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Abstract- We attempt to reconstruct Sewall Wright's
Shifting Balance Theory in order to address some of the
major criticisms leveled against it. The resulting abstract
process is applied to the GA forming the Shifting
Balance Genetic Algorithm (SBGA), which is shown to
behave as Wright intended. For example, the SBGA
avoids local optima through a shifting balance between
subpopulations, as is demonstrated in an experiment.
The experiment also shows that the SBGA outperforms
the classical GA in both stationary and changing
environments.

1 Sewall Wright’s Shifting Balance Theory

The population geneticist Sewall Wright (Wright, 1932)
realized the problem of an evolutionary system getting
trapped at local maxima back in the 1930’s. Wright called
the (hypothetical) function that was being optimized by the
evolutionary system the “fitness landscape” and thought that
each species was, over time, hill climbing through the
process of mutation and natural selection.  Having this view,
he naturally became aware of the problem of local maxima:

In a rugged field of this character [very many peaks],
selection will easily carry the species to the nearest
peak, but there may be innumerable other peaks
which are higher but which are separated by
“valleys.”  The problem of evolution as I see it is that
of a mechanism by which the species may
continually find its way from lower to higher peaks
in such a field.1

Wright not only observed the problem, but also proposed
a mechanism to cope with it.  This mechanism was
eventually called by Wright “the shifting balance theory”
(SBT). Hartl and Clark present a good summary of the
shifting balance theory in their textbook Principles of
Population Genetics:

In the shifting balance theory, a large population
that is subdivided into a set of small, semi-isolated
subpopulations (demes) has the best chance for the
subpopulations to explore the full range of the

                                                          
1 (Wright 1932) as reprinted in (Provine 1986) pp. 162-164.

adaptive topography … If the subpopulations are
sufficiently small, and the migration rate between
them is sufficiently small, then the subpopulations
are susceptible to random genetic drift of allele
frequencies, which allows them to explore their
adaptive topography more or less independently. In
any subpopulation, random genetic drift can result in
a temporary reduction in fitness that would be
prevented by selection in a larger population, and so
a subpopulation can pass through a “valley” of
reduced fitness and possibly end up “climbing” a
peak of fitness higher than the original. Any lucky
subpopulation that reaches a higher adaptive peak on
the fitness surface increases in size and sends out
more migrants to nearby subpopulations, and the
favorable gene combinations are gradually spread
throughout the entire set of subpopulations by means
of interdeme selection2.

Hartl and Clark then identify three distinct phases:

1. An exploratory phase, in which random genetic
drift plays an important role in allowing small
populations to explore their adaptive topography.

2. A phase of mass selection, in which favorable
gene combinations created by chance in the random
drift phase rapidly become incorporated into the
genome of local subpopulations by the action of
natural selection.

3. A phase of interdeme selection, in which the
more successful demes increase in size and rate of
migration; the excess migration shifts the allele
frequencies of nearby population until they also
come under the control of the higher fitness peak.
The favorable genotypes thereby become spread
throughout the entire population in an ever-widening
distribution.3

In the above explanation the term random drift refers to a
statistical process that occurs in populations because of the
random sampling of alleles produced by random mating.

                                                          
2 (Hartl & Clark 1997) pg.259.

3 (Hartl & Clark 1997) pp. 259-260.



This effectively causes a random walk in the relative
proportions of two competing alleles; the smaller the
population, the more erratic the random walk. Wild swings
in the proportion of the two alleles can, in very small
populations, even eliminate an allele independent of the
selective value of that allele. Wright’s visualization of the
demes moving from one peak to another in a fitness
landscape (based on a diagram from Wright (1932)) can be
seen in Figure 1.  However, when viewing the diagram,
keep in mind that the landscape is a “fitness” landscape, not
a geographical one, and the demes consist of genetically
similar individuals, not necessarily spatially local
individuals (although Wright views the first as being
implied by the second).

2 The Deme Approach in the GA Literature as
Inspired by the SBT

Wright’s ideas have been popular in the Genetic
Algorithm (GA) community, with many authors quoting his
theory (often referred to as Sewall Wright’s demes) when
justifying the introduction of a novel feature in their GA
implementation. This is particularly true in parallel GA
research.

The island or coarse-grained model, each processor runs
a normal GA on its own population, where each population
is called a deme. For all of the demes, the GAs act on the
same fitness function during selection, although the various
populations are different from one another because of the
random process of chromosome creation.  Furthermore,
each deme may evolve in different directions due to the
probabilistic nature of evolution.  Periodically, migrants
travel between processors bringing new - possibly better -
genetic material from other demes.  Usually the members of
a population chosen to be migrants are the elite of the
population.  This basic mechanism has been independently
“discovered” many times over; see (Cohoon et al. 1987),
(Pettey et al. 1987), and (Tanese 1987).

In the second approach, which is run on a fine-grained
machine, each processor holds only a single member of the
population. Each member is only allowed to mate with
others in their neighborhood. This design decision is
motivated by the fact that the fastest communication
happens among neighbors. The neighbors can be arranged in
various topologies such as a chain (or circle), grid (or
toroid), or a hypercube. Diffusion of genetic information
occurs because neighborhoods overlap.  These
neighborhoods are identified in many publications as demes.
As with the island model, the fine-grained model was also
frequently “discovered” by various researchers: For
example see (Gorges-Schleuter 1989), (Spiessens &
Manderick 1991), (Mühlenbein 1989), (Hillis 1991),
(Collins et al. 1991), and (Davidor 1991).

The use of demes in sequential GA are similar to the
fine-grain model in parallelism. In (Pál 1994) the favored
topology is a simple ring with mating restricted to
contiguous members. The more common toroidal topology

is used in (Sarma & De Jong 1999) and  (Sumida &
Hamilton 1994).

3 Problems With the SBT, both in Theory and
in Practice

While all of the above deme models, both parallel and
sequential, may be interesting in their own rights, they are
not similar enough to the SBT in either form or purpose to
claim direct descendance from it, as some of their authors
purport. In fact, in view of the basic difference of the two
approaches to parallelization, it is hard to see how the
shifting balance theory could be invoked to support both
simultaneously.

Of course not every implementor of a deme based GA
makes such a claim. However, even those who directly
mention Wright and the shifting balance theorem are really
not making any attempt to hew closely to the theory and are
just using it to support their system through analogy. For
example most do not comment on the importance of random
drift, and just mention that Wright proposed that interdemic
selection was a powerful mechanism in natural evolutionary
processes. To properly acknowledge the use of the
mechanism one would have to ensure that the deme sizes
are kept small enough for random drift to take effect and
gain purchase on the footholds of a new maximum. Usually
no special attention to the deme size is given for such a
purpose and if the demes are in fact kept to a proper
minimal size it is done by chance and not through
experimentation or theoretical reasoning.

There is one paper that goes beneath the surface of
Wright’s theory. (Sumida and Hamilton 1994) makes
reference to its details. They purposely keep the demes in
their system small in order to facilitate the random drift that
Wright postulated was necessary. They also attempt to
model interplay between demes allowing for more distant

Figure 1: Demes shifting from one peak to
another on a topographical representation of a
fitness landscape (based on a diagram from Wright
(1932)).



communication to periodically occur. It is questionable,
however, whether these long distance communications are
what Wright had in mind when he talked of interdeme
selection and the shift in balance between random drift and
selection. Furthermore, Sumida and Hamilton do not appear
to have made any attempt to determine whether their deme
size was small enough to promote random drift. Nor did
they determine whether the interconnectedness fostered by
long distance mating was effective enough to allow
selection to shift the balance of the mass of the population
onto the new hill and proceed to climb it.

However, even if the SBT were implemented exactly
according to specification, there would still be a very large
problem attendant on its use: the theory as it stands is
inconsistent. The SBT depends quite heavily on balancing
two evolutionary pressures against each other. Random drift
is needed to cross the low fitness valleys, while selection is
needed to climb the hills once the valleys have been crossed.
Yet the two mechanisms cannot be invoked simultaneously.
Random drift is dependent on small populations to operate
while selection is effective in large populations. Indeed the
very effects that are to be obtained through both are
mutually exclusive since one cannot climb a hill and
descend through a valley at the same time. Wright seemed
to have the notion of segregating many small demes for the
time necessary to fix various traits through random drift,
then reintegrate them back into a larger population to shift
the genetic makeup of the whole, but never made clear the
details.

This defect in the theory is well known in the biological
community. From Hartl and Clark:

For the theory to work as envisaged, ... [t]he
population must be split up into smaller demes,
which must be small enough for random genetic drift
to be important but large enough for mass selection
to fix favorable combinations of alleles. While
migration between demes is necessary, neighboring
demes must be sufficiently isolated for genetic
differentiation to occur, but sufficiently connected
for favorable gene combinations to spread.4

Consequently, while the SBT has been very useful in
genetics as a metaphor to aid the visualization of the process
of evolution, very little work has been done to verify
whether it correctly describes evolution. This is primarily
because much of it is untestable. Once again from Hartl and
Clark: “Because of uncertainly (sic) about the applicability
of these assumptions [mentioned in the previous quote], the
shifting balance process remains a picturesque metaphor
that is still largely untested.”5

This balancing act of deme sizes, small enough for
random drift but large enough for selection to occur, seems
to be a giant impediment to implementation. What is the
right size?  Is there a right size; or are the two mechanisms

                                                          
4 (Hartl & Clark 1997) pg. 260.

5 Ibid.

of random drift and selection largely exclusive? These
questions are not addressed by previous research.

4 Abstracting from the SBT: The Shifting
Balance Genetic Algorithm

4.1 The First Level of Abstraction: Core Group and
Colonies

One way to ‘balance’ the behavior of random drift and
selection is to drop one in favor of the other. Of the two,
keeping random drift would be a poor choice, after all
random drift is just that – random. Selection on the other
hand is more pliable. While selection does allow for the
maximization of an objective function, it can be converted
so that local maxima can be eschewed and valleys crossed.
This can be accomplished by recognizing that maximizing
the optimization function need not be the only trait selected
for.

It is by the combination of isolating subpopulations and
using different selection criteria in each that the ends of
Wright’s theory can be obtained without resorting to his
conflicting means. The majority of the members continue to
optimize the objective function. Smaller demes are created
and given different environments in which to evolve. If
these environments are different enough from that of the
main population, the various local maxima will be in
different positions in the gene space. Therefore the selection
pressure in each deme will force the members within it to
converge on these other maxima. Since the positions of
these maxima are shifted from that of the main population,
so too will be the members under its purview.
Consequently, any members that migrate from the smaller
demes to the large deme will no longer be in the same
location in the gene space. If there are enough small demes,
then migrants from those demes will be occasionally be on a
larger hill when evaluated by the objective function of the
large population. The genetic makeup of these members will
begin to dominate in the large population, and shift its
position in gene space to the newly found hill. Note the
effect of the shifting balance is felt with only selection
applied throughout. There is thus no need to balance two
contrary forces to shift the balance of a population.

The following summarizes our first level of abstraction:
A large central population, the core, experiences a single
environment and consequently is under the selective
pressure of a single fitness landscape. While adapting to this
landscape the core can get stuck on a local maximum, at
which point no evolutionary progress is occurring.
However, the core is constantly sending out members to
peripheral groups called colonies. The members within
these colonies find themselves in a different environment;
hence each experiences a fitness landscape different from
that of the others and of the core group.  Consequently the
new landscape for each colony may not have the same local
maximum as the landscape of the core group.  The colonies
are then forced to adapt through selection to these new
landscapes, thus changing the genetic makeup of its



constituents.  The modified colony members who migrate
back to the core are now different from its members.
Furthermore they may be on a better hill in the fitness
landscape of the central area.  Thus, through the use of the
colonies, the species as a whole can now jump over valleys
in the fitness landscape and continue to evolve.

Note again that the new model only depends on
selection.  While random drift may occur, it can only help
add to the variation being produced by selection, and is not
mandatory to the system anymore. Furthermore, the
population sizes of the colonies, while much smaller than
the core group, are set large enough to prevent undue effects
due to random drift.

4.2 The Colonies as Exploratory Sub-Populations: A
Further Abstraction

The reader will have noticed that the colonies are supposed
to be in different fitness landscapes, yet no method exists in
the model to determine how the environments should differ
from that of the core. Specifically, these environments
should be capable of moving the system off of local
maxima. What property of the alternative fitness functions
would allow them to push the system away from a local
maximum?

The alternate fitness functions in the colonies encourage
them to search in different areas of the search space. Any
mechanism that encourages such an exploration will thus
achieve the goal of moving the system away from a local
maximum. Now, instead of trying to create new fitness
functions to do this, perhaps we could directly determine
whether the colony is searching in the same area as the core
group. If the system can identify that such an overlap is
occurring, then the colony is not performing its duty and
should be moved elsewhere.

The above analysis makes it clear that we need a
mechanism to relocate the population to other places in the
search space independently of the selection pressure, thus
escaping from a local maximum. To relocate a population
away from a local maximum, other researchers resort to a
blind restart mechanism, see (Eshelman 1991), (Whitley et
al. 1991), (Cobb et al. 1993), and (Maresky et al. 1995). We
prefer not to resort to such a draconian measure.

Fortunately a more evolutionary alternative is available.
If we had a method of determining whether the colony is
searching in the same area as the core, then we could use
this to determine whether a colony is searching in novel
territory. This ‘distance’ to the core could then be used as a
selection criterion for the members in the colony: the
members will be selected for reproduction according to an
amalgamation of their ‘distance’ from the core the objective
function rather than according to the objective function
alone. They will evolve into a new area of the search space.

If selection based on ‘distance’ to the core is used
exclusively, the colonies will just move as far from the core
as possible. This will most likely send them into
unpromising territories. A balance must therefore be kept.
The colonies must be allowed to search for good solutions
(using the regular fitness function) when searching in areas

where the core is not; when searching in the part of gene-
space near the core, they must be selected for distance from
the core, thus moving them away.

While this new abstraction may seem to be a more
radical departure from the SBT than the first, it is actually
only an extension of it. The original modification of the
SBT required environments in the colonies that were
slightly different than the environment in the core. How
those environments were to have become different was not
specified. With the new abstraction, the new colony
environment is differentiated from that of the core through
the direct means of determining where the core is and
changing the environment such that it rewards members that
are further from the core as well as members that are
maximizing the objective function. The colony environment
is therefore slightly different from that of the core, with
local maxima positioned away from the local maximum
where the core is trapped.

4.3 Prevention versus Promotion of Inbreeding
Selecting for dissimilarity to core which is being done in the
colonies has its analogy in nature apart from Sewall
Wright’s theory. If one selects among individuals that differ
from a given group, one is preventing inbreeding. In the
modified SBT, the colonies are specifically bred to be
different from the core, and so when introduced back into
the core, through migration, variety is generated. It is just
this variety that the SBT wants to promote.

Indeed, mechanisms to prevent inbreeding are known in
both biology and the evolutionary computation literature.
Selective mating in mice was found to promote outbreeding
(Potts et al. 1991). The dispersal of birth and breeding sites
in birds is correlated to less inbreeding and higher diversity
(Greenwood et al. 1978).

In evolutionary computation, there are three main
techniques to prevent inbreeding: incest prevention,
crowding and fitness sharing. Incest prevention was
introduced by (Eshelman 1991) in their CHC
implementation of the GA. Here chromosomes with
Hamming distances below a certain threshold were
prevented from mating. In crowding, mating takes place as
usual, but the offspring is inserted back into the population
replacing the individual most similar to it, again as
measured by the Hamming distance, see (De Jong 1975) and
(Goldberg 1989) for details. Finally, fitness sharing divides
the fitness of similar individuals, again as measured by the
Hamming distance, thus promoting the selection of
individuals that are more distinct in the population
(Goldberg & Richardson 1987). Both crowding and fitness
sharing have been used to tackle multi-modal fitness
functions.

The SBT, while focused on increasing variety, does not
do so by preventing inbreeding – rather, it actively promotes
it! The effect of having a small deme size to encourage
random drift is to increase inbreeding. This is not an
unwanted side effect, but rather an actively pursued feature
of the model. Wright felt that the deleterious effects of
inbreeding are offset by the ability of inbreeding to bring to



light yet undiscovered traits. Once this was accomplished,
the crossbreeding between demes would ‘restore vigor’. In
Wright’s own words:

Progress by ordinary selection of individuals would
thus be very slow or nil. A single unfortunate
selection of a sire, good as an individual, but inferior
in heredity, is likely at any time to undo all past
progress. On the other hand, by starting a large
number of inbred lines, important hereditary
differences in these respects are brought clearly to
light and fixed. Crosses among these lines ought to
give a full recovery of whatever vigor has been lost
by inbreeding, and particular crosses may be safely
expected to show a combination of desired characters
distinctly superior to the original stock. Thus
crossbred stock can be developed which can be
maintained at a higher level than the original stock, a
level which could not have been reached by selection
alone6.

Once again Wright is interested in ‘balance’. Instead of
trying to enhance variety by discouraging similarity, he uses
inbreeding to cause random drift. This promotes
exploration. The resulting instability is balanced by
integrating the small populations into a large one where
selection, with increased variation, can take place. The
problem is in regulating the proper balance.

With the modified and abstracted SBT this balance
becomes unnecessary, as does the reliance on inbreeding.
The exploration is done by the colonies while the
exploitation is left to the core. Furthermore, unlike the
inbreeding prevention mechanisms incorporated into many
EC systems, the wanted variety is produced directly, by
selecting for it, and not circuitously, by the prevention of
similarity through the reduction of inbreeding.

4.4 Migration
In the original shifting balance theory, migration

happened in both directions, from core to colony and from
colony to core. The migration from core to colony occurred
to isolate members in a new environment so that they may
be allowed to vary from the norm that exists in the main
population. The back-migration from colony to core then in
turn provided the core with the novel members, which, if
those members demonstrated that they were better than the
members of the original population, would shift the balance
toward the new breed. The main population, now with a
new composition, sends members out into new
environments as new colonies, thus starting the process over
again. This two-way migration between core and colony sets
up a feedback loop where, with evolution as the driving
mechanism, information processing can occur.

However, while the core gains information about the
colonies through immigration of colony members, sending
members from the core to the colony can actually create
problems. Since the core has a very large population, most

                                                          
6 As quoted in (Provine 1986), pg. 156.

of the time it will find far better solutions than a colony.
We would expect these solutions, if allowed into the colony,
to begin to dominate the colony population within a few
generations, forcing the colonies to search in the same area
as the core. This would interfere with the distance
mechanism that prevents the colony from overlapping the
core. Consequently, it may be preferable not to implement
forward migration.

If migration from core to colony does not occur, one
might think that the colonies, which are now in reproductive
isolation, no longer have any knowledge about the core.
This is not so. While forward migration does indeed provide
information about the location of the core to the colonies, so
too does the distance mechanism that prevents the colony
from overlapping with the core.

Of course, we are not just trying to render the SBT as
faithfully as possible; rather we are trying to abstract from it
useful properties and methods to aid the GA when escaping
from local maxima. Consequently, we must use procedures
that are true to the purpose and goals of the SBT and not
just the superficial mechanisms. As discussed previously,
the two methods for providing information about the core to
the colonies have completely opposite effects on the colony.
Forward migration tries to make the colony more like the
core. The distancing mechanism tries to make the colony
less like the core. Since our purpose in designing the
colonies is to promote exploration into areas of the search
space where the core has not yet been, forward migration
seems a counterproductive approach for providing a colony
with information about the location of the core.
Consequently, only migration from colony to core was
implemented and investigated.

5 Overview of the SBGA

By extending the GA through the addition of the modified
SBT mechanisms, we obtain what we call the Shifting
Balance Genetic Algorithm (SBGA). An overview of this
algorithm can be found in figure 2 (see next page).

In the algorithm we make reference to the distance from
a member of a population to the entire population. This is a
well-known concept in cluster analysis. In GA terminology
such a distance is simply the average Hamming distance
between the given member and all other members of the
population. This concept is easily extended to encompass
the distance from a single member of one population to an
entire second population.

The details of the algorithm are in (Wineberg &
Oppacher 2000).

6 The Behavior of the SBGA

6.1 Purpose
Wright’s SBT has been criticized as untestable because of
its overall looseness. One criticism of it is the unsatisfactory
specification of the balance between random drift and
selection. Another one is his ill-defined notion of ‘fitness



landscapes’. A third criticism is that Wright had envisioned
the SBT as working on only stationary landscapes, while in
biology the landscape is obvious far from stationary.

Our modified version of the SBT addresses these
criticisms. The balance problem has been resolved in §4.1.
The fuzziness of Wright’s ‘fitness landscape’ is taken care
of by the simplicity of the GA fitness functions. Finally, we
feel that Wright’s SBT will actually work well in a changing
environment. Therefore, the SBT has become testable.

In our experimental design we have decided to test the
SBGA in both stationary and changing environments.

6.2  Experimental Design
This experiment was done using the F8F2 function,
described in (Whitley et al. 1996). This minimization
function is non-symmetric, linearly separable, increases in
difficulty as the dimension increases, and has a known
minimum at (1, 1). The solutions to F8F2 were encoded
using Gray coding.

We compared the SBGA to a standard GA on the F8F2
fitness function of dimensionality 5, for 750 generations.
For the first 150 generations, F8F2 was held stationary and
then the environment was changed for the next 600
generations.

In the experiment, both the GA and SBGA were given
the following parameter settings: probability of mutation =
0.006 per bit, and probability of one-point crossover = 0.7.
Linear rank selection with elitism was used. The slope was
set to be as steep as possible (i.e. with Max = 2.0).

The SBGA was given 10 colonies of 100 members each.
The colony size was chosen to reduce the amount of random
drift, yet keep the colonies relatively small in size. The core
group size was set to 1000, an amount equal to the size of
all the colonies combined. During migration 25 elite
members of a colony are sent to the core group. The
immigration interval was set to 5 generations (so in every
generation, only 2 colonies are sending members to the
core).

The GA was given a population of 2000, equal to the
total population of the SBGA system.

The environment undergoes a simple translation in
phenotype space along the hyper-diagonal. This motion is
kept at a constant speed for 600 generations, at which point
the global minimum has moved from the point (1,1,1,1,1) to
the point (1.5, 1.5, 1.5, 1.5, 1.5). Since each dimension is
encoded as a 12 bit Gray coded integer, the genome and
consequently the environment changes, on average, at
0.8333 bits per dimension each generation, which produces
a genotypic speed of 4.1667 bits per generation.

The best fitness value of the population is recorded every
generation, as is the median of the population and the
diversity7 of the population.

6.3 Results and Discussion

6.3.1 Best of the Generation Response

In the stationary region one expects an evolutionary system
to rapidly close in on the global optimum (at the price of
decreasing diversity), eventually either finding it, or
approximating it. Once the environment changes, the SBGA
because of its design should begin to track the global
optimum sooner and with a greater accuracy than the GA,
which should have experienced an extreme loss of diversity.

Figure 3 shows the fitness of the best individual for each
generation for both the GA and the SBGA. Confidence

                                                          
7 The diversity of a population as used here is the average genetic

entropy across the population, averaged across all loci, see
(Wineberg & Oppacher 1996).

Randomly initialize all populations
Eval. all populations using the fitness fn

Loop Until (solution found) or (max gen. hit)
 For each colony

If colony is ready to migrate
    (as determined by the migration interval)

Extend the core size to hold the immigrants
Send the colony’s migrants to the core

 Create a new core (the size of a regular, unexpanded core)
 Populate the new core from members of the old core using

reproduction; selection is based on fitness values
 For each colony

 Create a new colony
 Determine the extent to which the old colony’s population is

contained in the new core
 Divide the new colony into 2 section
The “inside section”;

size = #(old colony members inside core)
The “outside section”

size = #(old colony members outside core)
Populate the “inside” section through reproduction;
selection is based on distance to the core
Populate the “outside” section through reproduction;
selection is based on fitness values

 Evaluate all populations using the fitness function
 Set the core and each colony to their new population

Figure 2: The Shifting Balance Genetic Algorithm (SBGA).
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Figure 3: The Fitness of the Best Member Per Generation



bands are displayed around the mean curves, the SBGA’s
confidence band is in light gray, the GA’s is in dark gray.

Looking at the graph, during the first 150 generations,
both the GA and SBGA converge rapidly to very low fitness
values (remember F8F2 is a minimization problem) as
expected. About generation 60, the two curves begin to
diverge; the SBGA begins to outperform the GA. In fact the
GA flatlines by generation 75 while the SBGA continues to
improve even until the environment starts to move at
generation 150.

Again, by looking at the graph after the environment has
started to move, one can discern two stages. In the first
stage, both systems drastically drop in fitness as a result of
having converged. In the second stage, the systems recover
somewhat, although they are still losing ground. However
the slope of the GA is far steeper than that of the SBGA
(until it plateaued) and the GA cannot track the global as
closely. The fitness difference between the GA and the
SBGA is far greater now than during the stationary stage.

6.3.2 Median Response

Figure 4 shows the median fitness value of the population
for every generation (we have only recorded the median of
the core population for the SBGA). Unlike figure 3 the 111
median fitness values at a given generation are not
averaged, but rather the median is taken because we found
that the results were not normally distributed; the
distribution curves showed a large one sided tail which
heavily skews the results of an average.

Figure 4 shows that the median response of the GA
population mirrors the curve for the best fitness found in
figure 3. However, this is not the case for the SBGA: during
the stationary phase, the fitness remains surprisingly high
even though the best of the SBGA is lower than that of the
GA. Furthermore, once the environment starts to move, the
median fitness actually drops dramatically, even below that
of the GA. This counterintuitive behavior (the SBGA seems
to be doing worse on ‘average’ on the easier task) can be

explained when one takes the effect of the shifting balance
into account.

As the SBGA converges during the stationary phase, the
core envelops the region in which the global minimum
resides. The colonies, kept away from the core by the
distancing mechanism, cannot but help to have poor
members. These members are sent into the core, keeping the
median very high. Once the environment moves, the core,
due to its huge bulk, cannot respond quickly and so its
members become very unfit. However, the small, quick
moving colonies, which, by being outside the core are most
likely already near the new location of the optimum, will
send highly fit members back to the core. These members
will begin to dominate the core, thus reducing the median.

It is this very fact that shows that the benefits of the
shifting balance theory are indeed operating. It also shows
that the SBGA thrives in a dynamic environment.

7 Conclusion

Starting with the fertile SBT metaphor, we address some
of the main criticisms leveled against it (its loose
formulation, possible inconsistencies, and its untestability)
by converting it to a precisely formulated and testable
theory.

The test results indicate that our version of the SBT, i.e.
the SBGA, indeed allows the evolutionary system to escape
from local optima. This claim is supported by the improved
behavior of the SBGA over the GA in a stationary
environment. Furthermore, the SBGA was shown to easily
outperform the GA in a changing environment, thus
defeating the criticism that Wright’s version of the SBT can
only cope with static environment. Finally, we were able to
show, that the main population does actually shift in gene
space as envisaged by Wright.
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