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ABSTRACT

We consider a multiagent system whose task is to aid component-
centered design by collaborative designers in a supply chain. In
the earlier work, collaborative design networks are proposed as a
decision-theoretic framework for such a system. In this work, we
analyzes how choice of agent interface affects the computational

environment, recyclability, etc. The objective is to produce an over-
all optimal performance while taking into account diverse sources
of uncertainty such as materials, manufacturing tolerance, operat-
ing environment, etc.

In the previous work [12], a decision-theoretic graphical model
| for collaborative design in a supply chain was proposed. The model

complexity of collaborative design. Based on the analysis, we pro-
poses a set of algorithms that allow agents to produce an overal
optimal design by autonomous local evaluation of local designs.
We show that these algorithms reduce the complexity exponentially

encodes knowledge of distributed designers on the uncertain depen-

| dence among design choices and between design and performance.

It represents preference of multiple manufacturers and end-users
such that optimal decision-theoretic designs are well-defined. It
shows that such distributed design knowledge can be represented as

from that of an exhaustive centralized design. g . : .
a multiagent multiply sectioned Bayesian network (MSBN), called

a collaborative design netwotk This allows multiagent collabo-
rative design to be investigated through rigorous algorithmic study.
In the current work, we develop multiagent decision algorithms that
yields optimal designs in collaborative design networks.

Our approach differs from multiagent influence diagrams (MAIDS)
[10, 7, 4]. In MAIDs, each agent maintains its own representation
on other agents. It infers about other agents in much the same way
as single-agent reasoning. That is, it observes others’ behavior and
updates its own belief accordingly. While in an MSBN-based mul-
tiagent system, agents exchange beliefs on shared variables in a
much more cooperative way.

Collaborative design can also be viewed as a type of distributed
constraint optimization problem (DCOP). We are given a complex
design problem with many variables and design constraints as welll
INTRODUCTION as a global objective function - to maximize the expected utility

Most research on collaborative design focuses on information Of the design. What distinguishes DCOPs from traditional combi-
sharing mechanisms among distributed designers but not on mak- natorial optimization problems is that portions of the problem are
ing design choices, e.g., [3]Collaborative optimizatio{1] de- distributed among multiple agents who must work together collab-
composes a design domain into a number of subdomains. Theseoratively to maximize the objective. Recent work in DCOPs has
design subsystems are organized into a star architecture and workbuilt upon earlier work in solving distributed cons_tralnt sa_tlsfa_ctlon
cooperatively to provide design solutions. However, collaborative Problems (DCSPs) [15, 14]. There the problem is coordinating ef-
optimization only produces locally optimal solutions and does not forts of multiple agents to find a globally satisficing solution to a set
guarantee globally optimal design. of distributed constraints over shared variables. Researchissues in-

We consider component-centered design in which a final product clude defining effective coordination protocols among agents and
is designed as a set of components supplied by manufacturers in amaximizing the asynchrony of agents during search. Complete
supply chain. We interpret design under broad design-for-X (DFX) Methods using asynchronous backtracking schemes typically ex-

ing [8]. Distributed local search methods can better utilize agent

resources during search but without any guarantees of finding a so-

lution.
Permission to make digital or hard copies of all or part of this work for DCOP research extended DCSP work by adding a global objec-
personal or classroom use is granted without fee provided that copies are tive function to be optimized by agents collectively. The ADOPT
not made or distributed for profit or commercial advantage and that copies gystem of Modi et al. [6] is perhaps the most cited DCOP system
bear this notice and the full citation on the first page. To copy otherwise, t0 \yhjch can find optimal solutions while attempting to maximize the
L%?ﬁ!:%;%ﬁg%?;feivers or to redistribute to lists, requires prior specific iz ation of individual agents within a branch-and-bound proto-
AAMAS'05 July 25-29, 2005, Utrecht, Netherlands. col among agents. Another recent optimal approach [5] is based
Copyright 2005 ACM 1-59593-094-9/05/0007$5.00.
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ona cooperative mediation protocol where agents find solutions to
overlapping subproblems and recommend value changes to their
neighbouring agents.

Collaborative design shares similarities with DCOP research as

G, inU. ThenV¥ is ahypertree overG. EachG; isahyper -
node and each interface is &yper | i nk.

noted above. Both attempt to maximize an objective function in
a distributed environment. But collaborative design has additional
decision-theoretic complexity. Agents have local utility functions
to optimize and only have uncertain knowledge of the states of
their neighbouring agents. Each agent must make design decisiong
solely by evaluating a local design problem within the context of
the probable design decisions of its neighbours.

The remainer of the paper is organized as follows: Section 2 in-
troduces background knowledge from previous work on MSBNs
and collaborative design networks. Section 3 considers optimal
design with two agents and analyzes their effectiveness when al-
ternative agent interfaces are used. Algorithm 1 uses performance-
based interface, which produces optimal design but does not re-
duce computational complexity relative to exhaustive centralized

design. Algorithm 2 uses instead partial design-based interface.
It not only produces optimal design but also improves complexity
significantly. This analysis suggests that effective general design
algorithms should use agent interfaces that are based on partial de
signs. An example run of such algorithms with four agents is then
presented in Section 4, followed in Section 5 by Algorithms 3, 4
and 5 for optimal design in general collaborative design networks.
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In Section 6, we draw conclusion and indicate our direction for fur-
ther extension.

2. BACKGROUND

2.1 Multiply Sectioned Bayesian Networks

A Bayesian Network (BN) [9]S is a triplet(V, G, P) whereV/
is a set of domain variableg; is a DAG whose nodes are labeled
by elements ofi/, and P is a joint probability distribution (jpd)
overV, specified in terms of a distribution for each variable V'
conditioned on the parents(z) of  in G. An MSBN M is a
collection of Bayesian subnets that together define a BN.

To ensure exact, distributed inference, subnets in an MSBN are
required to satisfy certain conditions. To describe these conditions,
we introduce the terminologies first. L&, = (V;, E;) (i = 0, 1)
be two graphs (directed or undirected), andG, are said to be
graph-consistenif the subgraphs of7y andG: spanned byo NV
are identical. Given two graph-consistent gragghs = (V;, E;)

(i =0,1), the graphG = (Vo U V4, Eo U E1) is called theunion

of Gy and G4, denoted byG = Go U G;. Given a graphG =

(V, E), a partition ofV into V5, andV; such thatl, UV = V and

Vo N Vi # 0, and subgraph&’; of G spanned by; (i = 0,1), G

is said to besectionednto Gy andG;. Note that ifGy andG are
sectioned from a third graph, thén, andG, are graph-consistent.
The union of multiple graphs and the sectioning of a graph into
multiple graphs can be similarly defined.

Graph sectioning is useful in defining the dependence relation
between variables shared by agents. It is used to specify the fol-
lowing hypertree condition which must be satisfied by subnets in
an MSBN:

DErINITION 1. Let G = (V, E) be a connected graph sec-
tioned into subgraphdG; = (V;, E;)}. Let the subgraphs be
organized into an undirected tre& where each node is uniquely
labeled by aGG; and each link betweefy;, and G, is labeled by
the non-empty nt er f ace Vi, N V;,, such that for each and j,
Vi N'Vj is contained in each subgraph on the path betwégrand

Figure 1: A trivial MSBN with subnets G through G5 orga-
nized into hypertree 0.

Fig. 1 shows a hypertree. The hypertree represents an organiza-
tion of agent communication, where variables in each hypernode
are local to an agent and variables in each hyperlink are shared by
agents. Agents communicate in an MSBN by exchanging their be-
liefs over shared variables.

We usenodesand variables interchangeably when there is no
confusion. Nodes shared by subnets in an MSBN must forth a
sepsetas defined below:

DEFINITION 2. LetG be adirected graph such that a hypertree
overG exists. A node contained in more than one subgraph with
its parentsr(z) in G is ad- sepnode if there exists at least one
subgraph that containsr(x). An interfacel is ad- sepset if
everyz € [ is a d-sepnode.

The interface betwee'; andG- contains 3 variables indicated
in Fig. 1. The structure of an MSBN is a multiply sectioned DAG
(MSDAG) with a hypertree organization:

DEFINITION 3. A hypertree MSDAGG = |J, G:, where
eachG,; is a DAG, is a connected DAG such that (1) there exists a
hypertree¥ over G, and (2) each hyperlink i is a d-sepset.

An MSBN is then defined as follows. Uniform potentials (con-
stant distributions) are used to ensure that knowledge about the de-
pendence strength are not doubly specified.

DEFINITION 4. An MSBNV is atriplet(V, G, P). V =, Vi
is thedomai n where eactV; is a set of variablesG = |J, G: (a
hypertree MSDAG) is thset r uct ur e where nodes of each DAG
G; are labeled by elements &f. Letz be a variable andr(x) be
all the parents ofc in G. For eachx, exactly one of its occurrences
(in aG; containing{z} U w(x)) is assigned”(z|x(x)), and each
occurrence in other DAGs is assigned a uniform potenti@. =
I1, P is thej pd, where eachp; is the product of the potentials



associatedvith nodes inG;. A triplet S; = (Vi, G;, ;) is called
asubnet of M. Two subnets; and.S; are said to be adjacent if
G, andG; are adjacent on the hypertree MSDAG.

MSBNSs provide a framework for uncertain reasoning in coop-
erative multiagent systems. Each agent holds a partial perspec-
tive (a subnet) of the domain, reasons autonomously as well as
through limited communication [11]. The framework is not acci-
dental. From a few high level requirements, (1) exact probabilistic
measure of agent belief, (2) agent communication by belief over
smallsets of shared variables, (3) a simpler agent organization, (4)
DAG domain structuring, and (5) joint belief admitting agents’ be-
lief on private variables and combining their beliefs on shared vari-
ables, it has been shown [13] that the resultant representation of a
cooperative multiagent system is an MSBN.

2.2 Collaborative Design Network

A Collaborative Design Network (CDN) is an MSBN syntac-
tically, but semantically it represents uncertain design knowledge
and preference of a set of designers in a supply chain, who collab-
oratively design a complex product made out of multiple compo-
nents. Each distributed designer is equipped with a subnet. The
domainV is the union of disjoint setsD, M, T, U, of variables.
The product to be designed is associated withcaerall design
spacedescribed bydesign parameter®. Objective functionali-
ties of a designed product is described jpgrformance measures
M. The environment in which the product operates is described
by environmental factor§". Subjective preferences of distributed
designers are represented bility functionsU. We assume that
variables inD, M andT are discrete.

Only five types of arcs are legal. Arcs among design parame-
ters represent design constraints. Arcs from design parameters to

a performance measure signify the dependence of the performance

on these parameters. An arc from an environmental factor to a per-
formance measure signifies the corresponding dependence. Arcs
from several performance measures to still another means that the
later is a composite performance. Finally, arcs from performance
measures to a utility node signify that the utility function depends
on these performances.

Conditional probability distribution at each node is assigned ac-
cording to its semantics in a straightforward manner, except for
utility nodes. A utility nodeu; with parentsM; represents a util-
ity function U; (M;), which is encoded in CDN as follows: The
domain ofu; is {y, n}, the distribution at; is P(u; = y|M;) =
Ui(M;) andP(u; = n|M;) = 1— P(u; = y|M;). Under additive
independence assumption [2], the overall utility functiofM)
isU(M) = %, ki Ui(M;), where each weighk; € (0, 1) and
> ki=1

Given a valid overall design (violating no design constrainis)

(a configuration ofD), belief propagation produces, at node,
u;-based expected utility [12]
Z U;(my)

wherem; is a configuration of\/;. The expected utility of overall

designd is
d) =) ki EU(d)

More details on CDN can be found in [12]. We illustrate with a
simple example for customerized PC design. Figure 2 shows the
hypertree of a CDN of six distributed designers. Figure 3 and Fig-
ure 4 show subnets corresponding to cpu and motherboard design-
ers.

EUi(d) = P(ui = y|d) = P(mi|d), (1)

[ PowerSupplyj [ PC H Video Card
Monitor

Figure 2: Hypertree of a simple CDN.
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Figure 3: Subnet for cpu designer.
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Figure 4: Subnet for motherboard designer.

3. OPTIMALDESIGNWITHTWO AGENTS

CDNs provide a rigorous framework for optimal collaborative
design. Given a CDN, optimal design amounts to finding an overall
designd™ that maximize£U (d) = Y, ks EU;(d).

Consider the simplest case of two ageAtsand A, , with corre-
sponding subdomaing; (i = 0,1). Denote the number of design
parameters irV; asn;. Assume that all design parameters are bi-
nary. Hence, there arg™ possiblelocal designsin subdomain
V; and a total oR™°*™1 possibleoverall designs In A;’s design
space, we denotgth local design alei'.

Through local evaluationd; can obtainlocal expected utility
of d}, denoted as

BVY =3 kia EU(d),

where EU;,, is the local expected utility according to utility vari-
ableu;,, ui is a utility variable inV;, andk;, is the weight asso-



ciatedwith u;,. Similar to Eqn (1),

my,

@)

whereP; is thelocal distribution of A;.

We develop a method for agents to obtain an optimal overall de-
sign by autonomous optimal local designs and their integration.
The efficiency of such collaboration depends highly on what in-
formation they exchange. We analyze two extreme cases below.

3.1 Performance As Agent Interface

In the first case, the agentinterfatg consists of; performance
measures. Consider the following agent actions:

ALGORITHM 1.

1. For each local designl), Ay computes distribution?]
Py(Io1]|dg) and sends to A;.

2. For eacth received fromAy, A does the following:

e Foreachlocal desigrl, update belieP; (V; | P], dT*)
m|j

and compute local expected utilityV;

e Compute distributionP]"? = P, (I1|PJ,d}") and
sendsPy™ and EV;™ to A,.

3. After receivingle‘j from A1, Ao updates belief to
Po(Vo| P, i) and computes local expected utiligV; ™.

4. After receiving eaclle‘j from A; for eachdf), Ao does the
following:

e ComputeM EV = max;m (EV{{"” + Evlm‘j).
e Fromindexeg andm that attain the valué/ EV (break-

ing ties arbitrarily), label local desigrdf) asdg and
sendm to A;.

5. A labelsd?" asdj.

PropPosSITION 5. The overall design defined by anddi
through Algorithm 1 is optimal.

Proof: For each overall desigh= (dJ, d?*), we have

EUd) = koi EUoi(d) + Y k1j EUy;(d).
i J

First, we show tha}_, k1, EUs;(d) = EV,™ obtained byA,.
This amounts to show that for each utility nodg in A1, distribu-
tion P;(My|di") used in local evaluation (Eqn (2)) is identical to
P(Mzg|d) in (Eqn (1)). This is true becaude: makesV;, andV;
conditionally independent and we have

Pi(Vi|F,dY") = P(Vi|d}, dT") = P(Va[d).

Second, we show tha} ", ko; EUo:(d) equals toEV{f‘m ob-
tained byA,. This is true by an argument similar to the above such
that

Po(Vo | P™V, df) = P(Vold}, di*) = P(Vhld).

Therefore, M EV is the maximum expected utility overall all
overall designs, and the overall design defineddiy anddj is
optimal.

]

of each agent. However, the cardinality of the local design space is
revealed.

The complexity for4, according to step 1 i©(2"°). The com-
plexity for A; according to step 2 i©(2m0+™1), That for A ac-
cording to steps 3 and 4 is als9(2™ ™). Hence, the overall
complexity isO(2"0t"1).

In summary, collaborative design using performance as agent in-
terface allows optimal design, but does not reduce computational
complexity relative to exhaustive centralized design.

3.2 Partial Design As Agent Interface

In the second case, agent interfakg consists ofg design pa-
rameters. In the design space bf, there are2? partial designs
We denotékth partial design ae*.

Given a partial desige®, there are2™:~¢ corresponding local
designs in the design space df. All of them share the value over
Io1 with e*. These local designs are said to bensistentwith
ek. Givene¥, remaining variables iV, andV; are conditionally
independent. Hence, for each overall desibha: (d{), di), where
df) is a local design in subdomaiv, anddy" is a local design in
V1, such that both are consistent with a partial design dyer we
have

EU(d) =Y koy EUos(d)) + > k1 EUv (dT)

Yy

= EV{ + EV/".

For a givene®, denote the maximum local expected utility over
the 2™ ~¢ consistent local designs ili; as M EV/*. A local de-
sign with its expected utility equal td/ EV;* is selected, breaking
ties arbitrarily, and denoted ak*. Consider the following agent
actions:

ALGORITHM 2.

1. For each local desigrl!, A; computesEV;. For each par-
tial designe®, A; obtainsM EV;* andd¥*.

2. For each partial desige®, Ao sendsM EV{ to A;.

3. A; computes
MEV = mazy, (MEVy + MEVF),

where maximization is over each partial desigh, labels a
local design corresponding td/ EV asdj, and sends the
partial designe** that is consistent witkl} to Ao.

4. Ay labels local design corresponding thf EV* asdy,.

The following proposition establishes optimality of Algorithm 2.
Given the descriptions before the algorithm and step 3 in the algo-
rithm, its proof is trivial.

PrRopPoOSITION 6. The overall design defined ki andd] through
Algorithm 2 is optimal.

Note that local designs in each agent beyond the partial design
over shared variables are not disclosed. Furthermore, unlike Algo-
rithm 1, the cardinality of the local design space is not revealed.

The complexity of step 1 in Algorithm 2 i§)(2"¢) for agent
A;. The complexity of message passing in step DiR7) and so
is that of step 3. Hence, the overall complexity of Algorithm 2 is

Note that agents exchange their beliefs and local evaluations over O(2" + 2"1). This is a significant reduction fron®(2"0"1),
their interface but not the local designs. This helps protect privacy the complexity of an exhaustive, centralized design (also that of



Algorithm 1). For instance, ifig = n1 = 20, then the complexity 51| 82 | s3 | ds | EViug
reduction ratio ig2m0 1) /(2m0 4+ 2m1) = 219, 0jojJo]oO 15
In summary, collaborative design using partial design as agent 0jojo 1 13
interface allows optimal design with significant complexity improve- 0j]0]1]0 10
ment over its counterpart based on performance interface. o|0 |11 9
01|00 11
4. EXAMPLE: DESIGNIN GENERAL CDNS R - . R
Before presenting general algorithms for optimal design using 01 11111 3 0 1 5
CDNs, we illustrate the operations involved with a trivial example. 1101010 12 110 8
The example CDN consists of 4 agemts throughA4. Their cor- 11010 1 9 1 1 9
responding subnets are shown in Figure 5. Variables labéjedte 1T 01110 15
1(0|1]1 13
d S d & 111]0|0 8
1(1/0]1 10
Gy m G2 m 1110 11
! 2 T[1[1]1] 14
- @ H (b) I
d Table 2: Local expected utilities inV5 and V;.
S Sq S3, 4
S1
d3 G4
Gg m3 my
% @ (d)

An agent on the hypertree is arbitrarily selected as a communica-
tion root. We assume that it igls. The operations then starts from
the leaf agents4; and As.

From local evaluation result (Table 1, left}; determines the
maximum expected utility relative to each partial design over the

Figure 5: A trivial CDN.

private design parameters known only to the corresponding agent.

For instanced, is only known to A;. Variables labeled; are variables it shares with the neighbor agehs. In this example,
shared design parameters. For instangeijs known to bothA: the only shared variable is,. The result is shown in the following
and A3. We assume that all design parameters are binary with the {551e (left) and is sent tels as a message.

domain{0,1}. Variables labeledn; are performance measures
and are private. Variables labeled are utility nodes and are also

private.
s1 | MEVIU s2 | MEVIU
0 15 0 8
1 17 1 10

Similarly, A, determines the maximum expected utility relative
to each partial design over variabde. The result is shown in the

. . above table (right) and is sent th; as a message.
Figure 6 shows the hypertree and agent interfaces. Based on Based on the two messages; re-evaluates each local design,

analysisin Section 3.2, each interface consists of design parameterstaking into account the messages. For each local design, it selects
only. a consistent partial design from each message and adds the corre-

After local evaluation at each ager, the local expected utility 500 ing utility in the message to its local expected utility. For
EV/ for each local desigd] is obtained. For readability, we have instance, the local design

scaled eaclEV; up to an integer and we label them &3/ [u? to
avoid confusion. Tables 1 and 2 show local expected utilities.

Figure 6: The hypertree of trivial CDN.

Table 1: Local expected utilities inV; and V.

s1 [ di | EVIui | [s2 | d2 | EViu (s1=0,52=1,83=0,ds = 1)

0|0 15 0|0 6

0 1 14 0 1 8

10 17 110 10 has local expected utility 17 (Table 2, left). It is consistent with
1]1 16 1]1 7 partial designs; = 0 from A;. Hence, the corresponding utility

15 in the message is added to 17. It is also consistent with partial
designse = 1 from A,. Hence, the corresponding utility 10 in the
message is added. This gives the updated expected utility value 42,
as shown in the following table.
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EViuj
15+15+8=238
13+15+8=36
10+15+8=33
9+15+8=32
11+15+10=36
17+15+10=42
9+15+10=34
8+15+10=33
12+17+8=37
9+17+8=34
15+17+8=40
13+17+8=38
8+17+10=35
10+17+10=37
11+17+10=38
14+17+10=41
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From the updated local evaluatioAz determines the maximum
expected utility relative to each partial design over variablésee
table below) and sends td,.

MEVIu
42
41

S3
0
1

Ay re-evaluates each local design, taking into account the mes-
sage:

53 | da EVIY

0 0 | 5+42=47
0 1 | 6+42=48
1 0 | 8+41=49
1 1 1(19+41=50

It determines that the maximum expected utility is 50 and the
optimal local design is

(83 = 1,d4 = 1).

It sendsss = 1 to As.
From the messagels determines its optimal local design

(81 = 1,82 = 1,83 = 1,d3 = 1)

Az thensends; = 1t0 A; andss = 110 As.
From the messagel; determines its optimal local design

(s1=1,d1 =0).
Similarly, A, determines its optimal local design
(s2=1,d2 =0).
As a result, the optimal overall design is
(s1=1,s2 =1,83 =1,d1 =0,d2 = 0,d3 = 1).
Note that no single agent needs to know what the overall optimal

designis.

5. OPTIMAL DESIGN IN GENERAL
COLLABORATIVEDESIGNNETWORK

execution is activated by a caller, denoted 4s, which is either
an adjacent agent afi, or the system coordinator. Exactly one
agent will be called by the coordinator. The interface betwden
(if an agent) and4, is denoted ag.. If Ay has additional adjacent
agents, they are denoted ds, A,, ..., A,, and their interface with
Ay are denoted af,, I, ..., I, respectively. Based on the analysis
in Section 3.2, we assume eathconsists of only design parame-
ters. Thekth partial design in the design space bfis denoted as
e and that relative td. is denoted as”.

The following algorithm, when executed by each agent, prop-
agates utility evaluation of local designs inwards on the hypertree.
During execution Ao will receive a vector message from each adja-
centagentd;. Elements of the vector are indexed by partial designs
over I;. Thekth element of the vector, indexed l@)’i is denoted
asMEV;®. WhenA; is a leaf agent on the hypertree (whose only
adjacent agent islo), M EV;* corresponds to the maximum local
expected utility in Section 3.2, but otherwise its interpretation is
different as is seen below. The vector message sent figrio Ao
is denoted as\/ EV; and that sent from4dy to A. is denoted as
MEV..

ALGORITHM 3 (COLLECTUTILITY ). Whenagent, is called
by A. to CollectUtility, if A, is the only adjacent agent, it does the
following:

1. For each local desigul},, computeF V.
2. For each partial desigreX, compute
MEV}F = max;, EVZ)]’“,
where maximization is over each local desigd that is

consistent witteX, and label a local design that reaches the
value M EV} by d¥*, breaking ties arbitrarily.

3. SendV/ E'V, to A..

Otherwise o has more adjacent agents), for each adjacent
agentA; (i = 1,...,w), Ao calls CollectUtility in A;. After each
A; has returned withM E'V;, Ao does the following:

4. For each local desigall , compute

EVy) = EV§ + Y MEV/",

where M EV/’ is indexed by partial designi‘j ande:‘j is
consistent withdy,.

. If A. is an adjacent agent, for each partial desig#, Ao
computes

MEVCk = max;, EVC/]"‘,

where maximization is over each local desigfr that is con-
sistent witheX, labels a local design that reaches the value
MEV} by d¥%*, breaking ties arbitrarily, and sendd/ EV.

to A..

Note that in the computation oEV;)/j at step 4, a unique:‘j
exists that is consistent with,. Note also that when, is the
coordinator, only step 4 of the algorithm will be executed.

The next algorithm, when executed by each agent, propagates
utility evaluationM EV' of an optimal overall design outwards on

We present two recursive algorithms executed by each agent andthe hypertree. As the propagation progresses, each agent identifies
one algorithm executed by the system coordinator. The example its local design which corresponds to the optimal overall design.
presented above is a trace of these algorithms. Without losing gen- This is achieved by propagating an optimal partial design over the
erality, we denote the agent executing the algorithmslias The agent interface.



ALGORITHM4 (DISTRIBUTEUTILITY ). When agent, is
called by A, to DistributeUtility, if A, is the coordinator, it does
the following:

1. Compute
MEV = ma:chVb/j,

WhereEV;)/j is obtained during CollectUtility (step 4), and
label a local design correspondingtd! £V asdg, breaking
ties arbitrarily.

2. Foreach adjacentagem; (i = 1, ..., w), call DistributeU-
tility in A; and sendM EV and partial designef that is
consistent withdg to A;.

Otherwise (. is an adjacent agent)4, does the following:

3. ReceiveM EV and partial desigreX from A...
4. Label local design corresponding o/ EV.* asd§,.

5. Foreach adjacentagem; (i = 1, ..., w), call DistributeU-
tility in A; and sendM EV and partial designef that is
consistent withd§ to A;.

The following algorithm combines the above two algorithms and
is executed by the system coordinator.

ALGORITHM5 (COMMUNICATEUTILITY).

1. Selectan agem arbitrarily.
2. Call CollectUtility in A.
3. Call DistributeUtility in A.

THEOREM 7. After CommunicateUltility, the overall design de-
fined by local desigrl™ at each agent is optimal.

Proof: We refer to the agent selected in CommunicateUtility as
the root agent. Given the root, the hypertree can be effectively
viewed as a rooted tree. We define @epthas the length of the
longest path from root to a leaf.

It suffices to show thaf\/ EV obtained by the root agent from
DistributeUtility is the maximum expected utility over all possible
overall designs. Once this is established, it follows that the restric-
tion of an overall design, that attains this maximum expected utility,
to each subdomain id* labelled by the corresponding agent dur-
ing DistributeUtility. We prove by induction on the depth of the
rooted hypertree.

Whendepth = 1, the root has one or more child nodes, each of
them is a leaf. Let the root agent bk and its adjacent agents be
A; (i = 1,...,w). From step 1 of DistributeUtility executed by root
Ao, we have

MEV = max; E‘/{;j,

where maximization is over each local desigb. From step 4 of
CollectUtility executed by rootly, we have

MEV = maz; (EV{ + Y MEV/).

From step 5 of CollectUtility executed by each le4f, each
MEVZ.kj above is the result of maximization over all local designs

in subdomair¥/; that are consistent witH?, relative to the interface
betweenA, and A;. Therefore, ag runs through possible values,

the above maximization is performed effectively over all possible
overall designs.

Next, we assume that the theorem is true whiepth < m.
Consider the case whergpth = m + 1. Let the root agent be
Ap and its adjacentagentsbg (i = 1, ..., w). The subtree rooted
at eachA; has a depth< m. By assumption, if CollectUtility is
called on eachA; by the coordinator, followed by a call of Dis-
tributeUtility on A;, the design defined bgd™* at each agent in the
subtree is optimal.

The actual execution of CommunicateUtility differs from this
scenario as follows: Instead of performing step 1 of DistributeUtil-
ity, A; performs step 5 of CollectUtility. In other words, instead of
maximization over all designs over the subtrelg,performs maxi-
mization over all designs that are consistent with a partial design on
its interface withAo, and it does this for each such partial design.
If we regard the union of all subdomains on the subtree rooted at
A; as a single subdomain, whdt, performed is maximization over
all local designs in this subdomain that are consistent with a partial
design over its interface withl,.

From this perspective, operations performedAyand A; (i =
1,...,w) are equivalent to the case whefepth = 1 . Using the
argument on that case, the theorem follows.

]

Let the total number of agents in a CDN bend the total num-
ber of design parameters Iae Then on average, an agent hag
design parameters in its subdomain. kdte the maximum number
of design parameters in an agent interface. During CollectUstility,
each agent evaluat@®(2"/9) local designs and sends a message
of sizeO(27) to the caller agent. Hence, the computational com-
plexity of optimal design using CDN based on CommunicateUtility
is

O(g 2" + (g —1)27) = O(g (27 +27)).
Normally, ¢ is much smaller tham/g and hence the complexity
O(g 2™9). This result can be compared with a centralized optimal
design that evaluates all overall designs exhaustively. The com-
plexity will be O(2™). Using multiagent CommunicateUltility, the
complexity is reduced exponentially by a ratio of
1 g=b)n

9

Letn = 200 andg = 10, we have2™ = 1.61 x 10%° andg 2/9 =
1.05 x 107.

6. CONCLUSION

In the precursor [12], collaborative design networks were pre-
sented as a decision-theoretic framework to represent collaborative
design knowledge as multiagent graphical models. In this work,
we analyze the impact of choice of agent interfaces on the com-
putational complexity of collaborative design. The analysis shows
that interfaces made of design parameters allow significant reduc-
tion of complexity relative to centralized design, while interfaces
made of performance measures do not reduce complexity at all.

Based on this analysis, we present algorithms that allow agentsin
a collaborative design network to obtain an overall design by local
evaluations of local designs and by exchanging only evaluations of
partial designs on their interfaces. We show that the computation
is autonomous and the resultant overall design is globally optimal.
The computational complexity is reduced exponentially from that
of an equivalent centralized design.

Our current effort is on identification of conditions that allow fur-
ther reduction of the complexity in evaluating local designs at each
agent. The goal is to provide multiagent algorithms that achieve



globaldesign optimality and are efficient on such well behaved de- [15] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. The
sign cases. distributed constraint satisfaction problem: Formalization
and algorithmsKnowledge and Data Engineering
10(5):673-685, 1998.
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