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Abstract: 
Two observed deficiencies of the GA are its 
tendency to get trapped at local maxima and the 
difficulty it has handling a changing environment 
after convergence has occurred. A mechanism 
proposed by Sewall Wright in the 1930s 
addresses the problem of premature 
convergence: his Shifting Balance Theory (SBT) 
of evolution. In this work the SBT has been 
modified to remove defects inherent in its 
original formulation, while keeping the 
properties that should both increase the adaptive 
abilities of the GA and prevent it from 
prematurely converging. The system has been 
implemented and is called the Shifting Balance 
Genetic Algorithm (SBGA). Experimental 
results and analysis are presented demonstrating 
that the SBGA does, in fact, lessen the problem 
of premature convergence and also improves 
performance under a dynamic environment, 
thereby mitigating both deficiencies. 
 

1 INTRODUCTION 
While the Genetic Algorithm (GA) has been very 
successful when applied to a wide range of problems, in 
some respects the GA does not behave as adaptively as 
expected.  A perennial problem is that of premature 
convergence, where a GA will become fixated on a single 
solution that comes to dominate the population. Many 
modifications of the original GA are motivated by 
reducing the risk of premature convergence. 
However, there is a second problem attendant on 
premature convergence even when the GA does not get 
trapped at any local maxima and finds the global 
maximum.  The GA would then converge on that 
solution, and thereby lose the diversity in the population.  
With the loss of diversity, crossover loses its effectiveness 
and the only way for the GA to change is by mutation, 

which is usually set very low.  Consequently, after 
convergence has occurred, the GA will have lost much of 
its ability to find other solutions.   However, if the fitness 
function is not static, and the optimum changes to some 
other point in the gene-space, or even just drifts away 
from the current optimum, the GA will be nearly 
powerless to follow it.  
Sewall Wright, one of the founders of population 
genetics, proposed a mechanism for solving the problem 
of premature convergence in the 1930s. His theory, 
known as the Shifting Balance Theory, while 
conceptually fertile and influential, has never been 
developed in enough detail to enable its testing and 
application in genetics. We wish to abstract the 
conceptual core of his theory and render it applicable to 
evolutionary computation. In doing so, we have found 
that the resulting modified theory not only helps prevent 
premature convergence but also improves the behavior of 
the GA in dynamically changing environments.  
The primary interest of this paper is the behavior of 
evolutionary systems when faced with dynamic 
environments. While fundamental to the purpose behind 
Holland�s creation of the Genetic Algorithm, little 
research has been published on the topic.  Some of this 
work is concerned with diploid chromosomes ((Goldberg 
and Smith, 1987), (Ng and Wong, 1995)), and with 
classifier systems ((Holland, 1986), (Zhou and 
Grefenstette, 1989)). 
The approach used in this paper for improving the GA�s 
behavior in dynamic environments is based on the 
Shifting Balance Theory proposed by the population 
geneticist Sewall Wright. Wright�s theory has been 
popular in the GA community, with many authors quoting 
his theory (often referred to as Sewall Wright�s demes) 
when justifying the introduction of a novel feature in their 
GA. This is particularly true in parallel GA research 
((Tanese, 1989), (Whitley and Starkweather, 1990), 
(Mühlenbein, 1989), (Davidor, 1991), (Spiessens and 
Manderick, 1991)). The deme approach is not exclusive to 
parallel implementations of the GA.  Taking inspiration 



from Wright�s shifting balance theory which uses 
interdemic selection this more restrictive mating policy 
has been used for sequential GAs as well with moderate 
success over the more global mating strategies (see 
(Collins, 1994), (Pál, 1994), and (Sumida and Hamilton, 
1994)). 

2 SEWALL WRIGHT’S SHIFTING 
BALANCE THEORY 

The population geneticist Sewall Wright (Wright, 1932) 
realized the problem of an evolutionary system getting 
trapped at local maxima back in the 1930�s. Wright called 
the (hypothetical) function that was being optimized by 
the evolutionary system the �fitness landscape� and 
thought that each species was, over time, hill climbing 
through the process of mutation and natural selection.  
Having this view, he naturally became aware of the 
problem of local maxima and also proposed a mechanism 
to cope with it which he called �the shifting balance 
theory� (SBT).  
 
(Hartl and Clark, 1989) present a good summary of the 
shifting balance theory: 

... [the] subdivision of a population into small, semi-
isolated demes gives the best chance for the 
populations to explore the full range of their adaptive 
topography.  Temporary reductions in fitness that 
would be prevented by selection in large populations 
become possible in small ones because of the random 
drift in allele frequencies that occurs in small 
populations.  The lucky subpopulations that reach 
higher adaptive peaks on the fitness surface increase 
in size and send out more migrants than other 
subpopulations, and the favorable gene combinations 
are gradually spread throughout the entire set of 
subpopulations by means of interdeme selection.  The 
shifting balance process includes three distinct 
phases: 
• An exploratory phase, in which random genetic 

drift plays an important role in allowing small 
populations to explore their adaptive topography. 

• A phase of mass selection, in which favorable 
gene combinations created by chance in phase 1 
rapidly become incorporated into the genome of 
local populations by the action of natural 
selection. 

• A phase of interdeme selection, in which the 
more successful demes increase in size and rate 
of migration, and the excess migration shifts the 
allele frequencies of nearby population until they 
also come under the control of the higher fitness 
peak... there is a continual shifting of control 
from one adaptive peak to a superior one.1 

                                                           
1 Hartl and Clark (1989), pp. 323-324.  

In the above explanation the term random drift refers to a 
statistical process that occurs in populations because of 
the random sampling of alleles produced by random 
mating.  This effectively causes a random walk in the 
relative proportions of two competing alleles; the smaller 
the population, the more erratic the random walk.  
All of the parallel GA implementers of the �Deme 
Model� appeal to Wright�s shifting balance theory, 
hoping to see the advantage that random drift with 
interdemic selection will bring. However, most do not 
comment on the importance of random drift, and just 
mention that Wright proposed that interdeme selection 
was a powerful mechanism in natural evolutionary 
processes. An exception is (Sumida and Hamilton, 1994), 
who purposely kept the demes in their system small to 
facilitate the random drift that Wright postulated was 
necessary. But even when random drift is taken into 
account, there are still many problems with the unadorned 
mechanism as proposed by Wright.  Hartl and Clark point 
out a few:  

For the theory to work as envisaged, ... [t]he 
population must be split up into smaller demes, 
which must be small enough for random genetic drift 
to be important but large enough for mass selection to 
fix favorable combinations of alleles. While 
migration between demes is necessary, neighboring 
demes must be sufficiently isolated for genetic 
differentiation to occur, but sufficiently connected for 
favorable gene combinations to spread.2  

3 ABSTRACTING THE SBT:  
THE SHIFTING BALANCE GENETIC 
ALGORITHM  (SBGA) 

3.1 THE FIRST LEVEL OF ABSTRACTION: 
CORE GROUP AND COLONIES 

The SBT holds out the hope that, through its 
incorporation into the GA it will overcome the problem of 
prematurely converging on local maxima.  Yet the SBT 
by itself is of questionable worth because of the 
contradictory reliance on both random drift and selection.  
We have chosen to change the SBT so that it only relies 
on selection. 
The following summarizes the modified SBT (see Figure 
1). The large central population called core group 
experiences a single environment and consequently is  
under the selective pressure of a single fitness landscape.  
While adapting to this landscape the core group can get 
stuck on a local maximum, at which point no evolutionary 
progress is occurring.  However, the core group is 
constantly sending out members to the periphery. These 
small groups, or colonies, find themselves in a different 
environment, hence each experiences a fitness landscape 
different from that of the others and of the core group.  
                                                           
2 Hartl and Clark (1989), pg. 324. 



Consequently the new landscape for each colony may not 
have the same local maximum as the landscape of the 
core group.  The colonies are then forced to adapt through 
selection to these new landscapes, thus changing the 
genetic makeup of its constituents.  The modified colony 
members who migrate back to the core are now different 
from its members.  Furthermore they may be on a better 
hill in the fitness landscape of the central area.  Thus, 
through the use of the colonies, the species as a whole can 
now jump over valleys in the fitness landscape and 
continue to evolve. 
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Figure 1: A depiction of the new Shifting Balance Theory. 

Note that the new model only depends on selection.  
While random drift may occur, it can only help add to the 
variation being produced by selection, and is not 
mandatory to the system anymore. Furthermore, the 
population sizes of the colonies, while much smaller than 
the core group, are set large enough to prevent undue 
effects due to random drift. 

3.2 THE COLONIES AS EXPLORATORY SUB-
POPULATIONS: A FURTHER 
ABSTRACTION 

3.2.1 Fitness in the Colony 
The reader will have noticed that the colonies are 
supposed to be in different fitness landscapes. Yet no 
method exists in the model to determine how the 
environments should differ from that of the core.  
Specifically, these environments should be capable of 
moving the system off local maxima. We propose to solve 
the problem through identifying the purpose of the 
alternate fitness functions and provide a new mechanism 
for accomplishing the task.  
The alternate fitness functions encourage the colonies to 
search different areas of the search space than the core 
group. Any mechanism that encourages such an 

exploration will thus achieve the goal of moving the 
system off local maxima. Instead of trying to create new 
fitness functions to do this, we can directly determine 
whether the colony is searching in the same area as the 
core group. If it is, the colony should be forced away from 
the core. This can be accomplished by selecting members 
for reproduction according to their distance from the core 
rather than according to their original fitness values. 
If selection based on distance to the core is used 
exclusively, the colonies will just move as far from the 
core as possible. This will most likely send them into 
unpromising territories. A balance must therefore be kept. 
The colonies must be allowed to search for good solutions 
(using the regular fitness function) when searching in 
areas where the core is not; when searching in the part of 
gene-space near the core, they must be selected for 
distance from the core, thus moving them away. To 
accomplish this, a measure of overlap between 
populations (core and colony) in gene-space must be 
developed. This will be addressed next. 

3.2.2 Population Diversity, Distance, and 
Containment 

To complete the design of the SBGA, a few measures 
need to be developed: diversity of a population, the 
distance from a chromosome to a population in gene-
space, and a measurement of the extent to which one 
population is contained within another. 
The diversity measure of a population is familiar in the 
GA community. Although there are a few variations, the 
standard measure is the sum of the Hamming distances 
between all possible pairs in the population. This, when 
normalized, is the measure we use:  

Diversity(P) =
1

LN N −1( )
HD pi , pj( )

j=1

N

∑
i=1

N

∑ , 

where L is the length of a chromosome, N is the size of 
population P, pi is the ih chromosome in the population, 
and HD is the Hamming distance function. 
 The second measure, the distance between a single 
chromosome and a population in gene-space, is a 
modification of the diversity measure. We have defined 
that distance as the sum of the Hamming distances 
between the chromosome and each member of the 
�target� population. Again we normalize the result. The 
formula for the distance between a chromosome and a 
population therefore becomes: 

 Distance(c, P) =
1

LN
HD c, pi( )

i=1

N

∑ , 

where c is the chromosome whose distance is being 
calculated, and the rest of the symbols are the same as in 
the diversity formula. Notice that if the population has a 
size of 1, the distance reduces to the usual Hamming 
distance. 



The final measure is the most complex. For the algorithm 
to work we need to know how many members of a 
population should be considered lying �inside� versus 
�outside� another population in gene-space. Suppose that 
we want to know how many members of population A are 
inside of population B. To do this we first record the 
distance of every member in A to population B using the 
distance formula above. Next we need a characterization 
of the �span� in gene space of population B. This is 
accomplished by recording the distance of every member 
in population B to the complete population B.  We then 
define any member of population A as being outside of B 
when that member�s distance to population B is greater 
than the distance of every member of population B to 
itself.  
Unfortunately if we use the above definition directly, a 
single outlier in population B could force every member 
of population A to be considered �inside� of B. 
Consequently we have created a second procedure to 
remedy this problem. Let the function 
WithinDistance(c,P) be defined as �the number of 
members in population P that have a distance to 
population P that is less than the distance of chromosome 
c to P�.  This is intuitively a non-parametric measure of 
how far chromosome c is �inside� population P. We then 
normalize this measure by dividing by the size of 
population P.  If we calculate the normalized Within-
Distance values for every member in population A 
relative to population B, the average of these values is 
defined as the extent to which population A is contained 
in population B.  Since this is a non-parametric measure, 
it eliminates the outlier problem that was hindering us in 
the previous technique. The formula for the extent of 
containment of population A in B is: 

Containment A, B( )= 1
M

WithinDistance ai, B( )
i=1

M

∑

= 1
MN

δP ai , bj( )
j=1

N

∑
i=1

M

∑
 

where  WithinDistance c, P( ) =
1
N

δP c, pi( )
i=1

N

∑ , 

 

δP α ,β( ) =
1 if Distance α , P( )< Distance β, P( )
0 o.w.
 
 
 

,  

ai and bi are the ih members of the populations A and B, 
respectively, M is the population size of A and N is the 
population size of B. 

3.2.3 Keeping the Colonies Away from the Core  
As long as a colony remains completely outside the core, 
it freely evolves using the regular fitness function. This 
allows the colony to follow the fitness landscape and look 
at potentially interesting areas that the core group is 
ignoring. However, if a colony has wandered into the area 
searched by the core group, as determined by the 

Containment function, then that colony must be pushed 
away from the core group.  
If the offending colony is in the periphery of the core, 
then it should only be gently nudged away; if it is almost 
entirely contained in the core, strong pressure should be 
applied to push it into novel territory. The Containment 
function is used for this purpose as well. When the colony 
is ready for reproduction, the new population to be 
created is divided into two parts. The first part of the next 
generation�s population will consist of members that have 
been selected using the regular fitness function. The other 
part will be created from members that have been selected 
based on their distance from the core group (the greater 
the distance the higher the �fitness�). The ratio between 
the sizes of these two parts of the new population is set 
equal to the value of the Containment function of the 
colony relative to the core. 

3.2.4 Migration from Colony to Core 
While the core gains information about the colonies 
through immigration of colony members, sending 
members from the core to the colony, as stipulated by the 
original SBT model, actually creates some problems. 
Since the core has a very large population, most of the 
time it will find far better solutions than a colony.  These 
solutions, if allowed into the colony, would surely begin 
to dominate the colony population within a few 
generations, forcing the colonies to search in the same 
area as the core. This would interfere with the mechanism 
that prevents the colony from overlapping the core.  Thus 
no migration from core to colony is allowed in the system 
although the colony still sends �migrants� back to the 
core. 
The colony may send all of its members to the core or 
only some portion thereof. The colony members could be 
randomly selected, selected stochastically according to 
fitness, or, as is the case in the present system, represent 
an elite subgroup. The immigrants into the core are added 
to the core population, temporarily increasing its size. 
When the population is reduced to its normal size during 
reproduction, the selection pressure exerted on the core 
exceeds that of a normal GA. 
Since migration of the colony members disrupts the core 
group, time is given for the colony to evolve potentially 
useful members. The number of generations between the 
dumping of colony members into the core is called the 
�migration interval�. Immigration to the core is staggered 
between the colonies. For example, if there are 8 colonies 
and the migration interval is 4, two of the colonies send 
immigrants to the core each generation. However, for any 
given colony, 4 generations pass before colony members 
are allowed to migrate again. 
With migration in place the algorithm is now complete. 
An overview of the SBGA algorithm is given in Figure 2.  
 
 



Randomly initialize all populations

Eval. all populations using the fitness fn

Loop Until (solution found) or (max gen. hit)
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Figure 2: The SBGA Algorithm 
 

3.3 ADVANTAGES OF THE SBGA 
The SBGA should prevent premature convergence as 
Wright intended. The colonies are designed to search 
areas of the fitness landscape that the core group has not 
been looking at.  The influx of colony members into the 
core group increases the diversity of the core, preventing 
premature convergence. 
Furthermore, the SBGA should also perform better in 
dynamic environments.   
To an extent a regular GA can already handle dynamic 
environments.  The dynamic environments that we focus 
on in this paper have global optima that shift in the fitness 
landscape over time. The GA may lose the ability to track 
a moving optimum if - before moving - the optimum 
remains stable long enough for the population to converge 
significantly.  

Under the SBGA, if the peak shifts away from the core 
group the colonies are already in areas away from the 
core.  Consequently some of the colonies should 
encounter the shifted peak.  Members from the colonies 
are then sent back to the core. The children of members 
from the area of the shifted peak will begin to do well in 
the core; thus those members will shift the balance of the 
core towards the �lucky� colony. This in turn produces 
pressure on the colony to search elsewhere, keeping the 
colonies constantly moving trying to find the shifting 
global optimum. Furthermore, since the colonies are 
always forced away from the core, the ability of the 
colonies to track a moving hill remains independent of 
how long the hill remains stationary. 

4 EXPERIMENTATION 
To test whether the SBGA prevents premature 
convergence and handles dynamic environments better 
than a normal GA, two experiments were run. The first 
experiment tests for premature convergence using a 
stationary environment, the second for behavior in 
dynamic environments.  
Both types of experiments were done using the F2 
function from the De Jong test suite composed with the 
one dimensional version of the Griewangk Function (F8). 
The combined function is called the F8F2 function, 
described in (Whitley, 1997), see Table 1. This 
minimization function is non-symmetric, linearly 
separable, increases in difficulty as the dimension 
increases, and has a known minimum at (1, 1). The 
solutions to F8F2 were encoded using Gray coding. 

Table 1: The F8F2 fitness function 

F2 : f x, y( )= 100 x2 − y( )2
+ 1− x( )2  

x, y ∈ − 2.048, 2.047[ ]   
Minimum when x1 = x2  = 1 ( F2 = 0) 

F8 : f x( )=1 +
x2

4000
−cos x x ∈ − 512,511[ ]  

Minimum when x = 0  ( F8 = 0) 

F8F2(x1,x2,x3,�,xn) = F8(F2(x1,x2)) + F8(F2(x2,x3)) + 
� + F8(F2(xn-1,xn)) +F8(F2(xn, x1)) 

Minimum when xi = xj  = 1  (F8F2 = 0) 

In all experiments, both the GA and SBGA were given 
the following parameter settings: probability of mutation 
= 0.006 per bit, and probability of one-point crossover = 
0.7. Linear rank selection with elitism was used. The 
slope was set to be as steep as possible (i.e. with Max = 
2.0, see (Baker, 1985)). 
The SBGA was given 10 colonies of 100 members each. 
The colony size was chosen to reduce the amount of 
random drift, yet keep the colonies relatively small in 
size. The core group size was set to 1000, an amount 
equal to the size of all the colonies combined. During 



migration 25 elite members of a colony are sent to the 
core group. The GA was given a population of 2000, 
equal to the total population of the SBGA system.  

4.1 EXPERIMENTS USING A STATIONARY 
ENVIRONMENT 

To determine whether the SBGA is less likely to get stuck 
on a local optimum than the GA, both algorithms are run 
with fitness functions F8F2 for 300 generations. The best 
fitness value obtained during the entire run is recorded. 
To see the effects of migration, the migration interval is 
set to 2, 6 and 10 generations. Each run is repeated 35 
times to gain statistical significance. 
Preliminary analysis showed that neither the GA nor the 
SBGA produced normally distributed results under all 
settings. Consequently the GA was compared with the 
SBGA using the Wilcoxon Rank Sum test (a non-
parametric statistic) to determine which system finds the 
lowest fitness values. If the Wilcoxon Rank Sum test 
produces a Z-Score > 1.96, then the results from the two 
programs are considered to be significantly different with 
a confidence level > 95%. A Z-Score > 2.56 shows a 
difference with a confidence level > 99%. 
 

Table 2: Experiment Results from the Stationary Env. 

 GA vs. Imm2 GA vs. Imm6 GA vs. Imm10 

Dim Winner Z-Score Winner Z-Score Winner Z-Score 

2 GA 2.090 SBGA 2.430 SBGA 2.140 

3 SBGA 5.736 SBGA 4.278 SBGA 4.227 

4 SBGA 6.472 SBGA 5.709 SBGA 5.029 

5 SBGA 6.019 SBGA 5.659 SBGA 4.880 

6 SBGA 2.989 SBGA 3.811 SBGA 2.746 

7 SBGA 2.514 SBGA 3.778 SBGA 3.173 

8 SBGA 1.746 SBGA 1.611 SBGA 1.465 

 
Looking at the results in Table 2 we see that the SBGA is 
significantly better than the regular GA. Only when F8F2 
is restricted to 2 dimensions, and the SBGA allows 
migration every 2 generations does the GA win over the 
SBGA. With these results, we can readily draw the 
conclusion that the SBGA is better at preventing the 
system from being trapped at local maxima. 
One further note: As the dimension increases, the SBGA 
improves relative to the regular GA, peaking at dimension 
4. By Dimension 8 the Z-Scores have dropped so low that 
we have less than 95% confidence that the SBGA is 
performing any differently than the regular GA. There are 
two possible reasons for this. First, it is possible that as 
the dimensionality increases the difficulty increases so 
greatly that neither system can do well. Alternatively, it is 
possible that the SBGA needs more colonies to handle the 
greater number of dimensions, and so its efficiency drops 

off. Only further experimentation will determine which (if 
either) of the two possibilities obtain. 

4.2 EXPERIMENTS USING A DYNAMIC 
ENVIRONMENT 

To see if the SBGA would handle itself better in a 
dynamic environment from a converged starting point, we 
extended the Stationary Experiment. The environment is 
kept stationary for 150 generation to give the two systems 
the chance to converge. In this experiment convergence 
occurs after about 89-90 generations, so the 150 
generations is more than sufficient.  
The environment undergoes a simple translation in 
phenotype space along the hyper-diagonal. This motion is 
kept at a constant speed for 300 generations, at which 
point the global minimum has moved from the point (1, 1) 
to the point (1.75, 1.75).  
The dimensionality of the fitness function is set to 2 and 
the migration interval to 2 generations. These were the 
most favourable settings for the GA in the stationary 
experiments. Therefore if the SBGA manages to do better 
than the GA it has done so under adverse conditions. 
In the stationary experiment only the best fitness in the 
entire run was recorded. This is insufficient for a dynamic 
environment since we are interested in how close the 
system can keep to the moving optimum. Consequently 
the best fitness per generation must be kept for every 
generation.  
Figure 3 represents a typical run. Since the fitness is 
plotted on a log scale, when a system finds the solution, 
which has a fitness of 0, it is plotted as -∞.  As can be 
seen, both the GA and the SBGA find the solution by 
generation 40. At generation 150 the function starts to 
move and what was the perfect solution no longer is; the 
fitness values start to increase (get worse). By generation 
170 the SBGA starts to recover; the GA only starts to 
recover at around generation 190. The GA has a good 
showing until generation 210 at which point the SBGA 
remains closer to the global optimum, even occasionally 
finding it, for the rest of the run. 
These results are very encouraging. Due to the time 
needed to run the dynamic experiments, only 3 runs per 
setting were done (where migration interval, 
dimensionality and speed are all varied in a fully crossed 
design); however all the results are qualitatively 
comparable with the one presented above, except for very 
high dimensionalities. A linear statistical model is being 
developed to test whether the observed differences are as 
significant as they look upon visual inspection.  
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Figure 3: Results from a typical run  

under a dynamic environment 

5 CONCLUSION AND FUTURE WORK 
We have presented a modification of S. Wright�s Shifting 
Balance Theory that remedies the shortcomings inherent 
in the original formulation and at the same time lends 
itself to implementation: the SBGA. Through 
experimentation we have determined that the advantages 
expected from the SBGA, the mitigation of the 
phenomenon of premature convergence and the 
enhancement of the behavior of the GA in dynamic 
environments, do indeed occur. The experiments dealing 
with the avoidance of premature convergence in 
stationary environments have established to a high level 
of statistical significance that SBGA outperforms the 
regular GA on F8F2, an very difficult although contrived 
mathematical function. While the experiments on 
dynamic environments are as yet preliminary and have 
not been fully statistically verified, the results look 
extremely promising to detailed inspection. 
In future work we plan to do the following: (i) develop a 
linear statistical model for the dynamic environment 
experiments so that the results reported above can be 
verified to statistical significance; (ii) establish similar 
results for naturally dynamic rather than contrived 
problems; (iii) study the behavior of SBGA with different 
numbers of colonies, and possibly with automatically 
varying numbers of colonies. 
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