Analysis of Algorithms

- Ok: Analysis of Algorithms and Data Structures
- Reasonable vs. Unreasonable Algorithms
- Using O() Analysis in Design

![Diagram of Input, Algorithm, Output]

Running Time

- The running time of an algorithm varies with the input and typically grows with the input size.
- Average case difficult to determine.
- We focus on the worst case running time.
- Easier to analyze.
- Crucial to applications such as games, finance, and robotics.

![Running Time Graph]

Experimental Studies

- Write a program implementing the algorithm.
- Run the program with inputs of varying size and composition.
- Use a function like `ctime()` to get an accurate measure of the actual running time.
- Plot the results.

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment.

Pseudocode

```
function arrayMax(A, n)
    Input: int A[n]
    Output: maximum element of A
    int currentMax = A[0];
    for (i = 1; i < n; i++)
        if (A[i] > currentMax)
            currentMax = A[i];
    return currentMax
```

Example: find max integer of an array.
Pseudocode Details

Control flow
- if
- then
- else
- do
- for
- Indentation and braces
- Function declaration
 Function fname(arg[,...])
 Input:
 Output:
 body

Function call
 fname(arg[,...])

Return value
 return expression

Expressions (C-like)

Or

n^2 Superscripts and other mathematical formatting allowed

Primitive Operations

Basic computations performed by an algorithm
Identifier in pseudocode
Largely independent from the programming language
Exact definition not important

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
function arrayMax(A,n)
    currentMax = A[0]; # operations
    for i = 1; i < n; i++;
        if (A[i] > currentMax)
            currentMax = A[i];
    return currentMax;
```

Total operations: 6n - 2

Estimating Running Time

Algorithm `arrayMax` executes 6n - 2 primitive operations in the worst case

Define
- Time taken by the fastest primitive operation
- Time taken by the slowest primitive operation

Let T(n) be the actual worst-case running time of `arrayMax`. We have

a(6n - 2) ≤ T(n) ≤ b(6n - 2)

Hence, the running time T(n) is bounded by two linear functions

Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n0 such that f(n) ≤ cg(n) for n ≥ n0

Example: 2n + 10 is O(n)
- 2n = 10 ≤ c
- (c = 2) n ≥ 10
- Pick c = 3 and n0 = 10

Example: the function n^2 is not O(n)
- n^2 ≤ cn
- n ≤ c
- The above inequality cannot be satisfied since c must be a constant

Big-Oh Notation (cont.)
Big-Oh Rules
- If \(f(n) \) is a polynomial of degree \(d \), then \(f(n) \) is \(O(n^d) \), i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say “2n is \(O(n) \)” instead of “2n is \(O(n^2) \)”
- Use the simplest expression of the class
 - Say “3n + 5 is \(O(n) \)” instead of “3n + 5 is \(O(3n) \)”

Algorithm Analysis
- The analysis of an algorithm determines the running time in big-Oh notation
- To perform the analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm `arrayMax` executes at most 6n - 2 primitive operations
 - We say that algorithm `arrayMax` “runs in \(O(n) \) time”
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Traversals
- Traversals involve visiting every node in a collection.
- Because we must visit every node, a traversal must be \(O(N) \) for any data structure.
 - If we visit less than \(N \) elements, then it is not a traversal.
 - If we have to process every node during traversal, then \(O(\text{process}) \cdot O(N) \)

Searching for an Element
- Searching involves determining if an element is a member of the collection.
- Simple/Linear Search:
 - If there is no ordering in the data structure
 - If the ordering is not applicable
- Binary Search:
 - If the data is ordered or sorted
 - Requires non-linear access to the elements

Simple Search
- Worst case: the element to be found is the \(N^{th} \) element examined, or an unsuccessful search
- Simple search must be used for:
 - Sorted or unordered linked lists
 - Unsorted array
 - Binary tree (to be discussed)
 - Binary Search Tree if it is not full and balanced

Example: Linked List
- Let’s determine if the value 83 is in the collection:

 83 Not Found!
Big-O of Simple Search

- The algorithm has to examine every element in the collection
- To return a false
- If the element to be found is the Nth element
- Thus, simple search is O(N).

Binary Search

- We may perform binary search on
 - Sorted arrays
 - Full and balanced binary search trees
- Tosses out 1/2 the elements at each comparison.

Binary Search Example

Looking for 89

89 not found – 3 comparisons
3 = Log(8)
Binary Search Big-O

- An element can be found by comparing and cutting the work in half.
 - We cut work in \(\frac{1}{2} \) each time
 - How many times can we cut in half?
 \(\log_2 N \)
- Thus binary search is \(O(\log N) \).

Recall

\[
\log_2 N = k \cdot \log_{10} N
\]

\[
k = 0.30103...
\]

So: \(O(\text{lg} N) = O(\log N) \)

In general:

\(O(C \cdot f(N)) = O(f(N)) \)

if \(C \) is a constant

Insert

- Inserting an element requires two steps:
 - Find the right location
 - Perform the instructions to insert
- If the data structure in question is **unsorted**:
 - Simply insert to the **front**
 - Simply insert to the **end** in the case of an array
 - There is no work to find the right spot and only constant work to actually insert.

Insert into a Sorted Linked List

Finding the right spot is \(O(N) \)
- Recurse/iterate until found
Performing the insertion is \(O(1) \)
- 4-5 instructions

Total work is \(O(N + 1) = O(N) \)

Inserting into a Sorted Array

Finding the right spot is \(O(\log N) \)
- Binary search on the element to insert
Performing the insertion
- Shuffle the existing elements to make room for the new item

Shuffling Elements

Note – we must have at least one empty cell

<table>
<thead>
<tr>
<th>5</th>
<th>12</th>
<th>95</th>
<th>77</th>
<th>101</th>
</tr>
</thead>
</table>

Insert 29
Big-O of Shuffle

Worst case: Inserting the smallest number

```
5 12 35 77 101
```

Would require moving N elements...

Thus shuffle is \(O(N) \)

Big-O of Inserting into Sorted Array

Finding the right spot is \(O(\log N) \)

Performing the insertion (shuffle) is \(O(N) \)

Sequential steps, so add:

Total work is \(O(\log N + N) = O(N) \)

Two Sorting Algorithms

- **Bubble-sort \(O(N^2) \)**
 - Brute-force method of sorting
 - Loop inside of a loop
- **Merge-sort \(O(N\log N) \)**
 - Divide and conquer approach
 - Recursively call, splitting in half
 - Merge sorted halves together

Bubble-sort Review

Bubble-sort works by comparing and swapping values in a list

```
1 2 3 4 5 6
77 42 35 12 101 5
```

Largest value correctly placed

Bubble-sort Review

```
void bubbleSort(int a[], int N)
{
    int temp;
    for (int i = 1; i < N; i++)
    {
        for (int j = 0; j < N - i; j++)
        {
            if (a[j] > a[j+1])
            {
                temp = a[j];
                a[j] = a[j+1];
                a[j+1] = temp;
            }
        }
    }
}
```
Analysis of Bubblesort

- How many comparisons in the inner loop?
 * \(n \) to do goes from \(N-1 \) down to 1, thus
 * \((N-1) + (N-2) + (N-3) + \ldots + 2 + 1 \)
 * Average: \(N/2 \) for each "pass" of the outer loop.

- How many "passes" of the outer loop?
 * \(N - 1 \)

Bubblesort Complexity

Look at the relationship between the two loops:
- Inner is nested inside outer
- Inner will be executed for each iteration of outer

Therefore the complexity is:
\[
O((N-1) \times (N/2)) = O(N^2/2 - N/2) = O(N^2)
\]

\(O(N^2) \) Runtime Example

Assume you are sorting 250,000,000 items:
\(N = 250,000,000 \)
\(N^2 = 6.25 \times 10^{16} \)
If you can do one operation per nanosecond (\(10^{-9} \) sec) which is fast!
It will take \(6.25 \times 10^7 \) seconds
So \(6.25 \times 10^7 \)
\(60 \times 60 \times 24 \times 365 = 1.98 \) years

Analysis of Mergesort

Phase I
- Divide the list of \(N \) numbers into two lists of \(N/2 \) numbers
- Divide those lists in half until each list is size 1
 * \(\log N \) steps for this stage.

Phase II
- Build sorted lists from the decomposed lists
- Merge pairs of lists, doubling the size of the sorted lists each time
 * \(\log N \) steps for this stage.

Mergesort Complexity

Each of the \(N \) numerical values is compared or copied during each pass
- The total work for each pass is \(O(N) \).
- There are a total of \(\log N \) passes

Therefore the complexity is:
\[
O(\log N + N \times \log N) = O(N \times \log N)
\]
O(NLogN) Runtime Example

Assume same 250,000,000 items
N*Log(N) = 250,000,000 x 8.3
= 2,099,485,002

With the same processor as before
2 seconds

Analysis of Algorithm 43

Reasonable vs. Unreasonable

Reasonable algorithms have polynomial factors
- O (Log N)
- O (N)
- O (N^K) where K is a constant

Unreasonable algorithms have exponential factors
- O (2^N)
- O (N!)
- O (N^N)

Analysis of Algorithm 44

Algorithmic Performance Thus Far

Some examples thus far:
- O(1) Insert to front of linked list
- O(N) Simple/Linear Search
- O(N Log N) MergeSort
- O(N^2) BubbleSort

But it could get worse:
- O(N^3), O(N^1000), etc.

Analysis of Algorithm 45

An O(N^3) Example

For N = 256
N^3 = 256^3 = 1,100,000,000,000

If we had a computer that could execute a million instructions per second...

1,100,000 seconds = 12.7 days to complete
But it could get worse...

Analysis of Algorithm 46

Analysis of Algorithm 47

It is hard to understand the basic principles behind exponential growth. Perhaps it is easier to understand in terms of doubling time. In exponential growth, each time a value doubles the new value is greater than all previous values combined.

Consider the story of the peasant that did a great favor for a king. The king asked how he could repay the peasant. In response, the peasant asked the king to place two pieces of grain on a square of a chess board, and double the amount of grain on each following square (2 on the first, 4 on the second, 8 on the third, 16 on the fourth, and so on); “Sure,” says the king thinking that would not require much grain. However, the king does not understand exponential growth.

Analysis of Algorithm 48

The Power of Exponents

A rich king and a wise peasant...
Analysis of Algorithm 49

The King has to Pay

<table>
<thead>
<tr>
<th>Square(N)</th>
<th>Pieces of Grain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>9,223,000,000,000,000,000</td>
</tr>
<tr>
<td>64</td>
<td>18,450,000,000,000,000,000,000</td>
</tr>
</tbody>
</table>

How Bad is 2^N?

- Imagine being able to grow a billion (1,000,000,000) pieces of grain a second...
- It would take 585 years to grow enough grain just for the 64th chess board square
- Over a thousand years to fulfill the peasant’s request!

So the King cut off the peasant’s head.

Analysis of Algorithm 52

Towers of Hanoi: Solution

Towers of Hanoi - Complexity

For 3 rings we have 7 operations.
In general, the cost is $2^N - 1 = \Theta(2^N)$
Each time we increment N, we double the amount of work.
This grows incredibly fast!

Towers of Hanoi (2^N) Runtime

For $N = 64$
$2^N = 2^{64} = 18,450,000,000,000,000,000,000$
If we had a computer that could execute a million instructions per second...
- It would take 584,000 years to complete
- But it could get worse...
The Bounded Tile Problem

Match up the patterns in the tiles. Can it be done, yes or no?

Matching tiles

Tiling a 5x5 Area

25 available tiles remaining

24 available tiles remaining

23 available tiles remaining

22 available tiles remaining
Tiling a 5x5 Area

Analysis of the Bounded Tiling Problem

Tile a 5 by 5 area (N = 25 tiles)
1st location: 25 choices
2nd location: 24 choices
And so on...
Total number of arrangements:
= \(25 \times 24 \times 23 \times 22 \times \ldots \times 3 \times 2 \times 1\)
= \(25!\) (Factorial)
= 15,500,000,000,000,000,000,000,000

Bounded Tiling Problem is \(O(N!)\)

Tiling \(O(N!)\) Runtime

For \(N = 25\)
\(25! = 15,500,000,000,000,000,000,000,000\)
If we could “place” a million tiles per second...
It would take 470 billion years to complete
Why not a faster computer?

A Faster Computer

- If we had a computer that could execute a trillion instructions per second (a million times faster than our MIPS computer)...
- 5x5 tiling problem would take 470,000 years
- 64-disk Tower of Hanoi problem would take 213 days

Why not an even faster computer!

The Fastest Computer Possible?

- What if:
 - Instructions took ZERO time to execute
 - CPU registers could be loaded at the speed of light
- These algorithms are still unreasonable!
- The speed of light is only so fast!

Where Does this Leave Us?

- Clearly algorithms have varying runtimes.
- We’d like a way to categorize them:
 - Reasonable, so it may be useful
 - Unreasonable, so why bother running
Analysis of Algorithm 67

Performance Categories of Algorithms

Polynomial

- **Sub-linear** $O(\log N)$
- **Linear** $O(N)$
- **Nearly linear** $O(N \log N)$
- **Quadratic** $O(N^2)$
- **Exponential**
 - $O(2^N)$
 - $O(N!)$
 - $O(N^{N^k})$ where K is a constant

Reasonable vs. Unreasonable

Reasonable algorithms have polynomial factors
- $O(\log N)$
- $O(N)$
- $O(N \log N)$

Unreasonable algorithms have exponential factors
- $O(2^N)$
- $O(N!)$
- $O(N^{N^k})$

Analysis of Algorithm 68

Reasonable vs. **Unreasonable**

Reasonable algorithms may be usable depending upon the input size.

Unreasonable algorithms:
- Are impractical and useful to theorists.
- Demonstrate need for approximate solutions.

Remember we’re dealing with large N (input size).

Two Categories of Algorithms

![Graph showing runtime vs. size of input](image)

Reasonable
- N^k
- Don't Care!

Unreasonable
- 2^N
- $N!$

Analysis of Algorithm 70

<table>
<thead>
<tr>
<th>Size of Input (N)</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1 billion</td>
<td>1 billion</td>
</tr>
<tr>
<td>trillion</td>
<td>trillion</td>
</tr>
<tr>
<td>10^12</td>
<td>10^12</td>
</tr>
<tr>
<td>2^32</td>
<td>2^32</td>
</tr>
<tr>
<td>10^64</td>
<td>10^64</td>
</tr>
<tr>
<td>2^64</td>
<td>2^64</td>
</tr>
<tr>
<td>10^128</td>
<td>10^128</td>
</tr>
<tr>
<td>2^128</td>
<td>2^128</td>
</tr>
<tr>
<td>10^256</td>
<td>10^256</td>
</tr>
<tr>
<td>2^256</td>
<td>2^256</td>
</tr>
<tr>
<td>10^512</td>
<td>10^512</td>
</tr>
<tr>
<td>2^512</td>
<td>2^512</td>
</tr>
<tr>
<td>10^1024</td>
<td>10^1024</td>
</tr>
</tbody>
</table>

Analysis of Algorithm 71

Properties of the O notation

- Constant factors may be ignored:
 - $\forall k > 0$, kf is $O(f)$
- Fastest growing term dominates a sum:
 - If f is $O(g)$, then $f + g$ is $O(g)$

- Polynomial's growth rate is determined by leading term:
 - If f is a polynomial of degree d, then f is $O(n^d)$

 eg. $10n^4 + 5n^3 + n^2$ is $O(n^4)$

- f is $O(g)$ is transitive:
 - If f is $O(g)$ and g is $O(h)$ then f is $O(h)$

- Product of upper bounds is upper bound for the product:
 - If f is $O(g)$ and h is $O(r)$ then fh is $O(gr)$

- All logarithms grow at the same rate:
 - $\log n$ is $O(\log n) \forall b, d > 1$

Analysis of Algorithm 72

Properties of the O notation

- f is $O(g)$ is transitive:
 - If f is $O(g)$ and g is $O(h)$ then f is $O(h)$

- Product of upper bounds is upper bound for the product:
 - If f is $O(g)$ and h is $O(r)$ then fh is $O(gr)$

- All logarithms grow at the same rate:
 - $\log n$ is $O(\log n) \forall b, d > 1$
Simple Examples:

- Simple statement sequence
 \(s_1; s_2; \ldots; s_k \)
 \(O(1) \) as long as \(k \) is constant
- Simple loops
 \[
 \text{for}(i=0; i<n; i++) \{ \text{s; } \}
 \]
 where \(s \) is \(O(1) \)
 \(n \) Time complexity is \(n \) \(O(1) \) or \(O(n) \)
- Nested loops
 \[
 \text{for}(i=0; i<n; i++)
 \text{for}(j=0; j<n; j++) \{ \text{s; } \}
 \]
 Complexity is \(n \) \(O(n) \) or \(O(n^2) \)

Another Example:

- Loop index doesn’t vary linearly
 \[
 h = 1;
 \text{while} \ (h <= n) \{
 s;
 h = 2 \times h;
 \}
 \]
 \(h \) takes values 1, 2, 4, \ldots until it exceeds \(n \)
 \(n \) There are \(1 + \log_2 n \) iterations
 \(n \) Complexity \(O(\log n) \)