
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Learning Tractable NAT-Modeled Bayesian Networks

Yang Xiang · Qian Wang

Mar 2021

Abstract Bayesian networks (BNs) encode conditional independence to avoid
combinatorial explosion on the number of variables, but are subject to exponential
growth of space and inference time on the number of causes per effect variable.
Among space-efficient local models, we focus on the Non-Impeding Noisy-AND
Tree (NIN-AND Tree or NAT) models, due to their multiple merits, and on NAT-
modeled BNs, where each multi-parent variable family may be encoded as a NAT-
model. Although BN inference is generally exponential on treewidth, the inference
is tractable with NAT-modeled BNs of high treewidth and low density. In this
work, we present the first study to learn NAT-modeled BNs from data. We apply
the MDL principle to learning NAT-modeled BNs by developing a correspond-
ing scoring function, and we couple it with heuristic structure search. We show
that when data satisfy NAT causal independence, high treewidth, and low density
structure, learning underlying NAT modeled BNs is feasible.

Keywords Bayesian networks · Causal independence models · Probabilistic
inference · Local structures · Machine Learning.

1 Introduction

Discrete BNs avoid combinatorial explosion on the number of variables by encoding
conditional independence in directed acyclic graph (DAG) structures, but space
and inference time grow exponentially in the number of causes per effect due to
tabular conditional probability tables (CPTs). Space-efficient local models exist,
such as noisy-OR, noisy-MAX [7], context-specific independence (CSI) [1], NAT
[13], DeMorgan [9], tensor-decomposition [11], and cancellation [12].

We focus on NAT models due to merits of simple causal interactions (rein-
forcement/undermining), expressiveness (recursive mixture of causal interactions,

Yang Xiang · Qian Wang
School of Computer Science, University of Guelph, Canada
Corresponding author: Yang Xiang
Email: yxiang@uoguelph.ca

2 Yang Xiang, Qian Wang

multi-valued, ordinal or nominal [15]), generality (generalizing noisy-OR, noisy-
MAX, and DeMorgan), and orthogonality to CSI. Although BN inference is gen-
erally exponential on treewidth, the inference is tractable with NAT-modeled BNs
of high treewidth and low density.

Specifically, the space of a BN (measured by the total number of CPT param-
eters) is O(n sκ), where n is the number of variables, s bounds domain sizes of
variables, and κ bounds numbers of causes (parents) per variable. In fully NAT-
modeled BNs (see Section 2), variables quantify dependency on parents by NAT
models instead of tabular CPTs. Their space is O(n s κ). This efficiency extends
to inference time with NAT modeled BNs of high treewidth (bounded by κ) and
low density (measured by percentage of arcs beyond being singly connected) struc-
tures.

This work studies learning NAT-model BNs from data. A BN can be com-
pressed into a fully NAT-modeled BN [15]. However, since the source BN must
be either manually constructed or learned from data through other methods, the
compression approach does not completely solve knowledge acquisition for NAT-
modeled BNs.

The main contribution of this work is the first study on learning NAT-modeled
BNs directly from data. We apply the MDL principle [10] to learning NAT-modeled
BNs to develop a NAT-enabled scoring function, and couple it with heuristic struc-
ture search. Our experiment shows that when data satisfy NAT causal indepen-
dence, high treewidth, and low density structure, it is feasible to learn underlying
NAT-modeled BNs that enable inference efficiency and accuracy.

In developing the MDL function, we resolve the following issues: We propose
a decomposition of description length for NAT-modeled BNs. We show how to
incorporate into description length persistent leaky causes (see Section 4.1) dis-
covered during learning. We reveal the break-down of MDL decomposability, and
propose remedy to maintain accuracy of MDL score and learning efficiency. We
identify the role of NAT compression in learning NAT-modeled BNs.

The remainder is organized as follows: We review terminology on NAT-modeled
BNs in Section 2. Section 3 motivates the task of learning NAT-modeled BNs.
Decomposition of MDL scoring function for NAT-modeled BNs is presented in
Section 4, with computation of sub-scores elaborated in Sections 4.1 through 4.4.
The structure search is described in Section 5 with complexity analysis. Techniques
for improving search efficiency are presented in Section 6. Experimental results
are reported in Section 7. Two general applications of NAT-modeled BNs can be
identified. This work opens the door for possibility of a third, which is discussed
in Section 8 along with future research.

2 NAT-modeled Bayesian Networks

We review terminology on NAT-modeled BNs.

2.1 Causal Variables and Causal Events

A NAT model is defined over an effect e and a set of κ ≥ 2 uncertain causes
C = {c1, ..., cκ}, where e ∈ De = {e0, ..., eη} (η ≥ 1) and ci ∈ {c0i , ..., c

mi
i } (i =

Learning Tractable NAT-Modeled Bayesian Networks 3

1, ..., κ,mi ≥ 1). C and e form one family (a child variable plus its parents) in
BNs. Values e0 and c0i are inactive. Other values (may be written as e+ or c+i) are
active. Note that De needs not be ordered: Although other local models such as
noisy-OR and noisy-MAX have been defined over ordinal variables (also referred
to as graded variables), NAT models are defined over both ordinal and nominal
variables [15]. That causes in a NAT model are uncertain implies the following
(they can cause effect to be active, but do not always do so):

0 < P (ek|cj11 , ..., c
jκ
κ) < 1 (k > 0, ∃iji > 0). (1)

That C is the set of all causes implies the following:

P (e0|c01, ..., c0κ) = 1. (2)

A causal event is a success or failure depending on if e is active up to a given
value, is single- or multi-causal depending on the number of active causes, and
is simple or congregate depending on the value range of e. For instance, P (ek ←
cji) = P (ek|cji , c

0
z : ∀z 6= i) (j > 0) is probability of a simple single-causal success.

P (e ≥ ek ← cj11 , ..., c
jq
q)

= P (e ≥ ek|cj11 , ..., c
jq
q , c

0
z : cz ∈ C \X)

is probability of a congregate multi-causal success, where j1, ..., jq > 0,X = {c1, ..., cq}
(q > 1), and it may be denoted as P (e ≥ ek ← x+) where x+ corresponds to X.

2.2 NAT Models

Interactions among causes in a NAT model may be reinforcing or undermining:
Let ek be an active effect value, R = {W1, ...,Wφ} (φ ≥ 2) be a partition of a set
X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in R reinforce each
other relative to ek, iff

∀S P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+), (3)

where y+ corresponds to Y . They undermine each other iff

∀S P (e ≥ ek ← y+) > P (e ≥ ek ← x+). (4)

Fig. 1 Direct (a) and dual (b) NIN-AND gates. (c) NAT.

4 Yang Xiang, Qian Wang

A NAT consists of multiple NIN-AND (Non-Impeding Noisy-AND) gates. A
direct gate involves disjoint sets of causes W1, ...,Wφ. Each input event is a success

e ≥ ek ← w+
i (i = 1, ..., φ), e.g., Fig. 1 (a) where each Wi is a singleton. The output

event is e ≥ ek ← w+
1 , ..., w

+
φ with probability

P (e ≥ ek ← w+
1 , ..., w

+
φ) =

φ∏
i=1

P (e ≥ ek ← w+
i), (5)

and hence direct gates encode undermining.
Each input event of a dual gate is a failure e < ek ← w+

i , e.g., Fig. 1 (b). The

output event is e < ek ← w+
1 , ..., w

+
φ with probability

P (e < ek ← w+
1 , ..., w

+
φ) =

φ∏
i=1

P (e < ek ← w+
i), (6)

and hence dual gates encode reinforcement.
Fig. 1 (c) shows a NAT, where causes h1 and h2 reinforce, so do b1 and b2,

but the two groups undermine each other. Each NAT uniquely defines pairwise
causal interaction (PCI) between each pair of causes ci and cj (i 6= j), denoted
by a PCI bit π(ci, cj) ∈ {u, r}, where u and r denote reinforcing and undermining,
respectively. The collection of PCI bits, one per pair of causes, is a PCI pattern,
which uniquely specifies the corresponding NAT [14].

A NAT is quantified by single-causals (probability parameters of root events),
in the form P (ek ← cji) (j, k > 0). From the NAT and single-causals, P (e ≥
e1 ← h11, h

1
2, b

1
1, b

1
2), as well as other values of CPT P (e|h1, h2, b1, b2), are uniquely

specified.

2.3 Persistent Leaky Causes

The leaky cause for an effect e represents all causes of e that are not explicitly
named. A leaky cause may be persistent [7,15]. A non-persistent leaky cause can
be modeled as other causes. In such cases, we denote all causes of effect e by
c1, ..., cκ. If the leaky cause is non-persistent, we assume that one of c1, ..., cκ is the
leaky cause.

A persistent leaky cause is always active. We integrate all persistent leaky causes
of the same effect into a single cause, and denote the leaky cause by c0. In such
cases, we denote other causes of effect e by c1, ..., cκ.

2.4 NAT-modeled BNs

A BN, where CPTs of some variable families are NAT models, is a NAT-modeled

BN. We denote a NAT-modeled BN by N = (V,G,Ω,Θ), where V = {X1, X2, ...}
is a finite set of variables. G is a DAG with nodes one-to-one mapped to variables
in V . A variable plus its parent variables in G form a family. Ω is a set of CPTs
one for each variable family whose dependency is quantified by tabular CPT. Θ is
a set of NAT models one for each variable family whose dependency is quantified

Learning Tractable NAT-Modeled Bayesian Networks 5

by NAT model. The family of every variable in V is covered either by Ω or by Θ,
but not both.

Fig. 2 illustrates a NAT-modeled BN. Family of X8 is a NAT model, whose NAT
is in (b) (simplified notation). Gate g3 is dual, and g1 and g2 are direct.

Fig. 2 (a) DAG of a NAT-model BN. (b) NAT structure over the family of X8. (c) Root
labeled tree of NAT in (b).

A BN is fully NAT-modeled, if the family dependency of every multi-parent
variable is encoded as a NAT model. The above BN is fully NAT-modeled, if
families of X5, X8, X9 are all NAT-modeled.

2.5 Compression of NAT Models

An arbitrary tabular CPT (referred to as source CPT) can be approximated by a
NAT model, termed compression, as follows: The CPT is analyzed to determine
causal interaction (reinforcing or undermining) between every pair of causes if
possible, with the result being a pair-wise causal interaction (PCI) pattern. From
the PCI pattern, compatible candidate NATs are extracted, and are parameterized
into NAT models through constrained gradient descent search. The output NAT is
selected to minimize a distance measure between source CPT and the NAT CPT.

The above key steps of compression process, PCI pattern recognition, NAT
extraction, and NAT parameterization, have the following complexity: Complexity
of PCI pattern recognition for a variable of κ parents is O(κ2) [15]. For PCI
pattern with no missing bits and compatible with a NAT topology, complexity
of NAT extraction is O(κ2 2κ) [14]. For PCI pattern with β missing bits, the
complexity grows to O(κ2 2β+κ). For PCI pattern incompatible with any NAT
topology, further computation is needed to search for a NAT whose PCI pattern is
closest. NAT model parameterization can be done by constrained gradient descent
[15]. Let s bounds variable domain sizes, and τ bounds steps in gradient descent.
Then a NAT model has up to κ s2 parameters. Complexity of parameterizing one
candidate NAT is O(κ s2 τ). When the recognized PCI pattern has β missing
bits, 2β NATs are parameterized and the best NAT model is selected from them,
yielding the complexity of O(κ s2 τ 2β).

A fully NAT-modeled BN can be obtained from a normal BN by compressing
its tabular CPTs into NAT models. As the result, the space complexity of the BN
is reduced from O(n sκ) to O(n s κ).

6 Yang Xiang, Qian Wang

2.6 BN Structure Learning by MDL

A common approach for learning BN structures from data is to combine heuristic
search of structures with a scoring function. The MDL scoring function is based on
the MDL principle [10] that views the best model of a dataset as one minimizing
sum of encoding lengths of the model and the data. More accurate models reduce
data encoding length, but increase model encoding length as they are more com-
plex. Hence, the MDL principle offers a trade-off between accuracy and efficiency.

The MDL scoring function satisfies some desirable conditions, including score
equivalence [2] and decomposability. Two BN DAG structures G and G′ are Markov

equivalent, if for every BN based on G, there exists a BN based on G′ that en-
codes the same probability distribution, and vice versa. A scoring function of BN
DAG structures is score equivalent, if it scores Markov equivalent DAG structures
identically. A scoring function of BN DAG structures is decomposable if it can be
expressed as a sum of terms each of which involves only the family of a single
variable.

3 Learning NAT-modeled BNs

A NAT-modeled BN can be obtained by first learning a BN with tabular CPTs
(referred to as tabular BN below) from data, and compressing it into a fully NAT-
modeled BN. This approach has several limitations:

First, it relies on other methods to acquire a tabular BN, and does not com-
pletely resolve acquisition for NAT-modeled BNs. Second, the DAG structure of
the resultant NAT-modeled BN is the same as the tabular BN. Since the structure
was obtained independently of NAT-modeling, it may not be the most suitable
structure for the NAT-modeled BN both efficiency-wise and accuracy-wise. Third,
a tabular CPT may not be accurately approximated by a NAT model. The ap-
proach does not guide the compression explicitly by trade-off between represen-
tational efficiency and accuracy. To overcome these limitations, this work studies
learning NAT-modeled BNs directly from data.

A common approach for learning BN structures from data is to combine heuris-
tic search of structures with a scoring function, e.g., BD [6] and MDL. In this
work, we extend structure learning of BNs to learning NAT-modeled BNs using
a NAT-enabled MDL scoring function to trade off representational efficiency and
accuracy. Our work also belongs to structure learning with local structures, e.g.,
[4,3]. The main difference is that their work focused on equality constraints such
as CSI, with decision trees or decision graphs as local structures. Our current work
focuses on inequality constraints such as Eqns. (3) and (4), with NAT models as
local structures. Therefore, our work complements existing BN structure learning
with local structures.

We develop a NAT-enabled MDL score below, couple with a heuristic structure
search, and evaluate feasibility of learning NAT-modeled BNs from data experi-
mentally.

Learning Tractable NAT-Modeled Bayesian Networks 7

4 NAT-Enabled MDL Scoring Function

Since a tabular CPT may not be sufficiently accurately approximated by a NAT
model, we make the compression decision by a NAT-enabled MDL score. The MDL
function for a tabular BN is additively decomposed into the model description
length and the data description length. Both need to be extended to allow NAT
modeling. We assume that the dataset D involves n variables X1, ..., Xn (additional
variables may be introduced due to NAT modeling as shown below), and includes
N data records. Since the MDL function is score equivalent and decomposable
(see below on its violation due to NAT-modeling and the proposed solution), we
consider description length over a single family, made of a variable Xi and its
parent set πi.

To allow trade-off of representational efficiency and accuracy, dependency of
Xi on πi may be expressed by tabular CPT or NAT model. With tabular CPT,
description length of the Xi family is decomposed into model description length
and data description length:

DLTabCpt = DLModel +DLTabData,

where Xi in DLTabCpt(Xi) and other terms are omitted.
Model description length over the family can be further decomposed into DAG

description length (relative to DAG structure over the family) and CPT description
length (relative to tabular CPT):

DLTabCpt = DLDag +DLCpt +DLTabData. (7)

A NAT-modeled BN has a global structure (the DAG) and local structures
(NATs). If the Xi family forms a NAT model, its DAG description length is similar
to that of a tabular CPT (except the difference in Section 4.3). Since the NAT
CPT is defined by NAT structure and single-causals, CPT description length is
decomposed into NAT description length and single-causal description length:

DLNatMod = DLDag +DLNat +DLSc +DLNatData. (8)

As will be seen, data description length also differs depending on whether tabular
CPT or NAT model is used (Section 4.4), and hence the naming of DLTabData
and DLNatData. The following subsections present these components of description
length separately in the order of

DLSc, DLNat, DLDag, DLNatData.

4.1 Single-Causal Description Length

Let si denote the domain size of Xi, κi = |πi| denote the number of parents of Xi,
and sij denote the domain size of the jth parent of Xi. If qi denotes the number
of configurations of πi, we have qi =

∏κi
j=1 sij . If Xi has a tabular CPT P (Xi|πi),

the number of CPT parameters is (si − 1)qi. Each parameter is typically encoded
with 1

2 log2(N) bits [5]. Hence, the CPT description length is

DLCpt =
1

2
log2(N)(si − 1)

κi∏
j=1

sij (bits). (9)

8 Yang Xiang, Qian Wang

If the Xi family is NAT modeled, where πi is the set of all causes of Xi (see
below for alternative), the number of single-causals needed to specify the NAT
model is

(si − 1)

κi∑
j=1

(sij − 1).

Encoding each parameter with 1
2 log2(N) bits, single-causal description length of

the Xi family is

DLSc =
1

2
log2(N)(si − 1)

κi∑
j=1

(sij − 1) (bits). (10)

The above description length is applicable when Xi family has no persistent
leaky cause, but must be extended otherwise. Recall from Section 2.3 that a non-
persistent leaky cause can be modeled as other causes. We denote all causes of
effect e by c1, ..., cκ, with one of them being the leaky cause. When the Xi family
forms a NAT model, we have e = Xi and κ = κi. A source CPT with a non-
persistent leaky cause has a fully specified P (e|c1, ..., cκ), where P (e0|c01, ..., c0κ) = 1
and P (ek|c01, ..., c0κ) = 0 for k > 0. Hence, Eqn. (2) holds.

If effect e has persistent leaky causes, we integrate all persistent leaky causes
of e into a single cause c0, and denote other causes of effect e by c1, ..., cκ. Since
c0 is persistent, we have c0 ∈ {c00, c10}, and c0 = c10 always holds. Because condi-
tions (c00, c1, ..., cκ) never hold, and parameters P (e|c00, c1, ..., cκ) are not empirically
available, a source CPT has the form Q(e|c1, ..., cκ) = P (e|c10, c1, ..., cκ). Since c0 is
an uncertain cause, by Eqn. (1), we have

0 < P (e|c10, c01, ..., c0κ) = Q(e|c1, ..., cκ) < 1.

Hence, Eqn. (2) does not hold with the source CPT Q(e|c1, ..., cκ), which triggers
identification during learning: It signifies that if this Xi family forms a NAT model,
it involves a persistent leaky cause. The source CPT Q(e|c1, ..., cκ) of κ causes is
compressed into PNat(e|c0, c1, ..., cκ) of κ+ 1 causes.

Due to the extra persistent leaky cause of the NAT model, and that it is
binary, additional si − 1 single-causals are needed to specify the NAT model:
P (ek ← c10) (k > 0). Hence, when the family of Xi forms a NAT model with
the persistent leaky cause, Eqn. (10) no longer applies. Instead, the single-causal
description length is

DLSc =
1

2
log2(N)(si − 1)(1 +

κi∑
j=1

(sij − 1)). (11)

4.2 NAT Description Length

We consider two options of NAT encoding. A NAT can be expressed as root labeled

tree (RLT), where a node represents a root event, or the leaf event, or a gate,
preserving the tree topology. The RLT of NAT in Fig. 2 (b) is shown in (c). When
the family of Xi forms a NAT model, the NAT can be encoded by encoding RLT,
e.g., encoding parent set of each node in the RLT. For RLT of m nodes, encoding

Learning Tractable NAT-Modeled Bayesian Networks 9

index of each node takes log2(m) bits. For instance, if κi = 3, the RLT has as fewer
as 4 nodes (3 roots and 1 leaf). Encoding index of each node with log2(4) = 2 bits,
the RLT can be encoded with 2 ∗ 4 = 8 bits. If κi = 15, the RLT has as fewer as
16 nodes, and can be encoded with 4 ∗ 16 = 64 bits.

Alternatively, the RLT can be encoded by encoding its unique PCI pattern.
With κi = |πi| denoting the number of parents of Xi, encoding PCI pattern takes
κi (κi−1)/2 bits. When κi = 3, we need 3 bits. When κi = 15, we need 15∗14/2 =
105 bits.

The above shows that none of the options dominates the other: For simplicity,
we use PCI pattern-based encoding. If the family of Xi forms a NAT model without
persistent leaky cause, the NAT description length is

DLNat =
1

2
κi(κi − 1) (bits). (12)

If the NAT model involves a persistent leaky cause, the number of causes increases
to κi + 1. The description length is

DLNat =
1

2
κi(κi + 1) (bits). (13)

Although we have selected PCI pattern-based encoding for simplicity, we ana-
lyze below that the choice has no significant impact: The total number of nodes in
a RLT is between κi + 1 and 2κi − 1. Hence, a RLT based encoding has a descrip-
tion length between (κi+ 1)log2(κi+ 1) and (κi+ 1)log2(2κi−1). For κi = 15, it is
between 64 bit and 80 bits. If PCI pattern-based encoding is used, the description
length is 105 bits by Eqn. (12). Hence, the maximum difference made by the choice
is 41 bits.

On the other hand, if a binary Xi family is modeled by a tabular CPT, the
CPT description length is DLCpt = 163, 840 bits by Eqn. (9), where N = 1024
is assumed. If the Xi family is a NAT model, the single-causal description length
is DLSc = 75 bits by Eqn. (10). Hence, the difference in NAT description length
due to RLT or PCI encoding cannot tip the comparison due to difference between
DLCpt and DLSc. That is, whether the learning outcome for Xi family is a NAT or
a tabular CPT cannot be influenced by the choice between RLT and PCI encoding.

What is left is whether the choice between RLT and PCI encoding can signif-
icantly influence which NAT will be selected. As shown above, for κi = 15, the
difference made by the encoding choice is either 16 bits (RLT) or 0 bit (PCI). The
16 bits cannot tip the comparison between accurate and inaccurate NAT models
due to difference in their data description length (presented below).

4.3 DAG Description Length

DAG description length over the family of Xi encodes parent set πi. Let n be the
number of variables in the dataset D. It takes log2(n) bits to encode the index of
each node. For tabular BNs, DAG description length of the family of Xi is

DLDag = log2(n) κi.

For NAT-modeled BNs, the number of nodes in the DAG may be greater than
n, invalidating the above. For each NAT family with a persistent leaky cause, an

10 Yang Xiang, Qian Wang

extra node is introduced. The extra node has both local and global impact to DAG
description length:

Locally, since Xi has an extra parent, factor κi in DLDag becomes 1 + κi.
Globally, with the extra variable, log2(n) bits are insufficient to encode index of
each node. Let β be the total number of persistent leaky cause variables (each over
a distinct variable family) introduced at a given time during learning. Then DAG
description length over the family of Xi is

DLDag = log2(n+ β) (1 + κi) bits. (14)

Since β changes as learning proceeds, existence of β in DLDag introduces depen-
dency between description lengths over different variable families, and breaks down
decomposability of the MDL function.

To ensure accuracy of MDL score, we deployed the following: When a new NAT
family with persistent leaky cause is learned, or such a family learned earlier is
invalidated during learning, we apply a global updating of family scores to adjust β
value in log2(n+β) coefficient: Even when the family of a varaible Xj is unchanged,
its DLDag will be updated into

DLDag = log2(n+ β) κj bits. (15)

This allows decomposability of the MDL function to persist between NAT family
updates, and enables efficient score computation.

4.4 Data Description Length

When CPT of Xi is tabular, data description length over the family is

DLTabData = −
qi∑
j=1

ri∑
k=1

sijk log2

(sijk
Mij

)
,

where sijk counts family configurations (Xi = k, πi = πij) in D, Mij counts parent
configurations (πi = πij), and sijk/Mij estimates P (Xi = k|πi = πij).

When family of Xi is a NAT model Θi, the above data description length must
replace P (Xi = k|πi = πij) with PΘi(Xi = k|πi = πij) defined by the NAT model
CPT. Data description length over the family of Xi is

DLNatData = −
qi∑
j=1

ri∑
k=1

sijk log2

(
PΘi(Xi = k|πi = πij)

)
.

The above requires fully specifying the NAT model Θi. To do so, we first estimate
tabular CPT P (Xi|πi) from D, and then compress the CPT into Θi. Since com-
putation of DLNatData requires compression, it is significantly more costly than
DLTabData in learning tabular BNs.

Learning Tractable NAT-Modeled Bayesian Networks 11

5 Heuristic Search and Complexity

5.1 Heuristic Search Algorithm

As learning BNs from data is NP-complete, a number of heuristics have been pro-
posed for search of alternative structures. One may start with a complete graph,
remove links by conditional independence, and orient the resultant graph. One
may also start with an empty graph, add arcs until no further addition improves
the score, and then remove arcs until no further removal improves the score. Al-
ternatively, arcs may be added, deleted, or reversed until it is no longer possible
to improve the score. The search may also be organized by orderings of variables,
rather than by DAGs. A recent summary of search heuristics in BN structure
learning can be found in [8]. As the first study of learning NAT-modeled BNs, a
heuristic similar to that of [4] is extended in our learning algorithm, referred to as
LearnNatBn.

Algorithm 1 LearnNatBn(D,V)

1 preprocess D into a set F of frequencies of complete configurations over V;

2 init G to empty DAG, DL(G) to infinity, Ω = nul, Θ = nul;

3 Done = false;

4 while Done = false,

5 (G’, DL(G’), Ω′, Θ′) = ImproveNatBn(G, DL(G), Ω, Θ, F);

6 if DL(G′) < DL(G),

7 G = G’, DL(G) = DL(G’), Ω = Ω′, Θ = Θ′;
8 else Done = true;

9 return NAT-modeled BN (G, Ω, Θ);

LearnNatBn takes as input a dataset D over a set V of variables. It learns
a NAT-modeled BN N = (G,Ω,Θ). G is a DAG possibly over a superset of V
(due to persistent leaky causes). Ω is a set of CPTs one for each variable family
whose dependency is quantified by tabular CPT. Θ is a set of NAT models one
for each variable family whose dependency is quantified by NAT model. Note that
our notation N = (G,Ω,Θ) here differs slightly from that in Section 2.4, leaving
V implicit. This is because the set of variables in a learned NAT-modeled BN may
be a proper superset of variables from D.

LearnNatBn starts with an empty DAG (with nodes being one-to-one mapped
to V and without arcs). The MDL score of a DAG G is denoted as DL(G). Search
proceeds in multiple rounds (while loop in lines 4 to 8). Each round consists of one
execution of ImproveNatBn (Algo. 2), which tries to find a DAG G′ that differs
from G by one arc, whose score DL(G′) is better than DL(G). Search terminates
when no such DAG can be found to improve the score.

Algorithm 2 ImproveNatBn(G, DL(G), Ω, Θ, F)

1 G∗ = G, DL(G∗) = DL(G), Ω∗ = Ω, and Θ∗ = Θ;

2 for each pair of variables (Xk, Xj),

3 for each valid operation Op on G over (Xk, Xj),

4 apply Op on G to obtain graph G’,

5 if G’ is cyclic, continue;

6 for each variable Xi in G’,

12 Yang Xiang, Qian Wang

7 estimate P (Xi|πi) from F;

8 compute tabular CPT based DLTabCpt(Xi) over family of Xi from P (Xi|πi);

9 initialize DL(Xi) = DLTabCpt(Xi);

10 for each variable Xi in G’ where |πi| < 2, add tabular CPT P (Xi|πi) to Ω′;
11 for each variable Xi in G’ where |πi| ≥ 2,

12 compress P (Xi|πi) into a NAT model Θi = (Ti, SCi);

13 compute NAT model based DLNatMod(Xi) from Θi;

14 if DLNatMod(Xi) < DLTabCpt(Xi),

15 set DL(Xi) = DLNatMod(Xi);

16 add NAT model Θi to Θ′;
17 else add tabular CPT P (Xi|πi) to Ω′;
18 compute DL(G′) =

∑
iDL(Xi);

19 if DL(G′) < DL(G∗),

20 if number of persistent leaky causes in G′ changed from G∗,
21 update DLDag for each variable family and DL(G′);

22 G∗ = G′, DL(G∗) = DL(G′), Ω∗ = Ω′, and Θ∗ = Θ′;
23 return (G∗, DL(G∗), Ω∗, Θ∗);

For each pair of nodes {Xk, Xj} in G, ImproveNatBn applies a single-arc based
operation Op. If (Xk, Xj) is not an arc in G, there are two alternatives of Op: either
arc (Xk, Xj) or (Xj , Xk) is added to G. If (Xk, Xj) is an existing arc in G, there
are also two alternatives of Op: either (Xk, Xj) is deleted from G, or (Xk, Xj) is
reversed into arc (Xj , Xk). The suitable operation is selected in line 3.

For each newly formed variable family in the current DAG, MDL sub-scores
are computed for both tabular CPT and NAT model. For Xi with κi = |πi|, the
number of alternative NAT models over the Xi family is super-exponential in
κi. Instead of computing a MDL sub-score for each NAT model, we compress the
tabular CPT (estimated from data) into a NAT model. That is, the search through
the NAT space is conducted by compression, and the best NAT model found is
MDL-scored. Decision to model the family as tabular CPT or NAT model is made
by comparing the two sub-scores.

More specifically, a NAT model over the family of variable Xi is denoted Θi =
(Ti, SCi), where Ti is the RLT and SCi is the set of single-causals. For each Xi,
a tabular CPT P (Xi|πi) is estimated from F (line 7). If Xi has less than two
parents, its family description length DL(Xi) is determined by the tabular CPT
DLTabCpt(Xi) (lines 6 to 10). If Xi has multiple parents (line 11), the tabular
CPT is compressed into a NAT model, and the corresponding description length
DLNatMod(Xi) is also computed (lines 12 and 13). If DLNatMod(Xi) is better than
DLTabCpt(Xi), the family of Xi will be NAT-modeled (lines 14 to 16). Otherwise,
the family dependency is quantified by the tabular CPT (lines 9 and 17). If the
NAT model is selected that involves persistent leaky cause, a new variable will be
included in the current DAG.

Given a variable family, the NAT model has significantly better space efficiency
than the tabular CPT, but may not approximate the dependency accurately as the
tabular CPT. By evaluating each variable family alternatively according to tabular
CPTs and NAT models, the representation that best trades the efficiency with
accuracy is selected. It also allows the DAG structures that best take advantage
of NAT-modeling to be explored.

Learning Tractable NAT-Modeled Bayesian Networks 13

The score for the new structure G′ is obtained in line 18, due to decompos-
ability. If it improves DL(G∗), the best structure G∗ is updated (lines 19 to 22).
Lines 20 and 21 handle breakdown of decomposability as discussed in Section 4.3,
which can be caused due to introduction or invalidation of persistent leaky cause
at line 12 when the NAT model is compressed. The update to DLDag in line 21
will be performed according to Eqns. (14) and (15). We assume that the update
does not tip the comparison in line 19, and will not elaborate the measure needed
otherwise.

After each valid operation for each pair of variables has been processed, the
best structure is returned.

5.2 Complexity Analysis

For complexity of LearnNatBn, denote n = |V |. ImproveNatBn evaluates O(n2)
links before one is added, removed, or reversed. Each execution of ImproveNatBn
adds at most one arc, and at most O(n2) arcs may be added. Each arc cannot
be repeatedly added, reversed, or deleted, and improve the scoring function each
time. That is, an arc can be modified no more than a small number of times.
Hence, the number of executions of ImproveNatBn by LearnNatBn is O(n2), and
the complexity of LearnNatBn is O(n4).

Note that NAT-model compression (line 12 of ImproveNatBn) involves signif-
icant computation. Its complexity is reviewed in Section 2.5, is left implicit in the
above analysis, and must be counted for.

Before LearnNatBn, D is pre-processed into a set F of frequencies of unique
records. |F | is significantly < |D|, and complexity of LearnNatBn is linear on |F |.

6 Improving Search Efficiency

Due to compression, learning NAT-modeled BNs is more costly. To improve effi-
ciency, we apply or develop several techniques. ImproveNatBn evaluates revisions
to current DAG G. Connection of two variables in G is referred to as arc if direction
is of concern, and as link otherwise. If disconnected, the arc/link is absent.

Limiting Links to Evaluate ImproveNatBn evaluates up to n(n − 1) arcs
before one arc is modified. We reduce the number of links to evaluate based on
search efficiency as mentioned above, and an additional factor: For many appli-
cations, a tractable model that yields approximate posteriors is more useful than
an intractable model that yields exact posteriors. NAT-modeled BNs have signif-
icant gain in inference efficiency if their structures have high tree-width but low
density, where low density typically amounts to less than about 1.5 n arcs. Before
LearnNatBn starts, we compute mutual information between each pair of vari-
ables, and rank them. ImproveNatBn only evaluates, say, 1.5n variable pairs that
are top ranked. Its complexity is reduced from O(n2) to O(n).

Limiting Arc Addition ImproveNatBn evaluates each link with 2 arc opera-
tions. It is possible to avoid evaluating one or both, without causing error to MDL
score. An isolated link has degree 1 for each end. If absent, 2 alternative arcs may
be added. Since MDL score is independent of the direction, evaluating addition of
1 arc suffices. A DAG of n nodes and m < n − 1 singly connected links can add

14 Yang Xiang, Qian Wang

up to n− 1−m links and be singly connected. Most of them are absent isolated.
Default evaluation has 2(n− 1−m) arc additions, and a half can be avoided.

A one-end connected link has degree 1 for one endpoint and degree 2 or more for
the other endpoint (connected end). The above saving can be extended to one-end
connected links, if it is absent and its connected end has indegree 0. When the
link is added, its MDL score contribution is independent of arc direction. Hence,
evaluating addition of one arc is sufficient.

Limiting Arc Deletion and Reversal A current isolated arc is an isolated link
of a particular direction in current DAG. By default, ImproveNatBn evaluates
both its deletion and reversal. Its deletion cannot improve MDL score, since oth-
erwise the arc would not have been added in the first place. Its reversal cannot
improve the score either. Hence, both evaluations can be avoided.

A DAG of n nodes has at most floor(n/2) current isolated arcs. For instance, if
n = 3, the number of isolated arcs is at most floor(1.5) = 1. If n = 4, the number
of isolated arcs is at most floor(2) = 2. By default, ImproveNatBn evaluates up
to n/2 current isolated arcs. Hence, up to n arc operations can be safely avoided.

The above saving can be extended to one-end connected links, if it is absent
and its connected end has indegree 0. The DAG resultant from reversing the arc
is Markov-equivalent, and has the same MDL score. Hence, reversal of the arc will
not improve the score. Since the arc was added to improve the score, its deletion
will not improve the score either. Both arc operations can be safely avoided.

Limiting Variable Families to Evaluate Since our MDL score is decompos-
able most of the time (Section 4.3 on restoring decomposability), ImproveNatBn
can be more efficient by avoiding evaluating family of every variable in each new
DAG G′ (lines 6, 10, and 11). Only families of variables affected by the current
operation Op need to be evaluated. The maximum number of families affected by
an operation is two, when an existing arc is reversed. This reduces the number of
families for MDL score evaluation in each ImproveNatBn from O(n) to O(1).

7 Experimental Study

We conducted 4 sets of experiments. The 1st set evaluate feasibility of learning
NAT-modeled BNs from data. The 2nd set further confirms effectiveness in learn-
ing local NAT models. The 3rd set of experiments investigate the possibility to
apply structure density control in learning besides MDL scoring, to trade efficiency
with inference accuracy. The 4th set of experiments investigate the impact of lim-
iting numbers of links to evaluate during learning, as discussed in Section 6. They
were conducted using a Dell Inspiron 7520 with i7-3632QM processor at 2.20GHz
and 8GB memory through single-thread computation.

7.1 Learning NAT-modeled BNs

To establish feasibility of learning NAT-modeled BNs from data, we generated
30 fully NAT-modeled BNs (Fig. 3) in the 1st set of experiments, referred to as
source BNs. Each source BN consists of 200 binary or ternary variables. The maxi-
mum number of parents per variable is 12. The density of the DAG is controlled by

Learning Tractable NAT-Modeled Bayesian Networks 15

adding 5% extra arcs beyond being singly-connected. Although inference complex-
ity of general BNs is exponential on their treewidth, complexity of NAT-modeled
BNs that have high treewidth and low density is linear. The NAT-modeled BNs
generated in this set of experiments belong to this subclass of BNs.

Each source BN is transformed to an equivalent peer tabular BN, from which
a dataset of size N = 5000 is sampled as input to LearnNatBn.

Among the 200 variable families in each source BN, between 18 and 28% are
NAT-models, and the rest have tabular CPTs. In learned NAT-modeled BNs,
between 11 and 18% of variable families are NAT-models.

Fig. 3 Summery of experimental results.

Fig. 3 (left) reports learning time in hours. Learned NAT-modeled BNs are
evaluated by accuracy of inference and efficiency gain, relative to the peer BN.
Each peer BN is compiled into a junction tree for lazy propagation. Each learned
BN is de-causalized [16] and compiled into junction tree. Ten runs of inference are
performed on each peer BN and each learned BN, by observing 10% of randomly
selected variables.

For inference accuracy, average differences on posterior marginals over all vari-
ables (10 runs per BN) are reported in Fig. 3 (middle). Learned NAT-modeled
BNs yield sufficiently accurate posteriors with average errors between 0.018 and
0.044.

For efficiency gain in inference, average runtimes (msec; 10 runs per BN) in
log10 for peer BNs (Tab-log-ms) and learned BNs (Nat-log-ms) are shown in Fig. 3
(right). Learned NAT-modeled BNs are between 110 and 990 times faster in infer-
ence.

The experiments suggest that when data satisfy NAT causal independence,
and high treewidth, low density structure, it is feasible to learn underlying NAT-
modeled BNs that enable inference efficiency and accuracy.

7.2 Robust Learning of NAT-modeled BNs

To evaluate robustness of learning, we conducted the 2nd set of experiments, where
multiple datasets are sampled from each source BN, a NAT-modeled BN is learnt
from each dataset, and the learned BNs are compared.

We generated 10 fully NAT-modeled BNs. Each source BN consists of 60 binary
or ternary variables. The maximum number of parents per variable is 12. For most
source BNs (9 of them), among 60 variable families in each BN, between 18 and

16 Yang Xiang, Qian Wang

21% are NAT models. The density of the DAG is controlled by adding 5% extra
arcs beyond being singly-connected.

Each source BN is transformed to a peer tabular BN, from which 4 datasets
of size N = 5000 each are sampled, and a NAT-modeled BN is learnt from each
dataset. For most learned BNs (36 out of the 40), between 10 and 15% of variable
families are NAT-models.

Five runs of inference are performed on each peer BN and each learned BN,
by observing 10% of randomly selected variables. The total number of inference
runs is 10 × (1 + 4) × 5 = 250, where 50 runs are performed on the 10 peer BNs,
and 200 runs are performed on the 40 learned BNs.

Fig. 4 shows average errors of posterior marginals between peer BNs and
learned BNs. The x-axis is indexed by the 200 inference runs with learned BNs,
divided into 10 sections (by vertical grid lines). Each section corresponds to 20
runs by 4 BNs learned from datasets with the same source BN. For instance, data
points 1 to 20 form 1st section, and show posterior errors of 4 BNs learned from
datasets sampled with 1st source BN. Data points 1 to 4 are errors from runs by
the 4 learned BNs with the 1st set of observations, data points 5 to 8 are errors
by the 4 learned BNs with the 2nd set of observations, and so on. As shown in
Fig. 4, for most runs, average posterior errors are between 0.02 and 0.06.

Fig. 4 Average errors of posterior marginals between source BNs and learned BNs.

Fig. 5 Runtime comparision between source peer BNs and learned BNs.

Learning Tractable NAT-Modeled Bayesian Networks 17

Fig. 5 compares inference runtime between source peer BNs and learned BNs.
The x-axis is indexed by 200 inference runs with learned BNs, in the same order
as Fig. 4. Each data point for learned BNs is the log10 runtime in msec for a
particular learned BN with a particular set of observations. The 20 data points
of peer BNs in the same section are runtimes from 5 runs of a particular peer
BN, one run for each distinct set of observations. For instance, data point 1 to 4
duplicate the same runtime of 1st peer BN with the 1st set of observations. As
is shown, runtimes of peer BNs are at least 11 times of that of learned BNs, and
are as much as 126 times. This result demonstrates that learned NAT-modeled
BNs significantly improve inference efficiency while incurring only small inference
errors.

From the perspective of main objective of this set of experiments, the amount of
learned NAT-models, posterior errors, and runtimes of NAT-modeled BNs learned
from datasets sampled with the same source BN are sufficiently uniform, demon-
strating robustness of our learning method.

7.3 Randomizing NAT CPTs in Learned NAT-modeled BNs

To further confirm effective learning of NAT-modeled BNs and effectiveness of
inference with random observation reported above, we conducted the 3rd set of
experiments, where learned NAT-modeled BNs are partially randomized. In par-
ticular, each NAT model in the learned NAT-modeled BN is replaced by a random
tabular CPT, while the rest of the learned BN remains. Inference accuracy of the
resultant BN is then compared with that of the learned BN.

We generated 10 fully NAT-modeled (source) BNs, each consisting of 40 binary
or ternary variables. The maximum number of parents per variable is 5. The
density of the DAG is controlled by adding 5% extra arcs beyond being singly-
connected.

From each source BN, a dataset of size N = 5000 is sampled as input to
LearnNatBn, from which a learned NAT-modeled BN is obtained. It is then mod-
ified by replacing each NAT model with a random tabular CPT, to produce a
modified BN.

Among the 40 variable families in each source BN, between 20 and 33% are
NAT-models, and the rest have tabular CPTs. In learned NAT-modeled BNs,
between 5 and 23% of variable families are NAT-models.

Ten runs of inference are performed on each source BN, each learned BN, and
each modified BN, by observing 10% of randomly selected variables: a total of
10× 10× 3 = 300 inference runs.

For each 3 runs on the corresponding source BN, learned BN, modified BN,
and the same set of observations, average difference on posterior marginals over
all variables is computed between source BN and learned BN, and between source
BN and modified BN. They are referred to as Learned BN Err and Rdmized BN

Err. From the 300 inference runs, 100 pairs of Learned BN Err and Rdmized BN
Err are obtained, as shown in Fig. 6.

Out of the 100 pairs of average errors, Rdmized BN Err is larger than Learned
BN Err in 93 pairs. Among the 93 pairs, Rdmized BN Err is 200% or above in
19 pairs. The maximum Rdmized BN Err is 505% of the Learned BN Err. Given
that only between 5 and 23% of CPTs (over NAT families) are randomized, and

18 Yang Xiang, Qian Wang

Fig. 6 Comparision between Learned BN Err and Rdmized BN Err.

observations are randomly selected, this impact on posterior is significant. This
indirectly demonstrates effectiveness of our method in learning NAT models.

7.4 Impact of Structure Density Control

As discussed in Section 6, NAT-modeled BNs have significant gain in inference
efficiency if their structures have high tree-width but low density. Our MDL
score based learning provides a systematic trade-off between model complexity
and goodness of fit in learned NAT-modeled BNs. However, the MDL score does
not take into account that NAT-modeled BNs are most efficient when they have
low structure density. In the 4th set of experiments, we investigate the possibility
to apply additional density control in learning, to trade efficiency with inference
accuracy.

We generated 5 source BNs, each of 100 variables. The densities of their DAGs
are controlled by adding 30% extra arcs beyond being singly-connected. For each
source BN, we simulated one dataset. From each dataset, 5 NAT-modeled BNs
are learned, controlling percentage of arcs learned beyond being singly-connected
to 1%, 5%, 10%, 15%, 20%, respectively. A total of 25 BNs are learned. Inference is
performed with each peer tabular BN and each learned BN, using a similar setup
as in the 1st set of experiments. A total of (1 + 5) ∗ 10 ∗ 5 = 300 inference runs are
performed.

Table 1 summarizes the experimental results. The 5 datasets are indexed 1 to 5,
and results from each dataset are contained in one horizontal section. Each section
has 3 rows, reporting the results on learning time (LnTm) in seconds, runtime ratio
(RtRt) between peer BN and learned BN, and inference error (InfEr) measured
by average difference on posterior marginals. Columns 3 to 7 correspond to results
from each level of density control (DensCtr).

The bottom section presents means over the results. As density control decrease
from 20% to 1%, we see steady decrease of learning time, as well as increase
of runtime ratio. It shows that learning becomes more efficient, and inference
efficiency gain with learned NAT-modeled BNs becomes more significant.

Learning Tractable NAT-Modeled Bayesian Networks 19

Table 1 Summary of experimental results on impact of structure density control

Dataset DensCtr 1% 5% 10% 15% 20%
LnTm 472 481 488 490 476

1 RtRt 13 11 10 8 8
InfEr 0.008 0.007 0.006 0.006 0.006
LnTm 556 611 646 662 653

2 RtRt 63 61 53 52 52
InfEr 0.005 0.005 0.005 0.005 0.005
LnTm 592 649 711 705 711

3 RtRt 233 220 214 214 208
InfEr 0.013 0.013 0.011 0.01 0.01
LnTm 640 712 799 909 931

4 RtRt 126 118 80 77 77
InfEr 0.057 0.057 0.007 0.007 0.007
LnTm 466 491 505 504 553

5 RtRt 37 35 34 31 31
InfEr 0.008 0.008 0.006 0.006 0.006

µ-LnTm 545 589 630 654 665
Mean µ-RtRt 94 89 78 76 75

µ-InfEr 0.018 0.018 0.007 0.007 0.007

From the average inference error (bottom row), we see that the mean infer-
ence errors are about the same for density control levels {1%, 5%} and levels
{10%, 15%, 20%}. This is a reflection of the similar pattern in each Section, e.g.,
results from the 4th dataset. It reveals the following property of the density con-
trol: When density control levels are at {15%, 20%}, learning terminates before
that percentage of extra arcs are learned as the MDL score no longer improves.
Hence, the learning outcome for levels {15%, 20%} are exactly the same as level
10%. Only when the level further reduces to 5%, it terminates learning before the
MDL score does, trading efficiency with accuracy.

This set of experiments shows that density level control provides feasible means
for user to influence learning process and maximize efficiency gain from NAT-
modeled BNs within user’s error tolerance.

7.5 Impact of Link Evaluation Control

In the 5th set of experiments, we investigate impact to limit numbers of links for
evaluation, as discussed in Section 6. We generated 5 source BNs, each of 200
variables. The densities of their DAGs are controlled by adding 20% extra arcs
beyond being singly-connected. From each dataset, we learned 5 NAT-modeled
BNs, with density control at level 20%, and limiting number of links to evaluate
to the top n, 2n, 3n, 4n, 5n, respectively. A total of 25 BNs are learned. Inference is
performed with each peer tabular BN and each learned BN, using a similar setup
as in the 1st set of experiments. A total of (1 + 5) ∗ 10 ∗ 5 = 300 inference runs are
performed.

Table 2 summarizes the experimental results. Columns 3 to 7 correspond to
results from each limiting number of links (NumLk). The bottom section presents
means over the results. As the limiting number of links increase from n to 3n,
we see steady increase of learning time, with corresponding decrease of runtime

20 Yang Xiang, Qian Wang

Table 2 Summary of experimental results on impact of link evaluation control

Dataset NumLk n 2n 3n 4n 5n
LnTm 517 2526 2454 2452 2434

1 RtRt 407 277 260 259 260
InfEr 0.046 0.015 0.015 0.015 0.015
LnTm 745 2651 4083 4134 4108

2 RtRt 1223 866 850 864 860
InfEr 0.034 0.006 0.005 0.005 0.005
LnTm 655 3025 5103 5131 5134

3 RtRt 155 96 90 89 86
InfEr 0.037 0.007 0.007 0.007 0.006
LnTm 578 2532 3900 3902 3916

4 RtRt 26336 8689 12439 12770 12770
InfEr 0.045 0.006 0.006 0.006 0.006
LnTm 711 2429 2458 2422 2454

5 RtRt 372 301 299 301 299
InfEr 0.011 0.007 0.007 0.007 0.007

µ-LnTm 657 2339 3227 3221 3218
Mean µ-RtRt 728 576 561 564 565

µ-InfEr 0.028 0.018 0.018 0.018 0.018

ratio. It shows that learning becomes less efficient, and the NAT-modeled BNs
learned also become less efficient in inference. From the bottom row, we see that
the increase from n to 2n leads to improved inference accuracy.

However, as the limiting number of links increases from 2n to 5n, there is
no significant change in efficiency, nor in inference error. It shows that additional
evaluations of low-ranked links do not contribute to the final learned NAT-modeled
BNs, and setting the limiting number to about 2n has efficiency gain without the
cost of losing inference accuracy.

Careful readers may notice that average runtime ratios in Table 2 are about
7 times higher than those in Table 1. Source BNs for Table 1 have 100 variables
each, while those for Table 2 have 200 variables each. Their maximum numbers of
parents per variable are both κ = 12. To ensure viable structures, our structure
generation software ensures at least one variable with κ parents for every 4(κ+ 1)
variables. When κ = 12, every 52 variables has at least one of 12 parents. Hence,
source BNs for Table 1 have at least one such variable, but source BNs for Table 2
have at least three such variable. As the result, the latter has about 3 times as
many large NAT-models, contributing significantly increased efficiency gain for
inference. This result provides further evidence to the strength of NAT-modeled
BNs characterized by high tree-width and low density.

8 Conclusion and Future Work

The main contribution is the first investigation on learning NAT-modeled BNs.
Although this study is not the first on learning BNs with local structures, previous
work mainly focused on equality constraints such as CSI, with decision trees or de-
cision graphs as local structures. This work focuses on inequality constraints with
NAT models as local structures. Hence, this work complements existing literature
on BN learning with local structures. Contributions also include development of

Learning Tractable NAT-Modeled Bayesian Networks 21

the NAT-enabled MDL function, coupling it with a heuristic search, and empirical
study on feasibility of learning NAT-modeled BNs from data.

Two general applications of NAT-modeled BNs are identified in the peer-
reviewed literature: First, they offer a tractable subclass of BNs for knowledge
representation and acquisition (in line with the recent trend about tractable models

such as SPNs). Through recursive, reinforcing/undermining local modeling, they
reduce space of BNs from O(n sκ) to O(n s κ). For high treewidth, low density
BNs, they enable tractable inference through techniques such as de-causalization.
Second, they offer a more efficient approximation of intractable BNs through com-
pression, trading accuracy for efficiency.

Note that although arithmetic circuits (ACs) and sum-product networks (SPNs)
have linear computational complexity on the size of AC/SPN, when an arbitrary
BN is compiled into AC/SPN, it generally incurs exponential blow up in size,
unless BN CPTs satisfy certain special conditions. Hence, a probabilistic graph-
ical model encoded as a BN that is not computationally efficient (e.g., O(n sκ)
complexity) does not become efficient simply by encoding into AC/SPN (i.e., the
O(n sκ) complexity will persist). On the other hand, high treewidth, low density
NAT-modeled BNs are computationally efficient (O(n s κ)).

The current work opens the door for a third possibility, where NAT-modeled
BNs are used directly for modeling data. To realize this option, several issues may
be addressed in future research:

Feasibility of NAT-models as alternative for modeling data needs to be eval-
uated. They are most beneficial when underlying dependency structure has high
treewidth and low density. Existing real world BNs often do not fit this profile.
For instance, the 9 medium or large BNs in the BN Repository has the maxi-
mum number of parents per node of 7. We hypothesize the reason to be difficulty
with tabular CPT elicitation (exponential human time) and learning (exponential
data). NAT-modeled BNs promise to remove the difficulty. To test the hypothesis,
learning NAT-model BNs from real world data needs to be conducted.

Our experiment found that strength of dependency between individual causes
and their effect in the same NAT model is far from uniformly distributed. Due
to the uneven strength of dependency, a cause in the source NAT model may
be excluded during learning. Implication of such exclusion should be evaluated.
Deeper understanding of strength of dependency within NAT models is needed,
e.g., how NAT topology and single-causal values determine relative strength of
dependency for individual causes.

Investigation on learning of NAT-models requires simulation of source mod-
els as experimental testbeds. It is desirable that similarity between source and
learned BNs positively validates learning. That is, source BNs should be faithful
models. Fueled by deeper understanding of the dependency within NAT models,
simulations that generate such source BNs should be developed.

Our experimental study tested one heuristic search method. Many alterna-
tives exist, e.g., NAT-enabled scoring is applied at only the last round of search.
Further research to compare alternative heuristics relative to quality of output
NAT-modeled BNs and efficiency of learning is needed.

Additional issues for future research include integration of alternative encod-
ings relative to DLNat, improved NAT-modeling for small datasets, and compari-
son with learning algorithms utilizing other local models.

22 Yang Xiang, Qian Wang

Acknowledgement

Financial support from the NSERC Discovery Grant to the first author is acknowl-
edged.

References

1. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence
in Bayesian networks. In: Proc. 12th Conf. on Uncertainty in Artificial Intelligence, pp.
115–123 (1996)

2. Chickering, D.: A transformational characterization of equivalent Bayesian network struc-
tures. In: Proc. 11th Conf. on Uncertainty in Artificial Intelligence, pp. 87–98 (1995)

3. Chickering, D., Heckerman, D., Meek, C.: A Bayesian approach to learning Bayesian net-
works with local structure. In: Proc. of 13th Conf. on Uncertainty in Artificial Intelligence,
pp. 80–89 (1997)

4. Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure. In: Proc.
12th Conf. on Uncertainty in Artificial Intelligence, pp. 252–262. Morgan Kaufmann (1996)

5. Friedman, N., Yakhini, Z.: On the sample complexity of learning Bayesian networks. In:
Proc. 12th Conf. on Uncertainty in Artificial Intelligence, pp. 274–282. Morgan Kaufmann
(1996)

6. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination
of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

7. Henrion, M.: Some practical issues in constructing belief networks. In: L. Kanal, T. Levitt,
J. Lemmer (eds.) Uncertainty in Artificial Intelligence 3, pp. 161–173. Elsevier Science
Publishers (1989)

8. Lee, C., van Beek, P.: Metaheuristics for score-and-search Bayesian network structure
learning. In: Proc 30th Canadian Conf. on Artificial Intelligence, pp. 129–141 (2017)

9. Maaskant, P., Druzdzel, M.: An independence of causal interactions model for opposing
influences. In: M. Jaeger, T. Nielsen (eds.) Proc. 4th European Workshop on Probabilistic
Graphical Models, pp. 185–192. Hirtshals, Denmark (2008)

10. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
11. Vomlel, J., Tichavsky, P.: An approximate tensor-based inference method applied to the

game of Minesweeper. In: Proc. 7th European Workshop on Probabilistic Graphical Mod-
els, Springer LNAI 8745, pp. 535–550 (2012)

12. Woudenberg, S., van der Gaag, L., Rademaker, C.: An intercausal cancellation model for
Bayesian-network engineering. Inter. J. Approximate Reasoning 63, 32–47 (2015)

13. Xiang, Y.: Non-impeding noisy-AND tree causal models over multi-valued variables. In-
ternational J. Approximate Reasoning 53(7), 988–1002 (2012)

14. Xiang, Y.: Direct causal structure extraction from pairwise interaction patterns in NAT
modeling Bayesian networks. Int. J. Approximate Reasoning 105, 175–193 (2019)

15. Xiang, Y., Jiang, Q.: NAT model based compression of Bayesian network CPTs over
multi-valued variables. Computational Intelligence 34(1), 219–240 (2018)

16. Xiang, Y., Loker, D.: De-causalizing NAT-modeled Bayesian networks for inference ef-
ficiency. In: E. Bagheri, J. Cheung (eds.) Canadian AI 2018, LNAI 10832, pp. 17–30.
Springer (2018)

