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ABSTRACT
We consider a multiagent system whose task is to aid component-
centered design by collaborative designers in a supply chain. In
the earlier work, collaborative design networks are proposed as a
decision-theoretic framework for such a system. In this work, we
analyzes how choice of agent interface affects the computational
complexity of collaborative design. Based on the analysis, we pro-
poses a set of algorithms that allow agents to produce an overall
optimal design by autonomous local evaluation of local designs.
We show that these algorithms reduce the complexity exponentially
from that of an exhaustive centralized design.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent systems;
J.6 [Computer-Aided Engineering]: Computer-aided design (CAD)

General Terms
Algorithms, Design

Keywords
Collaborative Design, Optimal Design, Supply Chain, Graphical
Models, MSBNs

1. INTRODUCTION
Most research on collaborative design focuses on information

sharing mechanisms among distributed designers but not on mak-
ing design choices, e.g., [3].Collaborative optimization[1] de-
composes a design domain into a number of subdomains. These
design subsystems are organized into a star architecture and work
cooperatively to provide design solutions. However, collaborative
optimization only produces locally optimal solutions and does not
guarantee globally optimal design.

We consider component-centereddesign in which a final product
is designed as a set of components supplied by manufacturers in a
supply chain. We interpret design under broad design-for-X (DFX)
concepts including design for assembly, manufacture, disassembly,
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environment, recyclability, etc. The objective is to produce an over-
all optimal performance while taking into account diverse sources
of uncertainty such as materials, manufacturing tolerance, operat-
ing environment, etc.

In the previous work [12], a decision-theoretic graphical model
for collaborative design in a supply chain was proposed. The model
encodesknowledgeof distributed designerson the uncertain depen-
dence among design choices and between design and performance.
It represents preference of multiple manufacturers and end-users
such that optimal decision-theoretic designs are well-defined. It
shows that such distributed design knowledge can be represented as
a multiagent multiply sectioned Bayesian network (MSBN), called
a collaborative design network. This allows multiagent collabo-
rative design to be investigated through rigorous algorithmic study.
In the current work, we develop multiagent decision algorithms that
yields optimal designs in collaborative design networks.

Our approachdiffers from multiagent influencediagrams (MAIDs)
[10, 7, 4]. In MAIDs, each agent maintains its own representation
on other agents. It infers about other agents in much the same way
as single-agent reasoning. That is, it observes others’ behavior and
updates its own belief accordingly. While in an MSBN-based mul-
tiagent system, agents exchange beliefs on shared variables in a
much more cooperative way.

Collaborative design can also be viewed as a type of distributed
constraint optimization problem (DCOP). We are given a complex
design problem with many variables and design constraints as welll
as a global objective function - to maximize the expected utility
of the design. What distinguishes DCOPs from traditional combi-
natorial optimization problems is that portions of the problem are
distributed among multiple agents who must work together collab-
oratively to maximize the objective. Recent work in DCOPs has
built upon earlier work in solving distributed constraint satisfaction
problems (DCSPs) [15, 14]. There the problem is coordinating ef-
forts of multiple agents to find a globally satisficing solution to a set
of distributed constraints over shared variables. Research issues in-
clude defining effective coordination protocols among agents and
maximizing the asynchrony of agents during search. Complete
methods using asynchronous backtracking schemes typically ex-
hibit significant idle times for agents higher in the backtrack order-
ing [8]. Distributed local search methods can better utilize agent
resources during search but without any guarantees of finding a so-
lution.

DCOP research extended DCSP work by adding a global objec-
tive function to be optimized by agents collectively. The ADOPT
system of Modi et al. [6] is perhaps the most cited DCOP system
which can find optimal solutions while attempting to maximize the
utilization of individual agents within a branch-and-bound proto-
col among agents. Another recent optimal approach [5] is based



on a cooperative mediation protocol where agents find solutions to
overlapping subproblems and recommend value changes to their
neighbouring agents.

Collaborative design shares similarities with DCOP research as
noted above. Both attempt to maximize an objective function in
a distributed environment. But collaborative design has additional
decision-theoretic complexity. Agents have local utility functions
to optimize and only have uncertain knowledge of the states of
their neighbouring agents. Each agent must make design decisions
solely by evaluating a local design problem within the context of
the probable design decisions of its neighbours.

The remainer of the paper is organized as follows: Section 2 in-
troduces background knowledge from previous work on MSBNs
and collaborative design networks. Section 3 considers optimal
design with two agents and analyzes their effectiveness when al-
ternative agent interfaces are used. Algorithm 1 uses performance-
based interface, which produces optimal design but does not re-
duce computational complexity relative to exhaustive centralized
design. Algorithm 2 uses instead partial design-based interface.
It not only produces optimal design but also improves complexity
significantly. This analysis suggests that effective general design
algorithms should use agent interfaces that are based on partial de-
signs. An example run of such algorithms with four agents is then
presented in Section 4, followed in Section 5 by Algorithms 3, 4
and 5 for optimal design in general collaborative design networks.
In Section 6, we draw conclusion and indicate our direction for fur-
ther extension.

2. BACKGROUND

2.1 Multiply Sectioned Bayesian Networks
A Bayesian Network (BN) [9]S is a triplet(V, G,P ) whereV

is a set of domain variables,G is a DAG whose nodes are labeled
by elements ofV , andP is a joint probability distribution (jpd)
overV , specified in terms of a distribution for each variablex ∈ V
conditioned on the parentsπ(x) of x in G. An MSBN M is a
collection of Bayesian subnets that together define a BN.

To ensure exact, distributed inference, subnets in an MSBN are
required to satisfy certain conditions. To describe these conditions,
we introduce the terminologies first. LetGi = (Vi, Ei) (i = 0, 1)
be two graphs (directed or undirected).G0 andG1 are said to be
graph-consistentif the subgraphsofG0 andG1 spannedbyV0∩V1

are identical. Given two graph-consistent graphsGi = (Vi, Ei)
(i = 0, 1), the graphG = (V0 ∪ V1, E0 ∪ E1) is called theunion
of G0 andG1, denoted byG = G0 ∪ G1. Given a graphG =
(V, E), a partition ofV into V0 andV1 such thatV0 ∪ V1 = V and
V0 ∩ V1 6= ∅, and subgraphsGi of G spanned byVi (i = 0, 1), G
is said to besectionedinto G0 andG1. Note that ifG0 andG1 are
sectioned from a third graph, thenG0 andG1 are graph-consistent.
The union of multiple graphs and the sectioning of a graph into
multiple graphs can be similarly defined.

Graph sectioning is useful in defining the dependence relation
between variables shared by agents. It is used to specify the fol-
lowing hypertree condition which must be satisfied by subnets in
an MSBN:

DEFINITION 1. Let G = (V,E) be a connected graph sec-
tioned into subgraphs{Gi = (Vi, Ei)}. Let the subgraphs be
organized into an undirected treeΨ where each node is uniquely
labeled by aGi and each link betweenGk andGm is labeled by
the non-emptyinterface Vk ∩ Vm such that for eachi andj,
Vi ∩ Vj is contained in each subgraph on the path betweenGi and

Gj in Ψ. ThenΨ is ahypertree overG. EachGi is a hyper-
node and each interface is ahyperlink.
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Figure 1: A trivial MSBN with subnets G1 through G5 orga-
nized into hypertree Ψ.

Fig. 1 shows a hypertree. The hypertree represents an organiza-
tion of agent communication, where variables in each hypernode
are local to an agent and variables in each hyperlink are shared by
agents. Agents communicate in an MSBN by exchanging their be-
liefs over shared variables.

We usenodesand variables interchangeably when there is no
confusion. Nodes shared by subnets in an MSBN must form ad-
sepset, as defined below:

DEFINITION 2. LetG be a directed graph such that a hypertree
overG exists. A nodex contained in more than one subgraph with
its parentsπ(x) in G is ad-sepnode if there exists at least one
subgraph that containsπ(x). An interfaceI is a d-sepset if
everyx ∈ I is a d-sepnode.

The interface betweenG1 andG2 contains 3 variables indicated
in Fig. 1. The structure of an MSBN is a multiply sectioned DAG
(MSDAG) with a hypertree organization:

DEFINITION 3. A hypertree MSDAG G =
⋃

i Gi, where
eachGi is a DAG, is a connected DAG such that (1) there exists a
hypertreeΨ overG, and (2) each hyperlink inΨ is a d-sepset.

An MSBN is then defined as follows. Uniform potentials (con-
stant distributions) are used to ensure that knowledge about the de-
pendence strength are not doubly specified.

DEFINITION 4. An MSBNM is a triplet(V, G,P). V =
⋃

i Vi

is thedomain where eachVi is a set of variables.G =
⋃

i Gi (a
hypertree MSDAG) is thestructure where nodes of each DAG
Gi are labeled by elements ofVi. Letx be a variable andπ(x) be
all the parents ofx in G. For eachx, exactly one of its occurrences
(in a Gi containing{x} ∪ π(x)) is assignedP (x|π(x)), and each
occurrence in other DAGs is assigned a uniform potential.P =∏

i Pi is thejpd, where eachPi is the product of the potentials



associatedwith nodes inGi. A triplet Si = (Vi,Gi, Pi) is called
a subnet of M . Two subnetsSi andSj are said to be adjacent if
Gi andGj are adjacent on the hypertree MSDAG.

MSBNs provide a framework for uncertain reasoning in coop-
erative multiagent systems. Each agent holds a partial perspec-
tive (a subnet) of the domain, reasons autonomously as well as
through limited communication [11]. The framework is not acci-
dental. From a few high level requirements, (1) exact probabilistic
measure of agent belief, (2) agent communication by belief over
smallsets of shared variables, (3) a simpler agent organization, (4)
DAG domain structuring, and (5) joint belief admitting agents’ be-
lief on private variables and combining their beliefs on shared vari-
ables, it has been shown [13] that the resultant representation of a
cooperative multiagent system is an MSBN.

2.2 Collaborative Design Network
A Collaborative Design Network (CDN) is an MSBN syntac-

tically, but semantically it represents uncertain design knowledge
and preference of a set of designers in a supply chain, who collab-
oratively design a complex product made out of multiple compo-
nents. Each distributed designer is equipped with a subnet. The
domainV is the union of disjoint sets,D,M,T, U , of variables.
The product to be designed is associated with anoverall design
spacedescribed bydesign parametersD. Objective functionali-
ties of a designed product is described byperformance measures
M . The environment in which the product operates is described
by environmental factorsT . Subjective preferences of distributed
designers are represented byutility functionsU . We assume that
variables inD,M andT are discrete.

Only five types of arcs are legal. Arcs among design parame-
ters represent design constraints. Arcs from design parameters to
a performance measure signify the dependence of the performance
on these parameters. An arc from an environmental factor to a per-
formance measure signifies the corresponding dependence. Arcs
from several performance measures to still another means that the
later is a composite performance. Finally, arcs from performance
measures to a utility node signify that the utility function depends
on these performances.

Conditional probability distribution at each node is assigned ac-
cording to its semantics in a straightforward manner, except for
utility nodes. A utility nodeui with parentsMi represents a util-
ity function Ui(Mi), which is encoded in CDN as follows: The
domain ofui is {y, n}, the distribution atui is P (ui = y|Mi) =
Ui(Mi) andP (ui = n|Mi) = 1−P (ui = y|Mi). Under additive
independence assumption [2], the overall utility functionU(M)
is U(M) =

∑
i ki Ui(Mi), where each weightki ∈ (0, 1) and∑

i ki = 1.
Given a valid overall design (violating no design constraints)d

(a configuration ofD), belief propagation produces, at nodeui,
ui-based expected utility [12]

EUi(d) = P (ui = y|d) =
∑

mi

Ui(mi)P (mi|d), (1)

wheremi is a configuration ofMi. The expected utility of overall
designd is

EU(d) =
∑

i

ki EUi(d).

More details on CDN can be found in [12]. We illustrate with a
simple example for customerized PC design. Figure 2 shows the
hypertree of a CDN of six distributed designers. Figure 3 and Fig-
ure 4 show subnets corresponding to cpu and motherboard design-
ers.

Video Card

MonitorCPU
Motherboard

PCPower Supply

Figure 2: Hypertree of a simple CDN.
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Figure 3: Subnet for cpu designer.
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Figure 4: Subnet for motherboard designer.

3. OPTIMALDESIGNWITHTWO AGENTS
CDNs provide a rigorous framework for optimal collaborative

design. Given a CDN, optimal design amounts to finding an overall
designd∗ that maximizesEU(d) =

∑
i ki EUi(d).

Consider the simplest case of two agentsA0 andA1, with corre-
sponding subdomainsVi (i = 0, 1). Denote the number of design
parameters inVi asni. Assume that all design parameters are bi-
nary. Hence, there are2ni possiblelocal designsin subdomain
Vi and a total of2n0+n1 possibleoverall designs. In Ai’s design
space, we denotejth local design asdj

i.
Through local evaluation,Ai can obtainlocal expected utility

of dj
i, denoted as

EV j
i =

∑

x

kix EUix(dj
i),

whereEUix is the local expected utility according to utility vari-
ableuix, uix is a utility variable inVi, andkix is the weight asso-



ciatedwith uix. Similar to Eqn (1),

EUix(dj
i) =

∑

mix

Uix(mix)Pi(mix|dj
i), (2)

wherePi is thelocal distribution ofAi.
We develop a method for agents to obtain an optimal overall de-

sign by autonomous optimal local designs and their integration.
The efficiency of such collaboration depends highly on what in-
formation they exchange. We analyze two extreme cases below.

3.1 Performance As Agent Interface
In the first case, the agent interfaceI01 consists ofq performance

measures. Consider the following agent actions:

ALGORITHM 1.

1. For each local designdj
0, A0 computes distributionP j

0 =

P0(I01|dj
0) and sendsP j

0 to A1.

2. For eachP j
0 received fromA0, A1 does the following:

• For each local designdm
1 , updatebeliefP1(V1|P j

0 ,dm
1 )

and compute local expected utilityEV
m|j
1 .

• Compute distributionPm|j
1 = P1(I01|P j

0 , dm
1 ) and

sendsPm|j
1 andEV

m|j
1 to A0.

3. After receivingPm|j
1 fromA1, A0 updates belief to

P0(V0|Pm|j
1 , dj

0) and computes local expectedutilityEV
j|m
0 .

4. After receiving eachPm|j
1 fromA1 for eachdj

0, A0 does the
following:

• ComputeMEV = maxj,m (EV
j|m
0 + EV

m|j
1 ).

• From indexesj andm that attain the valueMEV (break-
ing ties arbitrarily), label local designdj

0 as d∗
0 and

sendm to A1.

5. A1 labelsdm
1 asd∗

1.

PROPOSITION 5. The overall design defined byd∗
0 andd∗

1

through Algorithm 1 is optimal.

Proof: For each overall designd = (dj
0,dm

1 ), we have

EU(d) =
∑

i

k0i EU0i(d) +
∑

j

k1j EU1j(d).

First, we show that
∑

j k1j EU1j(d) = EV
m|j
1 obtained byA1.

This amounts to show that for each utility nodeuk in A1, distribu-
tion P1(Mk|dm

1 ) used in local evaluation (Eqn (2)) is identical to
P (Mk|d) in (Eqn (1)). This is true becauseI01 makesV0 andV1

conditionally independent and we have

P1(V1|P j
0 ,dm

1 ) = P (V1|dj
0,dm

1 ) = P (V1|d).

Second, we show that
∑

i k0i EU0i(d) equals toEV
j|m
0 ob-

tained byA0. This is true by an argument similar to the above such
that

P0(V0|Pm|j
1 ,dj

0) = P (V0|dj
0,dm

1 ) = P (V0|d).

Therefore,MEV is the maximum expected utility overall all
overall designs, and the overall design defined byd∗

0 andd∗
1 is

optimal.
2

Note that agents exchange their beliefs and local evaluationsover
their interface but not the local designs. This helps protect privacy

of each agent. However, the cardinality of the local design space is
revealed.

The complexity forA0 according to step 1 isO(2n0 ). The com-
plexity for A1 according to step 2 isO(2n0+n1 ). That forA0 ac-
cording to steps 3 and 4 is alsoO(2n0+n1). Hence, the overall
complexity isO(2n0+n1 ).

In summary, collaborative design using performance as agent in-
terface allows optimal design, but does not reduce computational
complexity relative to exhaustive centralized design.

3.2 Partial Design As Agent Interface
In the second case, agent interfaceI01 consists ofq design pa-

rameters. In the design space ofI01, there are2q partial designs.
We denotekth partial design asek.

Given a partial designek, there are2ni−q corresponding local
designs in the design space ofAi. All of them share the value over
I01 with ek. These local designs are said to beconsistentwith
ek. Givenek, remaining variables inV0 andV1 are conditionally
independent. Hence, for each overall designd = (dj

0,dm
1 ), where

dj
0 is a local design in subdomainV0 anddm

1 is a local design in
V1, such that both are consistent with a partial design overI01, we
have

EU(d) =
∑

x

k0x EU0x(dj
0) +

∑

y

k1y EU1y(dm
1 )

= EV j
0 + EV m

1 .

For a givenek, denote the maximum local expected utility over
the 2ni−q consistent local designs inVi asMEV k

i . A local de-
sign with its expected utility equal toMEV k

i is selected, breaking
ties arbitrarily, and denoted asdk∗

i . Consider the following agent
actions:

ALGORITHM 2.

1. For each local designdj
i, Ai computesEV j

i . For each par-
tial designek, Ai obtainsMEV k

i anddk∗
i .

2. For each partial designek, A0 sendsMEV k
0 to A1.

3. A1 computes

MEV = maxk (MEV k
0 + MEV k

1 ),

where maximization is over each partial designek, labels a
local design corresponding toMEV as d∗

1, and sends the
partial designek∗ that is consistent withd∗

1 to A0.

4. A0 labels local design corresponding toMEV k∗
0 asd∗

0.

The following proposition establishes optimality of Algorithm 2.
Given the descriptions before the algorithm and step 3 in the algo-
rithm, its proof is trivial.

PROPOSITION 6. The overall designdefinedbyd∗
0 andd∗

1 through
Algorithm 2 is optimal.

Note that local designs in each agent beyond the partial design
over shared variables are not disclosed. Furthermore, unlike Algo-
rithm 1, the cardinality of the local design space is not revealed.

The complexity of step 1 in Algorithm 2 isO(2ni) for agent
Ai. The complexity of message passing in step 2 isO(2q) and so
is that of step 3. Hence, the overall complexity of Algorithm 2 is
O(2n0 + 2n1 ). This is a significant reduction fromO(2n0+n1 ),
the complexity of an exhaustive, centralized design (also that of



Algorithm 1). For instance, ifn0 = n1 = 20, then the complexity
reduction ratio is(2n0+n1 )/(2n0 + 2n1) = 219.

In summary, collaborative design using partial design as agent
interface allows optimal designwith significantcomplexity improve-
ment over its counterpart based on performance interface.

4. EXAMPLE: DESIGNINGENERAL CDNS
Before presenting general algorithms for optimal design using

CDNs, we illustrate the operations involved with a trivial example.
The example CDN consists of 4 agentsA1 throughA4. Their cor-
responding subnets are shown in Figure 5. Variables labeleddi are

G1

ds

u4

4m

3 43s

3u

3d

(a) (b)

(d)(c)

2G

4G
3G

u1

1m

1d s1

m 3

s2
1s

u2

2m

2d s2

Figure 5: A trivial CDN.

private design parameters known only to the corresponding agent.
For instance,d1 is only known toA1. Variables labeledsj are
shared design parameters. For instance,s2 is known to bothA2

andA3. We assume that all design parameters are binary with the
domain{0, 1}. Variables labeledmk are performance measures
and are private. Variables labeledul are utility nodes and are also
private.

1 V2

V4

s1

s

s

V

2

3

V3

Figure 6: The hypertree of trivial CDN.

Figure 6 shows the hypertree and agent interfaces. Based on
analysis in Section 3.2, each interface consists of design parameters
only.

After local evaluation at each agentAi, the local expected utility
EV j

i for each local designdj
i is obtained. For readability, we have

scaled eachEV j
i up to an integer and we label them asEV luj

i to
avoid confusion. Tables 1 and 2 show local expected utilities.

s1 d1 EV lu1

0 0 15
0 1 14
1 0 17
1 1 16

s2 d2 EV lu2

0 0 6
0 1 8
1 0 10
1 1 7

Table 1: Local expected utilities inV1 and V2.

s1 s2 s3 d3 EV lu3

0 0 0 0 15
0 0 0 1 13
0 0 1 0 10
0 0 1 1 9
0 1 0 0 11
0 1 0 1 17
0 1 1 0 9
0 1 1 1 8
1 0 0 0 12
1 0 0 1 9
1 0 1 0 15
1 0 1 1 13
1 1 0 0 8
1 1 0 1 10
1 1 1 0 11
1 1 1 1 14

s3 d4 EV lu4

0 0 5
0 1 6
1 0 8
1 1 9

Table 2: Local expected utilities inV3 and V4.

An agent on the hypertree is arbitrarily selected as a communica-
tion root. We assume that it isA4. The operations then starts from
the leaf agents,A1 andA2.

From local evaluation result (Table 1, left),A1 determines the
maximum expected utility relative to each partial design over the
variables it shares with the neighbor agentA3. In this example,
the only shared variable iss1. The result is shown in the following
table (left) and is sent toA3 as a message.

s1 MEVlu
0 15
1 17

s2 MEVlu
0 8
1 10

Similarly, A2 determines the maximum expected utility relative
to each partial design over variables2. The result is shown in the
above table (right) and is sent toA3 as a message.

Based on the two messages,A3 re-evaluates each local design,
taking into account the messages. For each local design, it selects
a consistent partial design from each message and adds the corre-
sponding utility in the message to its local expected utility. For
instance, the local design

(s1 = 0, s2 = 1, s3 = 0, d3 = 1)

has local expected utility 17 (Table 2, left). It is consistent with
partial designs1 = 0 from A1. Hence, the corresponding utility
15 in the message is added to 17. It is also consistent with partial
designs2 = 1 from A2. Hence, the corresponding utility 10 in the
message is added. This gives the updated expected utility value 42,
as shown in the following table.



s1 s2 s3 d3 EV lu′
3

0 0 0 0 15 + 15 + 8 = 38
0 0 0 1 13 + 15 + 8 = 36
0 0 1 0 10 + 15 + 8 = 33
0 0 1 1 9 + 15 + 8 = 32
0 1 0 0 11 + 15 + 10 = 36
0 1 0 1 17 + 15 + 10 = 42
0 1 1 0 9 + 15 + 10 = 34
0 1 1 1 8 + 15 + 10 = 33
1 0 0 0 12 + 17 + 8 = 37
1 0 0 1 9 + 17 + 8 = 34
1 0 1 0 15 + 17 + 8 = 40
1 0 1 1 13 + 17 + 8 = 38
1 1 0 0 8 + 17 + 10 = 35
1 1 0 1 10 + 17 + 10 = 37
1 1 1 0 11 + 17 + 10 = 38
1 1 1 1 14 + 17 + 10 = 41

From the updated local evaluation,A3 determines the maximum
expected utility relative to each partial design over variables3 (see
table below) and sends toA4.

s3 MEVlu
0 42
1 41

A4 re-evaluates each local design, taking into account the mes-
sage:

s3 d4 EV lu′

0 0 5 + 42 = 47
0 1 6 + 42 = 48
1 0 8 + 41 = 49
1 1 9 + 41 = 50

It determines that the maximum expected utility is 50 and the
optimal local design is

(s3 = 1, d4 = 1).

It sendss3 = 1 to A3.
From the message,A3 determines its optimal local design

(s1 = 1, s2 = 1, s3 = 1, d3 = 1).

A3 then sendss1 = 1 to A1 ands2 = 1 to A2.
From the message,A1 determines its optimal local design

(s1 = 1, d1 = 0).

Similarly,A2 determines its optimal local design

(s2 = 1, d2 = 0).

As a result, the optimal overall design is

(s1 = 1, s2 = 1, s3 = 1, d1 = 0, d2 = 0, d3 = 1).

Note that no single agent needs to know what the overall optimal
design is.

5. OPTIMAL DESIGN IN GENERAL
COLLABORATIVEDESIGNNETWORK

We present two recursive algorithms executed by each agent and
one algorithm executed by the system coordinator. The example
presented above is a trace of these algorithms. Without losing gen-
erality, we denote the agent executing the algorithms asA0. The

execution is activated by a caller, denoted asAc, which is either
an adjacent agent ofA0 or the system coordinator. Exactly one
agent will be called by the coordinator. The interface betweenAc

(if an agent) andA0 is denoted asIc. If A0 has additional adjacent
agents, they are denoted asA1, A2, ...,Aw and their interface with
A0 are denoted asI1, I2, ..., Iw, respectively. Based on the analysis
in Section 3.2, we assume eachIi consists of only design parame-
ters. Thekth partial design in the design space ofIi is denoted as
ek

i and that relative toIc is denoted asek
c .

The following algorithm, when executed by each agent, prop-
agates utility evaluation of local designs inwards on the hypertree.
During execution,A0 will receive a vector message from each adja-
cent agentAi. Elements of the vector are indexed by partial designs
over Ii. Thekth element of the vector, indexed byek

i , is denoted
asMEV k

i . WhenAi is a leaf agent on the hypertree (whose only
adjacent agent isA0), MEV k

i corresponds to the maximum local
expected utility in Section 3.2, but otherwise its interpretation is
different as is seen below. The vector message sent fromAi to A0

is denoted asMEVi and that sent fromA0 to Ac is denoted as
MEVc.

ALGORITHM 3 (COLLECTUTILITY ). When agentA0 is called
byAc to CollectUtility, ifAc is the only adjacent agent, it does the
following:

1. For each local designdj
0, computeEV j

0 .

2. For each partial designek
c , compute

MEV k
c = maxjk EV jk

0 ,

where maximization is over each local designdjk
0 that is

consistent withek
c , and label a local design that reaches the

valueMEV k
c bydk∗

c , breaking ties arbitrarily.

3. SendMEVc to Ac.

Otherwise (A0 has more adjacent agents), for each adjacent
agentAi (i = 1, ...,w), A0 calls CollectUtility inAi. After each
Ai has returned withMEVi, A0 does the following:

4. For each local designdj
0, compute

EV
′j
0 = EV j

0 +
∑

i

MEV
kj

i ,

whereMEV
kj

i is indexed by partial designe
kj

i ande
kj

i is
consistent withdj

0.

5. If Ac is an adjacent agent, for each partial designek
c , A0

computes

MEV k
c = maxjk EV

′jk
c ,

where maximization is overeach local designd
jk
0 that is con-

sistent withek
c , labels a local design that reaches the value

MEV k
c bydk∗

c , breaking ties arbitrarily, and sendsMEVc

to Ac.

Note that in the computation ofEV
′j
0 at step 4, a uniquee

kj

i

exists that is consistent withdj
0. Note also that whenAc is the

coordinator, only step 4 of the algorithm will be executed.
The next algorithm, when executed by each agent, propagates

utility evaluationMEV of an optimal overall design outwards on
the hypertree. As the propagation progresses, each agent identifies
its local design which corresponds to the optimal overall design.
This is achieved by propagating an optimal partial design over the
agent interface.



ALGORITHM 4 (DISTRIBUTEUTILITY ). When agentA0 is
called byAc to DistributeUtility, if Ac is the coordinator, it does
the following:

1. Compute

MEV = maxjEV
′j
0 ,

whereEV
′j
0 is obtained during CollectUtility (step 4), and

label a local design correspondingtoMEV asd∗
0, breaking

ties arbitrarily.

2. For each adjacent agentAi (i = 1, ...,w), call DistributeU-
tility in Ai and sendMEV and partial designek

i that is
consistent withd∗

0 to Ai.

Otherwise (Ac is an adjacent agent),A0 does the following:

3. ReceiveMEV and partial designek
c fromAc.

4. Label local design corresponding toMEV k
c asd∗

0.

5. For each adjacent agentAi (i = 1, ...,w), call DistributeU-
tility in Ai and sendMEV and partial designek

i that is
consistent withd∗

0 to Ai.

The following algorithm combines the above two algorithms and
is executed by the system coordinator.

ALGORITHM 5 (COMMUNICATEUTILITY ).

1. Select an agentA arbitrarily.

2. Call CollectUtility inA.

3. Call DistributeUtility inA.

THEOREM 7. After CommunicateUtility, the overall design de-
fined by local designd∗ at each agent is optimal.

Proof: We refer to the agent selected in CommunicateUtility as
the root agent. Given the root, the hypertree can be effectively
viewed as a rooted tree. We define itsdepthas the length of the
longest path from root to a leaf.

It suffices to show thatMEV obtained by the root agent from
DistributeUtility is the maximum expected utility over all possible
overall designs. Once this is established, it follows that the restric-
tion of an overall design, that attains this maximum expectedutility,
to each subdomain isd∗ labelled by the corresponding agent dur-
ing DistributeUtility. We prove by induction on the depth of the
rooted hypertree.

Whendepth = 1, the root has one or more child nodes, each of
them is a leaf. Let the root agent beA0 and its adjacent agents be
Ai (i = 1, ...,w). From step 1 of DistributeUtility executed by root
A0, we have

MEV = maxj EV
′j
0 ,

where maximization is over each local designdj
0. From step 4 of

CollectUtility executed by rootA0, we have

MEV = maxj (EV j
0 +

∑

i

MEV
kj

i ).

From step 5 of CollectUtility executed by each leafAi, each
MEV

kj

i above is the result of maximization over all local designs
in subdomainVi that are consistent withdj

0 relative to the interface
betweenA0 andAi. Therefore, asj runs through possible values,

theabove maximization is performed effectively over all possible
overall designs.

Next, we assume that the theorem is true whendepth ≤ m.
Consider the case wheredepth = m + 1. Let the root agent be
A0 and its adjacent agents beAi (i = 1, ...,w). The subtree rooted
at eachAi has a depth≤ m. By assumption, if CollectUtility is
called on eachAi by the coordinator, followed by a call of Dis-
tributeUtility onAi, the design defined byd∗ at each agent in the
subtree is optimal.

The actual execution of CommunicateUtility differs from this
scenario as follows: Instead of performing step 1 of DistributeUtil-
ity, Ai performs step 5 of CollectUtility. In other words, instead of
maximization over all designs over the subtree,Ai performs maxi-
mization over all designs that are consistent with a partial design on
its interface withA0, and it does this for each such partial design.
If we regard the union of all subdomains on the subtree rooted at
Ai as a single subdomain, whatAi performed is maximization over
all local designs in this subdomain that are consistent with a partial
design over its interface withA0.

From this perspective, operations performed byA0 andAi (i =
1, ...,w) are equivalent to the case wheredepth = 1 . Using the
argument on that case, the theorem follows.

2

Let the total number of agents in a CDN beg and the total num-
ber of design parameters ben. Then on average, an agent hasn/g
design parameters in its subdomain. Letq be the maximum number
of design parameters in an agent interface. During CollectUtility,
each agent evaluatesO(2n/g) local designs and sends a message
of sizeO(2q) to the caller agent. Hence, the computational com-
plexity of optimal design using CDN based on CommunicateUtility
is

O(g 2n/g + (g − 1) 2q) = O(g (2n/g + 2q)).

Normally, q is much smaller thann/g and hence the complexity
O(g 2n/g). This result can be compared with a centralized optimal
design that evaluates all overall designs exhaustively. The com-
plexity will be O(2n). Using multiagent CommunicateUtility, the
complexity is reduced exponentially by a ratio of

1

g
2(1− 1

g ) n.

Let n = 200 andg = 10, we have2n = 1.61×1060 andg 2n/g =
1.05 × 107.

6. CONCLUSION
In the precursor [12], collaborative design networks were pre-

sented as a decision-theoretic framework to represent collaborative
design knowledge as multiagent graphical models. In this work,
we analyze the impact of choice of agent interfaces on the com-
putational complexity of collaborative design. The analysis shows
that interfaces made of design parameters allow significant reduc-
tion of complexity relative to centralized design, while interfaces
made of performance measures do not reduce complexity at all.

Based on this analysis, we present algorithms that allow agents in
a collaborative design network to obtain an overall design by local
evaluations of local designs and by exchanging only evaluations of
partial designs on their interfaces. We show that the computation
is autonomous and the resultant overall design is globally optimal.
The computational complexity is reduced exponentially from that
of an equivalent centralized design.

Our current effort is on identification of conditions that allow fur-
ther reduction of the complexity in evaluating local designs at each
agent. The goal is to provide multiagent algorithms that achieve



globaldesign optimality and are efficient on such well behaved de-
sign cases.
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