
Agent Interface Enhancement:
Making Multiagent Graphical Models Accessible

Yang Xiang
University of Guelph, Canada

yxiang@cis.uoguelph.ca

Kun Zhang
University of Guelph, Canada

zhangk@uoguelph.ca

ABSTRACT
Multiagent probabilistic reasoning with multiply sectioned Bayesian
networks requires interfacing agent subnets (the modeling task)
subject to a set of conditions. To specify the interfaces such that
they are both valid and efficient is non-trivial. We present multia-
gent interface enhancement that relieves agent designers from the
burden of model efficiency so that multiagent graphical models be-
come more accessible.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms

Keywords
Agent-Based Modeling, Cooperation and Coordination Among
Agents, Graphical Models, MSBNs, Multiagent Architectures,
Uncertain Reasoning

1. INTRODUCTION
Built upon the success of Bayesian Networks (BNs) [4], mul-

tiply sectioned Bayesian networks (MSBNs) [7] provide a rigor-
ous framework for reasoning about uncertain domains in coop-
erative multiagent systems (MASs). Each agent holds its partial
perspective (a subnet over a subdomain) of a domain, reasons au-
tonomously as well as through limited communication with other
agents. From a few high level requirements, (1) exact probabilistic
measure of agent belief, (2) agent communication by belief over
small sets of shared variables, (3) a simpler agent organization, (4)
DAG domain structuring, and (5) joint belief admitting agents’ be-
lief on private variables and combining their beliefs on shared vari-
ables, it has been shown [9] that the resultant representation of a
cooperative multiagent system is an MSBN.

To ensure autonomous, exact and efficient inference, subnets in
an MSBN must satisfy a set of representational constraints. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

is the modeling task. Specification of such a multiagent graphical
model that is both valid and efficient is non-trivial and places a
major burden on MAS designers. A key factor in modeling is the
specification of agent interfaces, which are subject to hypertree, d-
sepset, privacy, and sparse linkage tree conditions (to be introduced
below). The main contribution of this work is a method to automate
interface modeling so that MAS designers are relieved from the
burden of model efficiency (the sparse linkage tree condition) and
partially from the burden of privacy. The direct consequence is the
simplification of modeling task and the improved accessibility of
the MSBN framework to MAS designers.

2. THE ENHANCEMENT APPROACH
Before agents can aid graphical modeling, the MAS has to be

created. We assume that for any large domain where an MAS is to
be built, there is a natural subdomain division reasonably obvious to
the human agent designers. The natural division divides the domain
into overlapping subdomains, one for each agent, and thus forms
the initial agent interfaces. For instance, in equipment diagnosis
[7], each subsystem forms a natural subdomain and its input from
and output to another subsystem form the interface between the
two. In supply chain collaborative design [8], each component to
be designed by a supplier forms a natural subdomain. The initial
interfaces, however, may not support efficient inference. We let
agents cooperate to enhance interfaces to improve efficience. Not
requiring initial interfaces to be efficient removes the burden from
agent designers and eases their modeling task.

One of the advantages of the MSBN framework is that once the
modeling of MSBN-based MAS is complete, internal details of
each agent (its subnet) is kept private throughout model verifica-
tion, model compilation, and run-time inference. As we are now
dealing with multiagent modeling, it is necessary to relax this pri-
vacy constraint slightly (but not completely). Each subnet is built
by its agent designer. We assume that the designer can classify vari-
ables in the subnet into three sets: private, public, and preferably
private. The private set should be kept so absolutely. The public
set is included in the initial agent interface. The preferably private
set is initially private, but the agent is allowed to make some el-
ements public if it believes that the disclosure improves inference
efficience. The agent is required, however, to keep the disclosed
subset as small as possible.

We argue that the three-set assumption respects privacy realisti-
cally. Consider tightened airport security check after 9/11. Trav-
elers who are subject to much more thorough body search can be
regarded as giving up more privacy than before. However, many
accept this as a price paid for a safer flight. The three-set assump-
tion treats privacy as a form of utility and efficience as another, and
allows them to be traded as desired by agent designer.

Furthermore, consider what would happen if human agent de-
signers, instead of agents, are trying to construct efficient agent
interfaces. For a complex domain, it is unlikely for each designer
to classify its subdomain into private and public variables, and the
resultant agent interfaces will be automatically both valid and effi-
cient. More likely, they would start with initial interfaces and incre-
mentally modify them, which effectively discloses some initially
private variables to other agent designers. The three-set assump-
tion enables this incremental process to be mirrored by agents.

We are unaware of other work on improving agent interfaces for
multiagent graphical models. The most related are the information
bottleneck (IB) approach [6] and its extension [1]. IB constructs
a set T of variables that are stochastic functions of one set Y of
variables and provide information on another set X . In general, T

approximates information in X . Our enhanced interface conveys
exactly all relevant information from one agent to another.

3. OVERVIEW OF MSBNS
An MSBN M is a collection of Bayesian subnets, one from each

agent, representing probabilistic dependence of a domain divided
into multiple subdomains. Agents cooperate to reason about the
state of the domain [7]. To ensure distributed, exact inference, sub-
nets satisfy conditions described below:

Let Gi = (Ni, Ei) (i = 0, 1) be two graphs. G0 and G1 are
graph-consistent if subgraphs of G0 and G1 spanned by N0 ∩ N1

are identical. Given graph-consistent graphs Gi = (Ni, Ei) (i =
0, 1), the graph G = (N0∪N1, E0∪E1) is the union of G0 and G1,
denoted by G = G0 t G1. Given a graph G = (N, E), a division
of N into N0 and N1 such that N0 ∪N1 = N and N0 ∩N1 6= ∅,
and subgraphs Gi of G spanned by Ni (i = 0, 1), G is sectioned
into G0 and G1. Sectioning is used to relate graphical models at
individual agents in a cooperative multiagent system.

DEFINITION 1. Let G = (N, E) be a connected graph sec-
tioned into subgraphs {Gi = (Ni, Ei)}. Let the subgraphs be
organized into an undirected tree Ψ where each node is uniquely
labeled by a Gi and each link between Gk and Gm is labeled by
the non-empty interface Nk ∩ Nm such that for each i and j,
Ni ∩ Nj is contained in each subgraph on the path between Gi

and Gj in Ψ. Then Ψ is a hypertree over G. Each Gi is a
hypernode and each interface is a hyperlink. A pair of hypern-
odes connected by a hyperlink is said to be adjacent.

Each hyperlink is an agent interface. Agents communicate by
exchanging beliefs over their interfaces. An interface must be a
d-sepset:

DEFINITION 2. Let G be a directed graph such that a hypertree
over G exists. A node x contained in more than one subgraph with
its parents π(x) in G is a d−sepnode if there exists at least one
subgraph that contains π(x). An interface I is a d−sepset if
every x ∈ I is a d-sepnode.

The overall structure of an MSBN is a hypertree MSDAG:

DEFINITION 3. A hypertree MSDAG G =
�

i
Gi, where each

Gi is a DAG, is a connected DAG such that (1) there exists a hy-
pertree Ψ over G, and (2) each hyperlink in Ψ is a d-sepset.

Graphically, a hyperlink separates the hypertree MSDAG into
two subtrees. Semantically, this corresponds to conditional inde-
pendence given the d-sepset. An MSBN is defined as follows with
an example shown in Figure 1.

DEFINITION 4. An MSBN M is a triplet M = (N ,G,P).
N = �

i
Ni is the domain where each Ni is a set of variables.

G =
�

i Gi (a hypertree MSDAG) is the structure where nodes
of each DAG Gi are labeled by elements of Ni. Let x be a vari-
able and π(x) be all the parents of x in G. For each x, exactly
one of its occurrences (in a Gi containing {x} ∪ π(x)) is assigned
P (x|π(x)), and each occurrence in other DAGs is assigned a con-
stant table. P = �

i
Pi(Ni) is the jpd, where each Pi(Ni) is the

product of probability tables associated with nodes in Gi. Each
triplet Si = (Ni, Gi, Pi) is called a subnet of M . Two subnets
Si and Sj are said to be adjacent if Gi and Gj are adjacent on
the hypertree MSDAG.

P(c|h)
a

P(f|c)P(e|b)P(d|a)

P(b|g,h)P(a)

f

c

e

P(h)P(g)

hg

d

a b
l

1G 2Gc

P(k|b,c)P(j|a,b)P(i|a)
kj

i

a b

o

b

P(o|c)P(n|b,c)P(m|b)P(l|a,b)

0G

n

c

m

Figure 1: A trivial MSBN where each d-sepnode is shown with
a dashed circle. The hypertree has the structure G1 −G0 −G2

and each d-sepset is {a, b, c}.

To compute intra-agent messages effectively, each agent com-
piles its subnet into a junction tree (JT) [2], where variables are
grouped into clusters with intersection of adjacent clusters referred
to as separators. To integrate computation of intra-agent messages
with computation of inter-agent messages seemlessly, the compi-
lation is performed cooperatively. A key step is cooperative tri-
angulation [7], during which each agent performs constrained tri-
angulation through node elimination in partial order: A set N of
nodes is eliminated according to a partial order (N1, N2) where
N = N1 ∪ N2, if nodes in N1 are eliminated before nodes in N2

are eliminated. We also refer to the triangulation as constrained by
N2, or unconstrained if N2 = ∅.

For efficient computation of inter-agent messages, agents com-
pile each d-sepset into a JT, called a linkage tree. See Figure 2 for
linkage tree L1 between T0 and T1. Each cluster in L1 is called
a linkage. Linkage {b, c} is an message channel between cluster
{b, c, f} in T1 and cluster {b, c, n} in T0. Its state space size (SSS)
is 16 if the dimension (number of possible values) of variables a, b

and c is 4, and that of L1 is 32 which determines the efficience of
inter-agent messaging. In general, the sparser the linkage tree (with
many small linkages), the more efficient it is. If L1 were made of a
single linkage {a, b, c}, its SSS would be 64.

4. WHY NOT CENTRALIZE COMPILATION
An alternative to enhancing interfaces in MSBN is to build a

centralized domain model, compile it into a JT, and separate the JT
into subtrees one for each agent. Although it provides the most effi-
cient run-time representation, it suffers from two major drawbacks
compared to the approach we take.

First of all, the alternative requires that all domain variables and
their dependence relations to be disclosed to the centralized model
builder. There will be no agent privacy at all. In contrast, our ap-
proach does not disclose any private variables and dependence re-
lations among them. It only discloses a subset of preferably private
variables and does so in a cautious manner.

Secondly, even if the agent privacy were not a concern at all, the
alternative will disrupt natural subdomain division among agents.

*

* *

* *

*

P(k|b,c)

P(b|g,h),P(g),P(h)

P(c|h)

P(f|c)

P(o|c)

P(e|b)P(d|a),P(a)

P(n|b,c)
P(m|b)

P(l|a,b) P(j|a,b)

a,b,ea,d

P(i|a)

1 2L L

1

a,b,j a,i

b,c,k

a,b

b,cb,c,f

a,b

b,c

a,b,l

b,c,n

c,o b,m T2T0

b,g,h

T

b,c,h

Figure 2: JTs and linkage trees obtained from Figure 1.

We illustrate this problem with a trivial MSBN shown in Figure 3.
In (1), a trivial centralized domain model is shown as a BN. Sup-

g

f

e d

c

ba

10 GG

(4)

(2)(1)

(3)

T

c
d

b

e

a

G

g

f

b,c

c,d
d,e

a,b

d,g

b,f

c,d

b,c

d,e

a,b

1T

d,g

b,f
b,c

c,d
0T

Figure 3: Illustration of natural subdomain disruption.

pose that it is naturally divided into two overlapping subdomains
as shown in (2), where variables b, c and d form the interface. The
BN in (1) is compiled into JT in (3). If this JT is to be separated
into two, there are five possible ways, each separating the JT into
two subtrees along one of the five separators (e.g., the separator
between clusters {b, c} and {b, f} is {b}). None of them corre-
sponds to the natural subdomains {a, b, c, d, e} and {b, c, d, f, g}.
The agents thus constructed lose their semantic coherence (the need
for such coherence is also touched upon in [3]). On the other hand,
according to the MSBN framework, the subdomain models in (2)
will each be compiled into a JT in (4), which preserves the natural
division while allowing efficient inference.

5. ANALYSIS
Inference in MSBNs is efficient mostly because agent interfaces,

the d-sepsets, are represented as linkage trees, which enables po-
tential factorization. Intuitively, this means that d-sepnodes are
dispersed among a number of clusters in the local JT. Hence, the
more scattered the d-sepnodes among clusters, the more efficient
the inference. In the following, we analyze how adding more d-
sepnodes can achieve such effect. Proposition 1 shows under what
condition adding a node to d-sepset can disperse d-sepnodes into
different clusters.

PROPOSITION 1. Let S be the subnet of an agent, T be its local
JT from S, and x and y be d-sepnodes contained in a cluster C in
T . If a unique path exists between x and y in S, all other nodes
on the path are non-d-sepnodes, and one of them, v, is head-to-tail
or tail-to-tail, then adding v to d-sepset can disperse x and y into
different clusters, unless it is prevented by other agents.

Proof: Since the path contains at least v and it is head-to-tail or tail-
to-tail, x and y will not be connected during moralization. Once v is
added to the d-sepset, during constrained triangulation by the local
agent, x can be eliminated before y and v, or y can be eliminated
before x and v (neither is possible if v is not added to the d-sepset).
In either case, x and y will not be connected by any fill-in. Hence,
unless a moral link or a fill-in between x and y is added by another
agent, x and y cannot be in the same cluster in the new local JT. 2

The only way the condition in Proposition 1 can be violated is
where the unique path between x and y consists of a single head-
to-head node v. If any arc on the path is reversed or any additional
nodes exist on the path, the condition in Proposition 1 will be true.
Because a moral link will connect x and y, no matter what the rest
of the d-sepset is, x and y must be contained in the same cluster.
This means that Proposition 1 captures all possible cases where a
non-d-sepnode can be successfully added to d-sepset to disperse x

and y.
The following corollary generalizes Proposition 1 to the case

where multiple paths exist between x and y in the local subnet.

COROLLARY 1. Let S be the subnet of an agent, T be its local
JT from S, and x and y be d-sepnodes contained in a cluster C

in T . For each path between x and y in S, if all other nodes on
the path are non-d-sepnodes, and one of them, v, is head-to-tail
or tail-to-tail, then adding such v from each path to d-sepset can
disperse x and y into different clusters, unless it is prevented by
other agents.

When d-sepnodes are dispersed into different clusters, they are
effectively dispersed into different linkages in the linkage tree. On
one hand, this reduces sizes of corresponding linkages. As indi-
vidual linkages become smaller, the state space of the linkage tree
is reduced and hence the improved efficience. On the other hand,
according to Corollary 1, dispersing d-sepnodes requires enlarging
the d-sepset. The new d-sepnodes increase the state space in each
linkage they participate. To achieve the net effect of reduction in
linkage tree state space, new d-sepnodes must be chosen carefully.

In general, when addition of a single non-d-sepnode disperses
multiple pairs of d-sepnodes, the negative effect of the addition is
smaller than its positive effect and the linkage tree state space is
decreased.

The above analysis has emphasized the topological aspect of the
issue. However, since it is the total state space of the linkage tree
that directly affects inference efficience, not cardinalities of link-
ages, another important factor is the dimensions of variables in-
volved. When a linkage of three variables each of dimension 3 is
dispersed, by adding a binary variable v to d-sepset, into three link-
ages each made of v and another variable (see Figure 5 (d) later
for an example), SSS is reduced from 3*3*3 = 27 to 3*2*3=18.
However, if v has a dimension of 4, SSS is increased to 3*4*3 =
36.

In general, when a new d-sepnode v disperses existing d-sepnodes
whose dimensions are higher than that of v, the linkage tree SSS is
decreased.

6. SEARCH FOR ENHANCEMENT
To improve interface efficience, we add non-d-sepnodes to a d-

sepset to make the linkage tree sparser and reduce its SSS. We re-
fer to a non-empty set of non-d-sepnodes in a subdomain as an
enhancement, whose effectiveness depends also on enhancements
from other agents. Hence, the optimal set of enhancements (two

per d-sepset), which reduces the sum of all linkage tree state space
sizes to the maximal extent, generally can only be obtained by ex-
haustive multiagent search. If each agent has O(k) (where k is
very large as shown below) alternative enhancements for each of
its d-sepsets, then the search space of n agents has a complexity
of O(k2n). In the following, we consider several approximations
with reduced complexity.

1. Each pair of adjacent agents performs cooperative search over
the space of all pairs of enhancements (one from each agent),
and then adds the pairwise top enhancement to their d-sepset.

2. Each agent searches for local top enhancements (there may
be ties). Cooperative search is then performed by all agents
over the space of all combinations of local top choices.

3. Each agent searches for local top enhancements. Then each
pair of adjacent agents searches for pairwise top enhance-
ments over the space of all pairs of local top choices.

The first approximation restricts cooperative search to pairwise.
The computation has a complexity of O(n k2). The second ap-
proximation first reduces the number of alternative enhancements
at each agent per each d-sepset from k to a few, say, k′. Then global
cooperative search is performed with O(k′2 n) complexity. The
third approximation has the lowest complexity of O(n (k + k′2)).
In this work, we study the effectiveness of this approximation and
will investigate the other approximations in future research.

The top level algorithm below is run by the MAS coordinator to
activate cooperative interface enhancement.

ALGORITHM 1 (COENHANCEINTERFACE).
choose an agent A∗ arbitrarily;
call A∗ to run EnhanceInterface with null parameters;

The following recursive algorithm is run by each agent. Without
losing generality, we denote the agent executing the algorithm as
A0. The execution is activated by a caller, denoted as Ac, which
is either an adjacent agent of A0 or the MAS coordinator. If A0

has additional adjacent agents, they are denoted A1, ..., Am. The
subdomains of Ac, A0, ..., Am are Nc, N0, ..., Nm, respectively,
their subnets are Gc, G0, ..., Gm, the interface between A0 and Ac

(if an agent) is denoted Dc, and the interfaces between A0 and
A1, ..., Am are denoted D1, ..., Dm. The caller Ac passes two pa-
rameters into A0: NewDc - a set of new d-sepnodes and Arcsc - a
set of arcs (each either connecting elements in NewDc or connect-
ing an element of NewDc with an existing d-sepnode). In return,
A0 will send parameters NewD→

c and Arcs→c to Ac, where the
arrow denotes output by A0.

ALGORITHM 2 (ENHANCEINTERFACE). When A0 is called
by Ac with parameters NewDc and Arcsc, it does the following:

compile G0 into JT T ∗

0 by unconstrained triangulation;
for i = 1, ..., m and i = c if Ac is an agent, do

compile G0 into JT Ti through triangulation constrained by
(N0 \Di, Di);

perform UpdateDsepset(G0, Di, Ti, T
∗

0) and denote return
value by NewD→

i ;
denote arcs in G0 relevant to NewD→

i as Arcs→i ;
for i = 1, ..., m, do

call Ai to EnhanceInterface with NewD→

i and Arcs→i ;
receive NewDi and Arcsi from Ai;

for i = 1, ..., m and i = c if caller is an agent, do
enhance Di with NewDi and NewD→

i if both are non-empty;
update G0 with NewDi and Arcsi;

if Ac is an agent, send NewD→

c and Arcs→c to Ac;

EnhanceInterface consists of three for loops. In the first for
loop, local subnet is compiled into a JT by constrained triangu-
lation relative to each d-sepset. Using this JT and that obtained
from unconstrained triangulation, the local top d-sepset enhance-
ment is obtained by UpdateDsepset (see below for more on this
step). Through the second for loop, the enhancement operation is
propagated along the hypertree organization of the MAS, until it
reaches agents located at the leaves of the hypertree. The results
of local search by UpdateDsepset will then be propagated back to-
wards A∗, through the last statement of the algorithm. In the third
for loop, the agent enhances the d-sepsets and its local subnet.

The return value NewD→

i from local search UpdateDsepset can
contain an unique top enhancement. It can also contain a set of top
enhancements (that tie). In that case, the search strategy 3 dictates a
pairwise cooperative search, which can be performed by modifying
the above algorithm as follows:

It may appear that the task to decide which pair of local top en-
hancements are pairwisely best requires cooperation of both agents.
We show below that a simpler operation suffices.

We consider agent A0 and its caller agent Ac. At the end of
the first for loop of EnhanceInterface, A0 has received NewDc

and computed NewD→

c . For each enhancement in NewDc and
each in NewD→

c , A0 can perform constrained triangulation using
the corresponding enhanced d-sepset. A linkage tree will then be
derived. According to [7] 1, this linkage tree is equivalent to what
would be derived by Ac. Hence, the best pair of enhancements can
be computed by A0 only, with the following statements added at
the end of the first for loop:

search for best pair of enhancements with Ac based on
NewDc and NewD→

c , breaking ties arbitrarily;
update NewDc and NewD→

c accordingly by deleting other
enhancements;

To inform Ac of the result, the last statement of the algorithm needs
to be modified into the following:

if Ac is an agent, send NewD→

c and Arcs→c to Ac as well as the
pairwisely best enhancement in NewDc;

7. LOCAL HEURISTIC SEARCH
For an agent to search for the locally best enhancement to a d-

sepset, the alternatives must be identified. This can be done by
examining the local subnet or the local JT. Since linkage tree is
generated from local JT and preserves conditional independence
encoded in the JT (Proposition 7.6 [7]), we identify enhancements
based on the local JT.

2,x4,a2a
1,x4,a1a 3,x4,a3a

*
T

T

G

(c)(b)(a)

3

,x3a4,a3a

4,a1a1a

3a

2a

1x

3x

2x4a

3

,x2,x1,x4a

4

a1,x1

a2,x2a2,a

Figure 4: (a) Subnet G. (b) The JT T ∗ from G by uncon-
strained triangulation. (c) The JT T from triangulation con-
strained by {x1, x2, x3}.

Consider the trivial subnet in Figure 4 (a). Given the d-sepset
{x1, x2, x3}, the local JT in (c) can be constructed. From the lo-
cal JT, the linkage tree can be derived that has a single linkage
{x1, x2, x3}.
1Section 7.6.2 on two-agent cooperative triangulation and Section
8.3 on equivalence of linkage trees derived by adjacent agents.

To identify d-sepset enhancements, we consider JT T ∗ in (b) ob-
tained by unconstrained triangulation. It preserves all conditional
independence relations in (a) while T in (c) does not. Hence, T ∗

provides hints as to what conditional independence relations of (a)
that has been removed in (c) can be utilized to improve the effi-
cience of the d-sepset and the resultant linkage tree.

3,x4a2,x4a3,x3a

(d)

(c)(b)(a)

1,x4a2a

1,x1a

3,x2,x1a ,x 2,x1,x3a

2,x2a

3,x1

Figure 5: (a) The linkage tree obtained by adding a1 to the d-
sepset. (b) Obtained by adding a2. (c) Obtained by adding a3.
(d) Obtained by adding a4.

For example, {a1} is a separator in T ∗ between clusters {a1, a4}
and {a1, x1}, and it separates the cluster that contains the d-sepnode
x1 from clusters that contain the rest of the d-sepset. This suggests
that {a1} is an alternative enhancement. After adding it to the d-
sepset, the new linkage tree is shown in Figure 5 (a), where x1 is
indeed dispersed into a different linkage from the rest of d-sepset.

Following the same idea, {a2}, {a3}, {a4} are each an alterna-
tive enhancement. The corresponding linkage trees are shown in
Figure 5 (b), (c) and (d), respectively. We define alternative en-
hancement formally below.

DEFINITION 5. Let G be a subnet over N , D be its d-sepset
with an adjacent subnet, and T ∗ be a JT of G obtained from un-
constrained triangulation. An alternative enhancement E of
D is the union of a set (possibly empty) of separators of T ∗ such
that E ∩D = ∅.

Given T ∗ with q clusters, in general, it has O(2q) enhancements,
where q is bounded by the number of subdomain variables. We
explore two techniques to improve computational efficience: leaf
cluster removal and topological dominance. Below, we present the
local search algorithm and then analyze two techniques. All d-
sepnodes and non-d-sepnodes are relative to the d-sepset D.

ALGORITHM 3 (UPDATEDSEPSET).
Input: a subnet G over N and its d-sepset D with an adjacent

subnet; a JT T from G by constrained triangulation with partial
order (N \D, D); a JT T ∗ obtained from G by unconstrained
triangulation;

perform the following recursively until no cluster can be deleted,
for each leaf cluster Q of T ∗,

if Q contains no d-sepnodes, delete Q from T ∗;
else if Q is a leaf cluster in T with the same separator as in T ∗,

delete Q from T ∗;
if T* contains no separator with preferably private nodes only,

return ∅;

CanNewD = empty;
for each separator W of T* with preferably private nodes only, do

add {W} to CanNewD as an 1-separator member;
copy T* to T’;
delete each occurrence of W in T’ to split it into subtrees;
if each subtree has a single cluster with d-sepnodes,

label W as final;

k=1, more=true;

while more == true, do
more = false;
for each k-separator member M of CanNewD, do

copy T* to T’;
for each separator R in M, do

delete each occurrence of R in T’ to split it into subtrees;
if each subtree has a single cluster with d-sepnodes,

label M as final;
else

for each 1-separator member {W} of CanNewD, non-final,
W 6∈ M , and M ∪ {W} 6∈ CanNewD, do

if there exists a subtree where W is a separator on the path
between 2 clusters with d-sepnodes, do

add M ∪ {W} to CanNewD as a k+1-separator member;
more = true;

k++;

for each member M of CanNewD, do
perform constrained triangulation with M added to d-sepset;
compute SSS α of the resultant linkage tree;

find member M∗ of CanNewD with the smallest α value α∗;
β = SSS of the linkage tree derived from T ;
if β − α∗ is large than a threshold, return M∗;
else return ∅;

UpdateDsepset consists of four segments (separated by blink
lines). The first removes leaf clusters in T ∗. Proposition 2 below
shows that these clusters are irrelevant and hence their removal re-
duces the space of alternative enhancements. The analysis is based
on h-separation [7] in JTs:

DEFINITION 6. Let H be a JT over N , and X , Y , Z be disjoint
subsets of N such that no x ∈ X and y ∈ Y are contained in the
same cluster in H . For x ∈ X contained in cluster Qx and y ∈ Y

contained in cluster Qy, x and y are h-separated by Z if there
exists a separator S ⊆ Z on the path between Qx and Qy. X and
Y are h-separated by Z if for every x ∈ X and y ∈ Y , x and y

are h-separated by Z.

For instance, in Figure 4 (2), {x1} is h-separated from {x2, x3} by
{a1}, written as < x1|a1|x2, x3 >T∗ or simply < x1|a1|x2, x3 >.
We are interested in h-separation relations < X|Z|Y > relative to
a given d-sepset D, where X ⊂ D, Y ⊂ D and Z ∩ D = ∅. We
refer to such a relation as a h-separation relative to D.

PROPOSITION 2. Let N be the domain of T ∗ and E be an alter-
native enhancement containing separators in T ∗. After recursive
deletion (relative to d-sepset D) of leaf clusters as specified in Up-
dateDsepset, let the resultant JT be T ′ whose domain is N ′ ⊂ N

and E′ = E ∩ N ′ ⊂ E. Let H denote the set of h-separations
relative to D implied by E and H ′ be that implied by E′. Then
H = H ′.

Proof: Intuitively, E and E′ are the same except that E contains
additional separators in T ∗ that are deleted by UpdateDsepset. We
show that leaf cluster deletion by UpdateDsepset does not remove
h-separations implied by E.

Let Q be a leaf cluster in T ∗ with separator V . We denote Q\V

by C. The only h-separations relative to D that Q represents are in
the form of < C−|V |U− >, where C− is any subset of C and U−

is any subset of N \Q.
The h-separations relative to D implied by E are in the form

< X|Z|Y > where X ⊂ D, Y ⊂ D, and Z ∩ D = ∅. If Q

contains no d-sepnodes, then C− contains no d-sepnodes. Hence,
removal of Q cannot remove any h-separations implied by E.

Next, consider the case where Q contains d-sepnodes. If Q is a
leaf cluster in T (as defined in UpdateDsepset) and its separator in
T is also V , then the h-separations represented by Q are also true
in T . This means that these relations are not implied by E. Hence,
removal of Q cannot remove any h-separations implied by E.

Since no h-relations in H is removed by leaf cluster deletion in
UpdateDsepset, we obtain H = H ′. 2

Proposition 2 implies that leaf cluster deletion by UpdateDsepset
does not introduce approximation to local search while improving
its efficience. Proposition 3 below establishes that the early termi-
nation of UpdateDsepset is a correct action.

PROPOSITION 3. If UpdateDsepset returns ∅ at the end of first
segment, then the d-sepset D cannot be improved.

Proof: When T∗ contains no separator with preferably private nodes
only, no legal separator Z can be found such that < X|Z|Y >

holds, where X ⊂ D, Y ⊂ D, and Z ∩D = ∅. 2

8. TOPOLOGICAL DOMINANCE
The second and third segments of UpdateDsepset apply the tech-

nique of topological dominance or t-dominance to further trim the
local search space. The concept of dominance has been used in
game-theoretic research, e.g., [5]. We apply here from a topological
perspective. In Figure 5 (d), each original d-sepnode has been iso-
lated in a separate linkage. This suggests that adding more nodes to
d-sepset may enlarge the linkage tree SSS. In fact, adding to {a4}
any variable of a dimension no less than that of a4 will do poor than
{a4}. We say that any such superset is t-dominated by {a4}.

On the other hand, the enhancement {a1} does not t-dominate
every proper superset. For instance, in the linkage tree produced
from {a1} (Figure 5 (a)), x2 and x3 are contained in the same link-
age. In the linkage tree produced from the superset {a1, a2} (Fig-
ure 6 (a)), x2 and x3 are dispersed into different linkages. Hence,
enhancement {a1, a2} is not t-dominated by {a1}.

3,x3a

(a)
3,x2,a1 a (c)

1,x1a

2,x3,a1a

,x3a2,x2a

1,x3,a2a

32,x2a1,x1a

(b)

Figure 6: (a) The linkage tree obtained by adding {a1, a2} to
the d-sepset. (b) Obtained by adding {a2, a3}. (c) Obtained by
adding {a1, a3}.

If an enhancement is not t-dominated by any proper subset, then
it is called a non-t-dominated enhancement. For instance, {a1, a2}
is an non-t-dominated enhancement. If an non-t-dominated en-
hancement t-dominates every proper superset, it is called a final
enhancement. Enhancement {a4} is final, but {a1} is not final.

Figure 6 shows linkage trees from three alternative enhancements
each of which is obtained by including two separators in Figure 4
(b). All of them are non-t-dominated and final.

DEFINITION 7. Let E be an alternative enhancement of a d-
sepset D and H be the set of h-separations relative to D implied by
E. Let E′ ⊃ E be another enhancement and H ′ the corresponding
h-separations. E′ is t− dominated by E, if for each h-separation
< X|Z′|Y > in H ′, there exists < X|Z|Y > in H , such that
Z′ ⊇ Z. If there exists no E′ ⊂ E such that E′ t-dominates
E, then E is non− t− dominated. If for all E ′ ⊃ E, E′ is
t-dominated by E, then E is final.

Given the four separators in Figure 4 (b), there are a total of 15
alternative enhancements. Linkage trees from seven are shown in
Figs. 5 and 6. The remaining eight are t-dominated.

As assumed, each agent classifies subdomain variables into pri-
vate, public, and preferably private. For instance, the agent could
classify a4 as private, but a1, a2, a3 as preferably private. This
classification trims the set of non-t-dominated enhancements. In
particular, only enhancements corresponding to Figure 5 (a), (b),
(c), and Figure 6 (a), (b), (c) are now valid. Proposition 4 below
shows under what condition, ignoring t-dominated enhancements
causes no loss of accuracy to local search. We omit proofs for the
remaining formal results due to space.

PROPOSITION 4. Let AE be the set of all alternative enhance-
ments of a d-sepset D for a given subnet. Let ND be the set of
non-t-dominated elements of AE. Let TOPAE be the set of el-
ements of AE whose linkage tree state space sizes are minimal
among elements of AE, and TOPND be the corresponding set rel-
ative to ND. If dimensions of non-d-sepnodes are identical, then
TOPAE = TOPND .

The second and third segments of UpdateDsepset compute non-
t-dominant enhancements. According to Proposition 4, local search
over these enhancements is only accurate when preferably private
variables have identical dimensions. When this condition does not
hold, local search restricted by t-dominance becomes a heristics
and introduces approximation.

The second segment identifies 1-separator non-t-dominated en-
hancements. The third segment identifies non-t-dominated enhance-
ments made of multiple separators. Note that the concept of final
enhancement is utilized to skip t-dominated enhancements and im-
prove efficience. The following proposition shows that final en-
hancements are correctly identified. It can be proven by a direct
application of Def. 7.

PROPOSITION 5. Let E be an enhancement and Ψ be the set
of subtrees resultant from deletion of each separator of E in T ′.
If each subtree in Ψ has a single cluster with d-sepnodes, then E

t-dominates every enhancement E′ ⊃ E.

The following theorem establishes the significance of final en-
hancements and functionality of the second and third segments.

THEOREM 1. At the completion of the third segment of Updat-
eDsepset, CanNewD contains all and only non-t-dominated en-
hancements relative to d-sepset D.

After local search space has been reduced to non-dominated en-
hancements, can it be trimmed without introducing further approx-
imation? The following example answers the question negatively.

For variables in Figure 4 (a), denote dimensions of a1, · · · , a4 as
m1, · · · , m4, respectively, and those for x1, · · · , x3 as n1, · · · , n3,
respectively. Denote by k1 the SSS of linkage tree from constrainted
triangulation with d-sepset {x1, x2, x3} (Figure 4 (c)). Denote
the SSS of linkage trees shown in Figure 5 as k2, k3, k4, k5, re-
spectively, and those in Figure 6 as k6, k7, k8, respectively. Then
k1, · · · , k8 can be computed as follows:

k1 = n1 ∗ n2 ∗ n3,

k2 = m1 ∗ (n2 ∗ n3 + n1), k3 = m2 ∗ (n1 ∗ n3 + n2),
k4 = m3 ∗ (n1 ∗ n2 + n3), k5 = m4 ∗ (n1 + n2 + n3),
k6 = m1 ∗m2 ∗ n3 + m1 ∗ n1 + m2 ∗ n2,

k7 = m2 ∗m3 ∗ n1 + m2 ∗ n2 + m3 ∗ n3,

k8 = m1 ∗m3 ∗ n2 + m1 ∗ n1 + m3 ∗ n3

Table 1: State space sizes k1, · · · , k8 given variable dimensions.
Upper half: variable dimensions. Lower half: state space sizes.

n1 2 3 3 3 5 5 7 7
n2 2 3 3 3 5 6 6 4
n3 2 3 3 3 5 5 5 5
m1 2 2 3 3 2 2 4 3
m2 2 3 2 3 3 3 2 4
m3 2 3 3 2 3 3 3 2
m4 2 3 3 3 3 4 5 5
k1 8 27 27 27 75 150 210 140
k2 12 24 36 36 60 70 148 81
k3 12 36 24 36 90 93 82 156
k4 12 36 36 24 90 105 141 66
k5 12 27 27 27 45 64 90 80
k6 16 33 33 45 55 58 80 97
k7 16 45 33 33 75 78 69 82
k8 16 33 45 33 55 61 115 55

Table 1 shows values for k1, · · · , k8 given dimensions n1, · · · , n3,
m1, · · · , m4. The minimal linkage tree SSS for each row occurs at
a different column. For instance, for the first row (with all variables
binary), the optimal size is 8 and is located at the first column in the
right half. For the second row, the optimal size 24 is located at the
second column, and so on.

This example demonstrates that any non-t-dominated enhance-
ment may be the best choice, given right variable dimensions. In
order not to cause further approximation, all non-t-dominated en-
hancements must be evaluated. This is done in the fourth segment.
For simplicity, we phrased return value as a single enhancement,
although it can be multiple enhancements that tie or top the list.

9. SUBNET CONNECTEDNESS
When an agent A passes a set of new d-sepnodes to an adjacent

agent A′, it is possible that some new d-sepnodes are disconnected
in the updated subnet of A′. These new d-sepnodes are dependent
of the rest of the subdomain of A′ (since they are connected to other
d-sepnodes in the subdomain of A). Hence, their disconnectedness
in the updated subnet of A′ creates misconception of independence.
They violate convention of graphical models where connection im-
plies dependence and disconnection implies independence.

To avoid the misconception, for each new d-sepnode v, we need
to ensure that, in the updated subnet of A′, it is connected to at
least one existing d-sepnode. When v is not already connected to
existing d-sepnodes, arcs must be added to achieve the connection.
The arcs added will make the new subnet denser, but should not
make it unnecessarily so, because any increase in the density of the
subnet will translate into an increase in the size of state space of
the resultant linkage tree. Based on these criteria, we identify the
following subtasks:

First, agent A needs to recognize when some new d-sepnodes
are disconnected to existing d-sepnodes. A new d-sepnode v is
connected to existing d-sepnodes if (1) v is directly connected to
an existing d-sepnode, or (2) v is indirectly connected an existing
d-sepnode through a path consisting entirely of new d-sepnodes.
This subtask can be accomplished with the following algorithm:

ALGORITHM 4 (MARKCONNECTED).

mark each existing d-sepnode;
perform the following recursively,

for each marked node, do
if it has any adjacent new d-sepnode v, mark v;

The following proposition shows that any new d-sepnode left
unmarked by MarkConnected is disconnected from the existing d-
sepset. Its proof is trivial.

PROPOSITION 6. After MarkConnected is performed, if there
exist unmarked new d-sepnodes, then each such node is discon-
nected from the existing d-sepnodes.

Second, once a disconnected new d-sepnode v is identified, agent
A needs to propose arc(s) to be added, that is, which other d-
sepnodes should v connect to and direction of arcs. We show below
that inadequate arcs added may create either directed cycle or sig-
nificantly increase the size of state space of the local JT.

v

...
nuu1 u2

Figure 7: A subnet whose d-sepset with an adjacent subnet is
{u1, u2, ..., un}.

In Figure 7, the existing d-sepset is {u1, u2, ..., un}. Enhancing
the d-sepset with node v will significantly reduce the size of state
space of the linkage tree. However, if v is added to the subdomain
of the adjacent agent, it is disconnected. To make it connected to
the existing d-sepset, it can be connected to a node ui. If the arc
(ui, v) is added, it forms a directed cycle. On the other hand, if the
arc (v, ui) is added, the node ui has one more parent. In the local
JT, there is at least one cluster that contains ui and all its parents.
At least the state space of this cluster is enlarged by a factor of the
dimension of v due to adding (v, ui).

We propose a method for arc addition using the updated linkage
tree in A. The following algorithm pairs a disconnected new d-
sepnode with a connected d-sepnode (either existing or new).

ALGORITHM 5 (PAIRDISCONNECTED).

Input: existing d-sepset D, enhanced d-sepset D+, subset X of D+

marked by MarkConnected, and Y = D+ \X;

get linkage tree L with triangulation constrained by D+;
find a cluster C such that C ∩ Y 6= ∅ and C ∩X 6= ∅;
pick v ∈ C such that v ∈ Y and u ∈ C such that u ∈ X;
return pair (v, u);

We show that as long as Y 6= ∅, there always exists a cluster
C as described in PairDisconnected, and hence the pair (v, u) can
always be found.

PROPOSITION 7. Let D be the existing d-sepset of a subnet
with an adjacent subnet, D+ be the enhanced d-sepset, X be the
subset of D+ marked by MarkConnected, and Y = D+ \X 6= ∅.
Then, PairDisconnected will succeed and return (v, u).

For each pair of d-sepnodes (v, u) identified, agent A notifies
agent A′. In response, A′ adds new d-sepnode v to its subdomain
and adds a new private binary variable c as the common child of v

and u. This method has several desirable properties:
First, clearly the new node v in A′ is now connected in the up-

dated subdomain of A′. Second, since c is a private node of A′,
there is no arc to be added in A relative to v. Hence, the state space
of its local JT will not be compromised. Third, since c has only
two adjacent nodes in A′, it will cause the formation of a cluster

{c, v, u} in the local JT of A′. Since the cluster has only three
variables, it increases the state space of the local JT only slightly.

Disconnected new d-sepnodes may be divided into several groups
where nodes in each group is connected to each other. In such
case, A needs to run MarkConnected and PairDisconnected once
for each group.

10. PROPERTIES OF ENHANCEMENT
We analyze key properties of CoEnhanceInterface. First, after

CoEnhanceInterface, each agent interface is a d-sepset.

PROPOSITION 8. Let E be an enhancement of d-sepset D from
agent A relative to an adjacent agent A′. Then D∪E is a d-sepset.

Second, CoEnhanceInterface preserves the hypertree condition.

PROPOSITION 9. Let a d-sepset D between two adjacent sub-
nets of an MSBN M be enhanced to D+. Then hypertree condition
holds in updated structure of M .

Propositions 8 and 9 guarantee that the outcome of enhancement
is a valid MSBN. Finally, all dependence relations in the original
MSBN are preserved after agent interface enhancement.

PROPOSITION 10. Let a d-sepset D between two adjacent sub-
nets of an MSBN M be enhanced to D+. If the structure of M is
an I-map over N, then the updated structure of M is still an I-map
over N.

From Proposition 10, it follows that the enhanced MSBN pre-
serves exact inference.

11. EXPERIMENT
To evaluate the effectiveness of the algorithms, we simulated 10

MSBNs, each with 5 subnets. Each subnet has between 50 to 75
nodes and each variable has a dimension up to 4. Each d-sepset has
8 variables.

For improvement of local search efficience, results of Updat-
eDsepset in 14 subnets are shown below. The total number of
enhancements for each subnet ranges from 224 > 1.6 × 107 to
251 > 2× 1015 . Due to leaf cluster removal and topological domi-
nance, the number of non-t-dominated enhancements per subnet is
between 31 and 2495.

Subnet n0 n1 n2 n3 n4 n5 n6

|CanNewD| 71 355 239 1063 791 35 363
enhancement 224 251 224 241 224 224 244

Subnet n7 n8 n9 n10 n11 n12 n13
|CanNewD| 725 31 35 77 31 119 2495

enhancement 224 233 224 224 243 226 235

For overall efficience improvement, results of CoEnhanceInter-
face with pairwise search are shown below. For each MSBN, SSS
for each linkage tree is counted and sum over the four linkage trees
is shown. All randomly selected d-sepsets have the worst com-
plexity. Enhancement reduces the sum to between 44% and 94%.
As the price, the largest number of preferably private variables dis-
closed to other agents occurred in an agent with 3 adjacent agents
and a subdomain of 75 variables. It disclosed a total of 12 variables
(an average of 4 per d-sepset).

MSBN m0 m1 m2 m3 m4

Before enhancement 82944 82944 82944 82944 82944
After enhancement 34286 12398 4562 7220 7020

MSBN m5 m6 m7 m8 m9

Before enhancement 82944 82944 82944 82944 82944
After enhancement 7720 46098 14540 25860 6894

In addition, we simulated a digital system of 216 devices. To
monitor it, we built a MSBN model of 5 agents whose subdomains
are sized at 91, 202, 72, 149 and 91 variables, respectively. The
initial four agent interfaces have a total linkage tree SSS sum of
11264 and it is reduced to 728 (6.5%) through enhancement.

12. CONCLUSIONS
Graphical models such as MSBNs provide a framework for ex-

act and autonomous probabilistic reasoning for multiagent systems.
However, construction of such models that are both valid and effi-
cient is involved. This contribution allows MAS designers to start
with a model that is not necessarily efficient and let agents to im-
prove its efficiency automatically. This approach relieves designers
from the burden of model efficiency and makes the MSBN-based
MAS more accessible. Through formal analysis and experiments,
we have shown that the proposed agent interface enhancement ex-
plores only a small portion of the local search space and joint search
space, while improving the model efficiency significantly.

13. ACKNOWLEDGEMENT
Financial support from NSERC of Canada and NSF of USA is

acknowledged.

14. REFERENCES
[1] N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby.

Multivariate information bottleneck. In J.S. Breese and
D. Koller, editors, Proc. 17th Conf. on Uncertainty in
Artificial Intelligence, pages 152–161, San Francisco, 2001.
Morgan Kaufmann.

[2] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian
updating in causal probabilistic networks by local
computations. Computational Statistics Quarterly,
(4):269–282, 1990.

[3] S.M. Mahoney and K.B. Laskey. Network engineering for
complex belief networks. In Proc. 12th Conf. on Uncertainty
in Artificial Intelligence, pages 389–396, 1996.

[4] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[5] J.S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT
Press, 1994.

[6] N. Tishby, F. Pereira, and W. Bialek. The information
bottleneck method. In B. Hajek and R.S. Sreenivas, editors,
Proc. 37th Allerton Conf. on Communication, Control and
Computation, pages 368–377, 1999.

[7] Y. Xiang. Probabilistic Reasoning in Multi-Agent Systems: A
Graphical Models Approach. Cambridge University Press,
2002.

[8] Y. Xiang, J. Chen, and W.S. Havens. Optimal design in
collaborative design network. In Proc. 4th Inter. Joint Conf. on
Autonomous Agents and Multiagent Systems (AAMAS’05),
pages 241–248, 2005.

[9] Y. Xiang and V. Lesser. On the role of multiply sectioned
Bayesian networks to cooperative multiagent systems. IEEE
Trans. Systems, Man, and Cybernetics-Part A, 33(4):489–501,
2003.

