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Abstract. Most algorithms to learn belief networks use single-link looka-
head search to be efficient. It has been shown that such search procedures
are problematic when applied to learning pseudo-independent (PI) mod-
els. Furthermore, some researchers have questioned whether PI models
exist in practice.

We present two non-trivial PI models which derive from a social study
dataset. For one of them, the learned PI model reached ultimate predic-
tion accuracy achievable given the data only, while using slightly more
inference time than the learned non-PI model. These models provide
evidence that PI models are not simply mathematical constructs.

To develop efficient algorithms to learn PI models effectively we benefit
from studying and understanding such models in depth. We further ana-
lyze how multiple PI submodels may interact in a larger domain model.
Using this result, we show that the RML algorithm for learning PI mod-
els can learn more complex PI models than previously known.

Keywords: data mining, learning, uncertainty, belief networks.

1 Introduction

Learning belief networks [12] from data, as an alternative or enhancement to
elicitation from experts, has been an active research area in recent years, e.g.,
[7, 10, 4, 14, 6, 5]. As the task is NP-hard [1, 3], a common search method
used in heuristic learning is the single-link lookahead, where successive graphical
structures adopted differ by a single link. It has been shown that a class of
probabilistic models called pseudo-independent (PI) models cannot be learned
by single-link search [17]. A more sophisticated method (multi-link lookahead)
is proposed in [18] and is improved in [8] for learning decomposable Markov
networks (DMNs) from data.

DMNs are less expressive than Bayesian networks (BNs). However, DMNs are
the runtime representation of some algorithms for inference with BNs [11, 9, 13],
and can be the intermediate results for learning BNs. For example, learning PI
models needs multi-link lookahead and the search space for DAGs is much larger
than that of chordal graphs. Learning DMNs first can then restrict the search
for DAGs to a much smaller space, improving the efficiency.

One question often raised is whether PI models arise in practice. It has been
shown [16] that parity and modulus addition are special cases of PI models,



although some consider their occurrences to be less than ‘real’. In this paper,
we present two PI models discovered from ‘real’ data. The experimental results
provide evidence that PI models do occur in practice.

A better understanding of PI models facilitates developing algorithms that
learn PI models effectively. We provide an analysis of how multiple PI submodels
are embedded and interact in a model. Based on this analysis, we show that the
algorithm RML [8] can learn more complex PI models than previously known.

We review the background on PI models in Section 2 and analyze the inter-
action of PI submodels in Section 3. We review the RML algorithm in Section 4
and then presents our new result on its learning power in Section 5. Our exper-
imental discovery of PI models is presented in Section 6.

2 Overview of PI models

Let N be a set of discrete variables {X1, . . . , Xn} in a problem domain. Each
variable is associated with a finite number of possible values which we shall
denote by consecutive integers 0, 1, 2, . . .. A configuration of N ′ ⊆ N is an as-
signment of values to every variable in N ′, e.g., (X1 = 0, X2 = 1, ...) which we
denote by (x1,0, x2,1, ...).

Let P (Xi) represents the probability function for Xi and P (xi) denotes
the probability value of P (Xi = xi). The joint probability distribution (jpd)
is P (N ) = P (X1, X2, . . . , XN ) and P (x1,0, x2,1, . . . , xn,0) denotes the probabil-
ity of a particular tuple of N . A probabilistic domain model (PDM) M over N
determines the probability of every tuple of N ′ for each N ′ ⊆ N .

For three disjoint subsets A, B and C, A and B are conditionally independent
given C, denotes as I(A, C, B)M, if P (A|B, C) = P (A|C) whenever P (B, C) >
0. When C = φ, A and B are marginally independent. If each variable X in A
is marginally independent of A \ {X}, then P (A) =

∏
X∈A P (X). We shall say

that variables in A are marginally independent. Variables in A are collectively
dependent if for each proper subset B ⊂ A, there exists no proper subset C ⊂
A \ B such that P (B|A \ B) = P (B|C). Variables in A are generally dependent
if for any proper subset B, P (B|A \ B) 6= P (B). We introduce the concept of
marginally independent subsets to be used in definition of PI models below.

Definition 1 (Marginally independent subsets) Let N be a set of vari-
ables. Two disjoint nonempty subsets N1 and N2 of N are marginally independent
subsets if for each X ∈ N1 and Y ∈ N2, X and Y are marginally independent.

A domain may be partitioned into marginally independent subsets.

Definition 2 (Marginally independent partition) Let M be a PDM over
N . A partition {N1, . . . , Nk} (k > 1) of N is a marginally independent
partition if every two subsets Ni and Nj (1 ≤ i, j ≤ k, i 6= j) are marginally
independent subsets.



We refer to each Ni as an element of the partition.
Let A, B and C be disjoint subsets of nodes in an undirected graph G =

(N, E). C is said to separate A from B, denoted as < A|C|B >G, if every path
from A to B has a node in C. Given a PDM M over N and a graph G = (N, E), G
is an I-map of M if for all disjoint A, B, C, we have < A|C|B >G=⇒ I(A, C, B)M
[12]. A minimal I-map is one in which no link can be deleted such that it is still
an I-map.

A pseudo-independent (PI) model is a PDM where proper subsets of a set of
collectively dependent variables display marginal independence [18]. PI models
can be classified into three types. The most restrictive type is full PI models.

Definition 3 (Full PI model) A PDM over a set N (|N | ≥ 3) of variables is
a full PI model if (S1) for each X ∈ N , variables in N \ {X} are marginally
independent; and (S2) variables in N are collectively dependent.

In a full PI model, every proper subset of variables are marginally indepen-
dent. This is relaxed in the partial PI models. In a partial PI model, not every
proper subset of variables are marginally independent.

Definition 4 (Partial PI model) A PDM over a set N (|N | ≥ 3) of variables
is a partial PI model if (S1’) N forms a marginally independent partition
{N1, . . . , Nk} (k > 1); and (S2) variables in N are collectively dependent.

In a PI model, it may be the case that not all variables in the domain are
collectively dependent. An embedded PI submodel displays the same dependence
pattern of the previous PI models but involves only a proper subset of domain
variables.

Definition 5 (Embedded PI submodel) Let a PDM be over a set N of gen-
erally dependent variables. A proper subset N ′ ⊂ N (|N ′| ≥ 3) of variables forms
an embedded PI submodel if (S4) N ′ forms a partial PI model; and (S5) the par-
tition {N1, . . . , Nk} of N ′ by S1’ extends into N . That is, there is a marginally
independent partition {A1, . . . , Ak} of N such that Ni ⊆ Ai, (i = 1, .., k).

In general, a PI model can contain one or more PI submodels, and this
embedding can occur recursively for any finite number of times. Since variables
in a PI submodel are collectively dependent, in a minimal I-map, the variables
in the submodel are completely connected. The marginal independence between
subsets in the submodel is thus unrepresented. The undirected I-maps can be
extended into colored I-maps:

Definition 6 An undirected graph G is a colored I-map of a PDM M over
N if (1) G is a minimal I-map of M , and (2) for each PI submodel m, links
between each pair of nodes from distinct marginally independent subsets in m
are colored. Other links are referred to as black.



Conditional independence relations among variables can be read off a colored
I-map by treating it as a normal I-map while recognizing marginal independence
between variables connected by colored links.

A PI model is shown in Table 1. It contains four PI submodels over

N1 = {a, c, d}, N2 = {a, b, c}, N3 = {b, c, d}, N = {a, b, c, d}.

The entire domain N forms a partial PI model with the other three PI submodels
embedded. Figure 1 shows the colored I-map, where colored links are dotted.

Table 1. A partial PI model with embedded PI submodels.

(d, a, b, c) P (.) (d, a, b, c) P (.) (d, a, b, c) P (.) (d, a, b, c) P (.)

(0, 0, 0, 0) 0.02 (0, 1, 0, 0) 0.1 (1, 0, 0, 0) 0.03 (1, 1, 0, 0) 0.09

(0, 0, 0, 1) 0.02 (0, 1, 0, 1) 0.06 (1, 0, 0, 1) 0.01 (1, 1, 0, 1) 0.07

(0, 0, 1, 0) 0.06 (0, 1, 1, 0) 0.14 (1, 0, 1, 0) 0.01 (1, 1, 1, 0) 0.15

(0, 0, 1, 1) 0 (0, 1, 1, 1) 0.1 (1, 0, 1, 1) 0.05 (1, 1, 1, 1) 0.09

c

d

ba

Fig. 1. Colored I-map of the model in Table 1.

3 How PI submodels interact?

A PI model may contain a number of PI submodals. How are these submodels
related to each other? We address this question below. An understanding of their
interaction will guide us in designing better learning algorithms and evaluating
the quality of learning outcomes.

First, we refine the concept of marginally independent partition. Given a
PDM, it may have multiple marginally independent partitions. We identify the
‘finest’ partition as follows:

Definition 7 (Minimum partition) Let M be a PDM over N . A marginally
independent partition {N1, . . . , Nk} (k ≥ 1) of N is minimum if no Ni (1 ≤ i ≤ k)
can be partitioned into marginally independent subsets.

For instance, in the PDM of Table 1, {{a}, {c, d},{b}} is a minimum parti-
tion. A minimum partition is unique as shown below:

Proposition 8 For any PDM, it has a unique minimum marginally independent
partition.



Next, we define covered and uncovered colored links in a PI submodel to
describe the relation between PI submodels which share variables. It turns out
that this relation has a lot to do with how each submodel can be learned and in
what order, as will be seen.

Definition 9 [Uncovered colored link] Let G be a colored I-map of a PI model
M. Let l be a colored link in a PI submodel m which contains km colored links.
The link l is uncovered in m if there exists no PI submodel s in M such that l
is also contained (covered) in s and the number of colored links ks of s satisfies
ks < km.

Figure 2 (a) illustrates PI submodels with both covered and uncovered col-
ored links. Figure 2 (b) illustrates PI submodels which share variables but all
colored links are uncovered. Table 1 is a numerical example for the case of Fig-
ure 2 (a), where m is over {a, b, c} and s is over {b, c, d}. A numerical example
for the case of Figure 2 (b) is given in Table 2, where m′ is over {a, b, c} and s′

is over {b, c, d}.
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Fig. 2. (a) Two PI submodels m and s (each enclosed in an oval) share variables
{c, d, e}. Assume no other PI submodels share variables with them. Submodel m has
nine colored links. Six of them, (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), are uncovered. The
remaining are covered. Submodel s has six colored links all of which are uncovered. (b)
Two PI submodels m′ and s′ share variables {b, c, d}. Submodel m′ contains six colored
links and all of them are uncovered. Submodel s′ has the same number of colored links
and all of them are uncovered.

Table 2. A model with two PI submodels

(d, a, b, c) P (.) (d, a, b, c) P (.) (d, a, b, c) P (.) (d, a, b, c) P (.)

(0, 0, 0, 0) 0.0024 (0, 1, 0, 0) 0.00336 (1, 0, 0, 0) 0.00336 (1, 1, 0, 0) 0.004704

(0, 0, 0, 1) 0.000064 (0, 1, 0, 1) 0.000448 (1, 0, 0, 1) 0.000448 (1, 1, 0, 1) 0.003136

(0, 0, 1, 0) 0.002304 (0, 1, 1, 0) 0.008064 (1, 0, 1, 0) 0.008064 (1, 1, 1, 0) 0.028224

(0, 0, 1, 1) 0.0024 (0, 1, 1, 1) 0.00336 (1, 0, 1, 1) 0.00336 (1, 1, 1, 1) 0.004704

Next, we analyze several properties of PI models related to the concepts
introduced above. Lemma 10 says that the number of colored links in any PI
models is lower bounded at 2.

Lemma 10 Let M be a PI model and k be the number of colored links in M.
Then k ≥ 2.



Lemma 11 reveals the features of PI models when the lower bound in Lemma 10
is reached.

Lemma 11 Let M be a partial PI model over N with exactly two colored links.
Then (1) the minimum marginally independent partition Par of N has two ele-
ments and (2) |N | = 3.

Lemma 12 says that the upper bound of uncovered colored links in PI sub-
models are lower bounded at 2.

Lemma 12 Let M be a PI model and each embedded PI submodel in M con-
tains no more than i uncovered colored links. Then i ≥ 2.

Theorem 13 reveals how PI submodels in a PI model are related to each
other.

Theorem 13 Let PDM M be a PI model and {M1, . . . , Mj} (j ≥ 1) be the PI
submodels in M. Let D be a direct graph of j nodes where each node is labeled
by a Mi such that Mj is a parent of Mi if Mj has colored links covered by Mi.

Then D is acyclic.

We shall call D the PI submodel coverage DAG of M.
D may be disconnected. If two submodels neither share colored links directly

nor share colored links through a chain of intermediate submodels, then the two
submodels will be disconnected. In a minimal colored I-map, the two submodels
will be connected through black links.

Another case of disconnection is when two submodels share colored links only
with each other and have the identical number of colored links. Since none can
cover the links of the other, there cannot be a directed link between them in D.

Each PI submodel with all its colored links uncovered is a leaf in D.
For example, in the PDM shown in Table 1, there are four PI submodels

M1, M2, M3 and M4 over N1, N2, N3 and N , respectively. Its PI submodel cov-
erage DAG has a root node M4 with three child nodes M1, M2 and M3.

4 Overview of RML algorithm

PI models cause difficulty to common algorithms that are based on a single-link
lookahead search [17]. The initial attack on learning PI models [18] is based
on iterations of lookahead(i) as shown in Algorithm 1. It is intended to learn
a decomposable Markov network (DMN) from a dataset over a set of N of
variables. The K-L cross entropy is used as the score metric. The algorithm
consists of a sequence of calls of lookahead(i) with i taking the values 1, 2, ...,
k for a specified k value.



Algorithm 1 boolean lookahead(i);
Parameter i: number of lookahead links.
Input: graph G = (N,E) and threshold δh.

begin
modified := false, G′ := G;
repeat

initialize entropy decrement dh′ := 0;
for each set L of links (|L| = i, L ∩ E = φ), do

if G∗ = (N,E ∪ L) is chordal, then
compute entropy decrement dh∗;
if dh∗ > dh′, then dh′ := dh∗, G′ := G∗;

if dh′ > δh, then
G := G′, done := false, modified := true;

else done := true;
until done = true;
return modified;

end

The lookahead(i) performs a multi-link lookahead search which examines i
link(s) at each step. That is, alternative structures that differ from the current
structure by i links are evaluated. The i links that decrease the entropy maxi-
mally are selected. If the corresponding entropy decrement is significant enough,
the i links will be adopted and the search continues until no more links can be
learned. We refer to this search as an i-link-only search.

The algorithm based on i-link-only search with incrementally larger i values
can learn many PI models correctly. However, when a PI model contains recur-
sively embedded PI submodels, the algorithm fails. For example, if the data is
populated by the PI model in Table 1, then after learning the black link in the
single-link search and submodels M1 and M3 in the double-link-only search, the
algorithm will halt, missing the colored link {a, b}.

Algorithm 2 RML
Input: data over a set N of variables, a maximum number k of lookahead links.

begin
1 initialize a graph G = (N,E = φ);
2 for j := 1 to k, do
3 i := j;
4 while i ≤ j, do
5 modified := lookahead(i);
6 if i > 1 AND modified = true, then i := 1;
7 else i := i + 1;
8 return G.
end

The algorithm RML was proposed [8] to improve the performance (shown in
Algorithm 2).

RML also uses lookahead(i). However, whenever links are learned at an i-link-
only search, RML backtracks to single-link search as shown in line 6. This allows



RML to learn recursively embedded PI submodels correctly. For the PI model
in Table 1, the link {a, b} will be learned when backtracking to the single-link
search after the double-link-only search. The complexity of RML was analyzed
in [8].

5 Models learnable by RML

The PI models that are learnable by RML was analyzed in [8]. It was concluded
that if a PI model has no submodel that contains more than k colored links,
then RML with the parameter k can learn the model correctly. In the following,
we refine that result. The new result shows that RML with the parameter k can
actually learn PI submodels with more than k colored links. This expands the
known learning power of RML.

We first introduce some background. We define two properties that are sat-
isfied by some PDMs:

Definition 14 [15] Let A, B, C, V and W be disjoint subset of variables.
Composition: I(A, B, C) & I(A, B, W ) =⇒ I(A, B, C ∪ W ).
Strong Transitivity: I(A,B∪V,C) & I(B,C∪V,W ) =⇒ I(A,B∪V,C∪W ).

We shall use the following result from [15] which characterizes the learning
capacity of a lookahead(1)-like single-link lookahead for learning DMNs1. For
the purpose of analysis, we assume a prefect data (no sampling error) and the
threshold δh is then set to zero.

Theorem 15 [15] Let M be a PDM that satisfies composition and strong tran-
sitivity. Let G be a chordal graph returned by a lookahead(1)-like single-link
lookahead search. Then G is an I-map of M.

Theorem 16 shows the learning capacity of RML.

Theorem 16 Let PDM M be a PI model over N . Let Par = {N1, . . . , Nj}
(j > 1) be the minimum marginally independent partition of N . If variables
in each Ni satisfy composition and strong transitivity, and each embedded PI
submodel contains no more than k (k ≥ 2) uncovered colored links, then RML
with the parameter k will return an I-map of M.

Theorem 16 shows that RML with parameter k is not limited to learning
PI submodels with up to k colored links. Rather, it is limited to learning PI
submodels with up to k uncovered color links. Hence, a PI submodel with more
than k colored links is learnable by RML as long as it shares colored links with
other PI submodels so that it has no more than k uncovered links. Since the
time complexity of RML is exponential on k, this result implies that much more
complex PI submodels (compared with the previous result [17]) can be learned
correctly without increasing the computational complexity.
1 There are some minor differences between the single-link lookahead used in [15]

and lookahead(1), e.g., the maximum score improvement at each search step is not
required there. However, the difference is irrelevant to the current result.



6 Discovery of PI models from data

Since previous reports on the study of PI models have used constructed models
like those in Tables 1 and 2, the practical value of such study has been questioned
by some. In the following, we provide two PI models that are discovered from
real data in a preliminary experimental study.

The data we used is from the 1993 General Social Survey (GSS) on Personal
Risk conducted by Statistics Canada in 1993 [2]. The dataset contains 11960
cases over 469 variables. A preliminary study was performed on a few subjects.
The experiment was carried out using WEBWEAVR-III toolkit (available for
downloading at the first author’s homepage) which implements the RML algo-
rithm as one module.

Table 3. Variables in data on Accident Prevention

index V ariable Question

0 UseSeatBelt Accident Protection : Use seat belt in vehicle?
1 WearHelmet Accident Protection : Wear Helmet riding bicycle?
2 MedFrmKid Accident Protection : Store medicines from children?
3 SafetyEquip Accident Protection : Use safety equipment?
4 SmokeAlarm Do you have a working smoke detector in your home?
5 FireExtsher Do you have a working fire extinguisher at home?
6 FstAidSuply Do you have first aid supplies at home?
7 FstAidTrain Y ou or household members trained in first aid?

One PI model we discovered is on “Accident Prevention Precautions” (Ta-
ble 3). The first eight variables (questions) in the data were used in the study.
All of them are binary. After deleting cases with missing variables, 4303 cases
were used as the learning input. Using k = 2, the learning program returned the
DMN in Figure 3 (d).

The learning process is shown in Figure 3. The first single-link lookahead
search learned a disconnected graph shown in (a). Note that three marginally
independent subsets were found. In the following double-link-only search, the
three PI submodels below were learned and shown in (b), (c) and (d), respec-
tively.

M1 : {SafetyEquip, F ireExtsher, FstAidTrain}
M2 : {WearHelmet, MedFrmKid, SafetyEquip}
M3 : {SafetyEquip, F ireExtsher, FstAidSuply, FstAidTrain}
Note that M1 is recursively embedded in the PI submodel M3. After the

double-link-only search, backtracking occurred without learning additional links.
Another PI model we discovered is on “Harmful Effects of Personal Drink-

ing”. The data contains 8 variables (questions) described in Table 4. The first
six variable are binary. The last two variables each has the domain {NoDrinking,
1To2Drinks, EnoughToFeelTheEffects, GettingDrunkIsSometimesOk }. After
deleting cases with missing variables, 8047 cases were selected. The first 7047
cases were used as the learning input, and the other 1000 cases were hold as test
set (see below).
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Fig. 3. The process of learning Accident Prevention model. Colored links are shown as
dotted.

Table 4. Variables in data on Harmful drinking

i V ariable Question

0 HarmSocial Did alcohol harm friendships/social life?
1 HarmHealth Did alcohol harm your physical health?
2 HrmLifOutlk Did alcohol harm your outlook on life?
3 HarmLifMrig Did alcohol harm your life or marriage?
4 HarmWorkSty Did alcohol harm your work, studies, etc?
5 HarmFinance Did alcohol harm your financial position?
6 NumDrivrDrink How many drinks should a designated driver have?
7 NmNonDrvrDrink How many drinks should non − designated driver have?

Using k = 1, the learning program returned the DMN in Figure 4 (a) with
two marginally independent subsets. Using k = 2, a partial PI submodel M =
{HarmHealth, HarmFinance, NmNonDrvrDrink} was detected. The DMN
returned is shown in (b) where colored links are shown as broken lines.

A PI model captures more dependence in a data and hence will provide better
prediction when used for future decision making. On the other hand, it is also
more expensive to learn and to perform inference with. A good model is one that
provides sufficiently better prediction without being too much more expensive
in inference. To evaluate the overall “goodness” of the learned PI model, we
compared the performance of three learned models:
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Fig. 4. DMN learned from data on Harmful drinking

1. The DMN in figure 4 (a) which we refer to as Non-PI DMN. To be able to
reason with it in a normal inference engine, we added a dumb link between
HarmFiance and NumDrivrDrink to make it connected. However, the
link potential table carries no dependence.

2. The DMN in (b) which we refer to as PI DMN.

3. A completely connected DMN which we refer to as jpd DMN.

Since the Non-PI DMN is a subgraph of the PI DMN which in turn is a sub-
graph of the jpd DMN, we expect that they provide increasingly better prediction
and inferences are increasingly more expensive. We tested the three DMNs using
the other 1000 cases which the learning program did not see. For each case, we
used the value of the following six variables as observations,

HarmSocial, HarmHealth, HrmLifOutlk,
HarmLifMrig, HarmWorkSty, HarmFinance,

which were all taken from one marginally independent partition. We then per-
formed inference in each DMN to predict the value of NmNonDrvrDrink in
the other marginally independent partition. The results are shown in Table 5.

Table 5. Evaluation summary.

Learnednet Infer.time (s) Hitcount Avg.Euc. Avg.KL

NonPI DMN 11.82 315 0.0617 0.01842
PI DMN 16.24 347 0.0193 0.00786

JPD DMN 638.57 347 0.0 0.0

Inference for 1000 cases using the Non-PI DMN took 11.82 sec (see the second
column). The PI DMN took 37% longer (16.24 sec). However, the jpd DMN took



about 60 times longer. Hence, the PI DMN and Non-PI DMN are comparable
in terms of inference efficiency.

Out of 1000 cases, the Non-PI DMN predicted correctly for 315 cases (see
the third column), while the jpd DMN predicted correctly for 347 cases, which
is 10% better. Note that since the target variable has four possible values, a
random guess is expected to hit about 250 cases. Furthermore, since the jpd
DMN captured all the probabilistic dependence in the data, we can do no better
than its performance given only the training data. Interestingly, the PI DMN
predicted just as well as the jpd DMN, while it only used a very small fraction of
the inference time of the jpd DMN. The last two columns of the table show the
Euclidean and K-L (cross entropy) distances between the posterior distribution
by each DMN and that by the jpd DMN, averaged over the 1000 cases. The
distances by PI DMN is much smaller than those by the Non-PI DMN.

7 Conclusion

Our experimental discovery of the two PI models suggests that PI models, in-
cluding recursively embedded PI models, are not simply mathematical constructs
but are practical reality. In our performance comparison, the learned PI model
reached ultimate prediction accuracy with only slight increase in inference com-
plexity compared with the learned Non-PI model. The PI models that we pre-
sented were discovered after only a few trials from one data set. The increase in
prediction power obtained from the model is far from the potential increase that
can be expected according to the theory of PI models. Hinted by the theory,
we believe that PI models with more impressive gain in prediction power can
be found. We plan to demonstrate that with more search in the future. On the
other hand, our performance comparison does show that the concept of PI mod-
els is useful in practice when one seeks to discover models with better overall
performance.

Given the usefulness of learning PI models, a better understanding of the
characteristics of PI models can provide valuable guidance to the design of algo-
rithms that can learn such models effectively. Our analysis of RML algorithm is
one more step in that direction. It not only expands the boundary of learnable
PI models with given computation resources, but also reenforce our belief that
with some controlled increase of complexity, PI models can be learned tractably.
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