the smallest distance to both P1 and P3. 
Generalizing this, we could redefine the definition (8) 
such that small populations are inflated in size while still 
keeping the equivalent population make-up. The same 
effect can be produced by dividing definition (8) by the 
population sizes, or in other words through normalization. 

Now let us address the problem of non-zero self-
distances. As noted in the previous subsection, this 
property fails because the self-distance, when comparing 
all possible pairs, is the all-possible-pairs diversity, which 
need not be zero. To rectify the situation we could simply 
subtract out the self-distances of the two populations from 
the all-possible-pairs distance equation4. Again we are 
removing the problems through normalization.  

To summarize the above, looking first only at a single 
locus and normalizing the squared distance (which 
simplifies the calculation) we get: 

( )2
2

1 2 1 2 1 2
1

2Dist ( , ) Dist ( , ) Div ( ) Div ( )( )
k k k k

a
aP P P P P P−′= − −

Now, let us substitute (8), the definition of Dis ′ t P1 ,P2( ), 

                                                                 

3  It is not even a measure. See [3] pg. 378 under the properties 
of the average proximity function. 

4  The a −1
2a  term in front of the two normalized diversities in the 

resulting distance equation is a re-normalization factor. It is 
needed to ensure that the resulting distance cannot go below 
zero, i.e. the distance stays normalized as required. 

into the above equation. Also let 

Div
k
(P) =

a

(a − 1)
f
k
(α ) ⋅ (1 − f

k
(α ))

∀α ∈A

∑ , the normalized 

diversity from the diversity reformulation section 
modified for a single locus. The equation then becomes 

Dist
L 2 ,k (P

1
, P

2
) =

1

2
f
1 ,k

(α) − f
2 ,k

(α )( )2

∀α ∈A

∑  (9) 

(the use of the L2 subscript will become apparent in the 
next section).  

Notice that the above distance is properly normalized5. 
Furthermore, this process has actually produced a distance 
(or rather a pseudo-distance): 

Theorem 2:  The function DistL 2 ,k (P1, P2)  is a 
pseudo-distance at a locus k. 

Proof:  First notice that f1,k (α) − f2, k (α ) forms a set of 
vector spaces (with k being the index of the set). Now 

f
1, k

(α) − f
2 ,k

(α )( )2

∀α ∈A

∑ is the L2-norm on those vector 

spaces. As noted in Appendix B, we know that the norm 
of a difference between two vectors v − w  obeys all 
distance properties. Consequently, the equation 

f1, k (α) − f2 ,k (α )( )2

∀α ∈A

∑ is a distance. Any distance 

multiplied by a constant (in this case 1

2
) remains a 

distance. However, Distl 2 ,k (P1, P2)  is a distance between 

gene frequency matrices, and of course there is a many-
to-one relationship between populations and a gene 
frequency matrix. For example, you can crossover 
members of a population thus producing a new population 
with different members in it but with the same gene 
frequency matrix. Hence you can have two distinct 
populations with a distance of 0 between them. 
Consequently, Dist

L 2 ,k
(P

1
,P

2
)  is a distance for gene 

frequency matrices, but only a pseudo-distance for 
populations.   

Using the L2-norm, we can combine the distances for the 
various loci into a single pseudo-distance: 

DistL 2
(P1, P2) =

1

2l
f1 ,k (α) − f2, k (α)( )2

∀α ∈A

∑
k =1

l

∑    (10) 

                                                                 

5  The maximum occurs when f
1| k

(α
1
) = f

2 | k
(α

2
) = 1 and 

f
1| k

(α ≠ α
1
) = f

2| k
(α ≠ α

2
) = 0 . 



 While it would be nice to have an actual distance instead 
of a pseudo-distance between populations, most 
properties of metrics are true of pseudo-metrics as well. 
Furthermore, since the distances between gene frequency 
matrices are actual distances, their use connotes a 
positioning in gene space, albeit with some loss of 
information. 

5. THE MUTATIONAL-CHANGE 
DISTANCE BETWEEN POPULATIONS 

While, in the section above, we were able to derive a 
population distance using an all-possible-pairs approach, 
it is a bit disappointing that to do so we needed to perform 
ad-hoc modifications. In this section we will approach the 
matter from a different perspective. We will define the 
distance between populations as the minimal number of 
mutations it would take to transform one population into 
the other.  

The above definition of population distance is the 
generalization of the Hamming distance between 
chromosomes. With the distance between chromosomes 
we are looking at the number of mutations it takes to 
transform one chromosome into the other; with the 
distance between populations we directly substitute into 
the entire population each mutational change to create an 
entirely new population.  

There are, of course, many different ways to change one 
population into another. We could change the first 
chromosome of the first population into the first 
chromosome of the other population; or we could change 
it into the other population’s fifth chromosome. However, 
if we just examine one locus, it must be true that the gene 
counts of the first population must be transformed into 
those of the second by the end of the process. The number 
of mutations that must have occurred is just the absolute 
difference in the gene counts (divided by 2 to remove 
double counting). 

There is one slight problem with the above definition. It 
only makes sense if the two populations are the same size. 
If they are of different size, no amount of mutations will 
transform one into the other. To correct for that, we 
transform the size of one population to equal that of the 
other.  

To give the intuition behind the process that will be used, 
imagine two populations, one double the size of the other. 
If we want to enlarge the second population to the size of 
the first population, the most obvious approach is to 
duplicate each chromosome. The effect that this has is the 
matching of the size of the second population to the first 
while still maintaining all of its original gene frequencies. 
Since a population will not always be a multiple of the 
other, we duplicate each population n times, where n is 
the other population's size. Now both populations will 

have the same population s ize. So the duplication factor in 
front of the first population is n2 , the duplication factor 
in front of the second population is n1, and the common 
population size is n

1
n

2 . So we can now define the 
mutational-change distance between two populations at a 
locus as  

Dist
L

1
, k

(P
1
, P

2
) = n

2
c

1,k
(α ) − n

1
c

2,k
(α)

∀α ,α ∈A

∑

= n1 n 2

c
1 ,k

(α )

n
1

−
c

2, k
(α)

n
2∀α ,α ∈A

∑

= n1 n 2 f1 ,k (α ) − f2, k (α)
∀α ,α ∈A

∑

 

which, when normalized, becomes 

Dist
L 1,k

(P
1
, P

2
) =

1

2
f
1 , k

(α ) − f
2,k

(α)
∀α , α ∈A

∑  (11) 

Notice the similarity between the above and the all-
possible-pairs distance at a locus (9). We basically have 
the same structure except that the L2-norm is replaced by 
the L1-norm (hence the use of the L1 and L2 subscripts). 
Therefore, the argument that was used to prove Theorem 
2 applies here as well. Consequently the mutational-
change distance between populations at a locus is also a 
pseudo-distance. 

Finally, averaging across the loci produces the 
mutational-change pseudo-distance between populations: 

DistL 1
(P1 ,P2 ) =

1

2l
f1, k (α) − f2 ,k (α)

∀α ,α ∈A

∑
k =1

l

∑  (12) 

6. THE LK-NORMS AND THE DISTANCE 
BETWEEN POPULATIONS 

In the previous two sections we have seen two different 
distances (actually pseudo-distances) between populations 
derived through two very different approaches. Yet there 
seems to be the same underlying structure in each: the 
norm of the differences between gene frequencies. In one 
case the norm was the L1-norm, in the other the L2-norm, 
otherwise the two results were identical. Generalizing 
this, we can define an Lk-distance on the population: 

Dist
L k

(P
a
,P

b
) =

1

2 l
f

a , i
(α) − f

b , i
(α )

k

∀α ,α ∈A

∑
i =1

l

∑k  (13) 

and 



 
 

Dist
L ∞

(P
a
, P

b
) = max

∀α ,α ∈ A
∀i, i ∈[1,l ]

f
a, i

(α ) − f
b,i

(α )( )  . (14) 

Interestingly, the L -distance
∞  restricted to a single locus 

can be recognized as the Kolmogorov-Smirnov test. The 
K-S test is the standard non-parametric test to determine 
whether there is a difference between two probability 
distributions. 

Realizing that there are an infinite number of possible 
distance measures between populations, the question 
naturally arises: is one of the distance measures preferable 
or will any one do?  

Of course, to a great degree the choice of distance 
measure depends on matching its properties to the 
purpose behind creating that distance measure in the first 
place; i.e. different distances may or may not be 
applicable in different situations.  

That being said, there is a property possessed by the 
distance based on the L1-norm which none of the others 
possess, making it the preferable distance. This property 
becomes evident in the following example. Let us 
examine 4 populations; the chromosomes in each 
population are composed of a single gene drawn from the 
quaternary alphabet {a, t, c, g}. The 4 populations are: 

P
1a

= {< chr
1
, a >, < chr

2
,a >, < chr

3
,a >, < chr

4
,a >}

P
1b

= {< chr
1
, c >, < chr

2
,c >, < chr

3
,c >, < chr

4
,c >}

P
2a

= { < chr
1
,a >, < chr

2
, a >, < chr

3
, t >, < chr

4
, t >}

P2b = { < chr1 ,c >, < chr2, c >, < chr3, g >, < chr4 ,g >}

 

and so 

f
1a

(a) = 1, f
1a

(t ) = 0, f
1a

(c) = 0, f
1a

( g) = 0,

f
1b

(a) = 0, f
1b

(t ) = 0, f
1b

(c) = 1, f
1b

( g) = 0,

f
2a

(a) = 1

2
, f

2a
(t) = 0, f

2a
(c) = 1

2
, f

2a
(g) = 0,

f2b (a) = 0, f2b (t) = 1

2 , f2b (c) = 0, f2b (g) = 1

2 .

 

Now, lets look at the two distances DistL k
(P1 a , P1 b )  and 

Dist
L k

(P
2a

,P
2b

) . In both cases the populations have no 

genes in common. We should therefore expect the 
distance between both pairs of populations to be the 
maximum distance that can be produced. It is true that the 
diversity within each of the first two populations is 0, 
while the diversity within each of the second two is 
greater than 0; however that should have nothing to do 
with the distances between the populations. One expects 
both distances to be equally maximal. Working out the 
distances from the equation 

 DistL
k

(Pa, Pb ) =
1

2
fa (α ) − fb (α )

∀α , α∈A

∑ k
k   

we get 
 

Dist
LK

(P
1 a

,P
1b

) =
1

2
⋅ 2 ⋅ (1)

k
+

1

2
⋅ 2 ⋅ ( 0)

k 
 

 
 

1

k

= 1  and 

Dist
LK

(P
2a

, P
2b

) =
1

2
⋅ 4 ⋅

1

2
 
 

 
 

k 
  

 
  

1

k

= 2
k −1

k  

The only value of k  for which the two distances will be 
equal (and since 1 is the maximum, they will be both 
maximal) is when k = 1 . For the L

∞
- norm , 

DistL ∞
( P1 a ,P1 b) = 1  and Dist

L ∞
(P

2a
, P

2b
) = 1

2 , so it is only 
under the L1-norm that the two distances are equal and 
maximal. The above property of the L1-norm holds for 
any alphabet and population sizes. 

7. CONCLUSION 

The purpose of this paper is to develop a distance measure 
between populations. To do so we first investigated 
population diversity. Using our analysis of diversity as a 
template, we defined two notions of population distance, 
which we then generalized into the Lk- distance set. We 
picked the L1-distance as the most appropriate measure 
for GAs because it is the only measure that consistently 
gives maximum distance for populations without shared 
chromosomes. This distance forms a metric space on 
populations that supersedes the chromosome-based gene 
space. We feel that this enhancement to the formulation of 
gene space is important for the further understanding of 
the GA. 
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APPENDIX A: DISTANCES & METRICS 

While the concept of ‘distance’ and ‘metric space’ is very 
well known, there are many equivalent but differing 
definitions found in textbooks. A metric space is a set of 
points with an associated “distance function” or “metric” 
on the set. A distance function d acting on a set of points 
X is such that :d X X R× → , and that for any pair of 
points ,x y X∈ , the following four properties hold: 

M1  ( ), 0 iff d x y x y= =  

M2  ( ) ( ), ,d x y d y x=  (Symmetry) 

M3  ( ), 0d x y ≥  
and for any 3 points , ,x y z X∈ ,  

M4  ( ) ( ), , ( , )d x y d y z d x z+ ≥  

Property M4 is known as the triangle inequality.  

If x y≠ , ( ), 0d x y = , which is a violation of M1, then d 
is called a pseudo-distance or pseudo-metric. If M2 does 
not hold, i.e. the ‘distance’ is not symmetric, then d is 
called a quasi-metric. If M4 (the triangle inequality) does 
not hold, d is called a semi-metric. Finally note that if d is 
a proper metric then M3 is redundant, since it can be 
derived from the three other properties when z is set equal 
to x in M 4. 

9. APPENDIX B: NORMS 

Norms are also a commonly known set of functions. Since 
we make use of norms so extensively, we felt that a brief 
summary of the various properties of norms would be 
helpful. A norm is a function applied to a vector in a 
vector space that has specific properties. From the 
Schaum’s Outline on Topology6 the following definition 
is given: “Let V be a real linear vector space …[then a] 
function which assigns to each vector v ∈V  the real 
number v  is a norm on V iff it satisfies, for all 

v,w ∈ V  and k ∈R , the following axioms: 

N1 0 and 0 iff 0v v v≥ = =  

N2 v w v w+ ≤ +  

N3 kv k v=  
The norm properties hold for each of the following well-
known (indexed) functions: 

 1
, ,

kk
k m i

L norm a a a− = < > = ∑… . 

Taking the limit as k → ∞  of the Lk-norm produces the 
L -norm

∞ :  

                                                                 

6  [4] pg. 118. 

 ( )
1 2

L -norm max , ,...,
m

a a a
∞

= . 

The norm combines the values from the various 
dimensions of the vector into a single number, which can 
be thought of as the magnitude of the vector. This value is 
closely related to the distance measure. In fact, it is well 
known that the norm of the difference between any two 
vectors is a metric. 


