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Abstract. We propose an improved scoring metrics for learning belief
networks driven by issues arising from learning in pseudo-independent
domains. We identify a small subset of variables called a cruz, which is
sufficient to compute the incremental improvement of alternative belief
network structures. We prove formally that such local computation, while
improving efficiency, does not introduce any error to the evaluation of
alternative structures.

(Keywords: Knowledge discovery, data mining, machine learning, belief
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1 Introduction

Learning belief networks from data has been an active research area in recent
years [2, 7, 4, 15, 3]. Successive graphical structures are evaluated with a scoring
metrics until a stopping condition is met. As the task is NP-hard [1], a common
method in selection the structure is the single-link lookahead, where successive
structures adopted differ by a single link. It has been shown that a class of
probabilistic models called pseudo-independent (PI) models cannot be learned
by single-link search [14]. A more sophisticated method (multi-link lookahead)
is proposed in [15] and is improved in [5] for learning decomposable Markov
networks (DMNs) from data.

DMNs are less expressive than Bayesian networks (BNs). However, DMNs are
the runtime representation of several algorithms for inference with BNs [8, 6, 10],
and can be the intermediate results for learning BNs. For example, learning PI
models needs multi-link lookahead and the search space for DAGs is much larger
than that of chordal graphs. Learning DMNs first can then restrict the search
for DAGs to a much smaller space, improving the efficiency.

In this work, we focus on learning DMNs using the entropy score which
is closely related to other scoring metrics [15] such as Bayesian [2], minimum
description length (MDL) [7], and conditional independence [9, 11]. The score of
a DMN is defined as the entropy of the DMN computed from its joint probability
distribution (jpd). Previous work [15, 5, 13] used entropy score as the sole control
of both goodness-of-fit and complexity of the output structure. An increment
threshold Ah of the entropy score is set by the user. Learning stops when no



structure (allowed by the given lookahead search) can improve the score beyond
Ah. The smaller the value of Ah, the better the goodness-of-fit of the output
structure, and the more complex the structure is.

Such stopping control works fine with the single-link lookahead. However, an
issue arises when multi-link lookahead is performed: It is possible at some point of
learning that a best single link may produce a score improvement 0.0099 and get
rejected since Ah = 0.01. On the other hand, a best double-link that produces a
score improvement of 0.01 will be adopted. It can be argued that the double-link
increases the complexity of the structure much more than it contributes to the
goodness-of-fit. Hence if any link is to be added at all, a single link is a better
choice than a double-link. However, using the entropy improvement as the sole
stopping control, this issue cannot be resolved.

In this work, we address this issue by explicitly describing the model com-
plexity in the score (a common approach in learning). We define a new score
as

(M) = I'(M) + a Ihy(M)

where M is a DMN, I'; (M) measures the goodness-of-fit of M, and I';(M) mea-
sures the complexity of M. The constant « is set by the user to trade goodness-
of-fit with the complexity of the output DMN. Learning stops when no DMN
M’ can improve I'(M) for the current DMN M. Hence, threshold is no longer
needed. The above issue will be resolved since the single link will improve I'(M)
more than the double link.

In the rest of the paper, we propose how to compute the incremental change
in I'(M) due to link addition by local computation using a small subset of
variables called cruz. We prove the correctness of the algorithms formally.

2 Background

Let G = (V, E) be a graph, where V is a set of nodes and F a set of links. A
graph is a forest if there are no more than one path between each pair of nodes.
A forest is a tree if it is connected. A set X of nodes is complete if elements of
X are pairwise adjacent. A maximal set of nodes that is complete is a clique. A
path or cycle p has a chord if there is a link between two non-adjacent nodes in
p. G is chordal if every cycle of length < 4 has a chord.

A cluster graph is a triplet (V, §2,5), where V is called a generating set, £2 is
a set of nodes each of which is labeled by a nonempty subset of V' and is called a
cluster, S is a set of links each of which is labeled by the intersection of the two
clusters connected and is called a separator. A cluster forest is a junction forest
(JF) if the intersection of every pair of connected clusters is contained in every
cluster on the path between them. Let G = (V| E) be a chordal graph, 2 be the
set of cliques of G, and F be a JF (V, £2,5). We will call F a corresponding JF
of GG. Such a JF exists if and only if GG is chordal.

A DMN is a triplet M = (V,G,P), where V is a set of discrete variables in
a problem domain, and G = (V, E) is a chordal graph. P is a set of probability
distributions one for each cluster defined as follows: Let F' be a corresponding



JF of G. Direct links of F' such that each cluster has no more than one parent
cluster. For each cluster C' with a parent @, associate C' with P(C|Q). The jpd
of M is defined as P(V) = [[ P(C|Q). Probabilistic conditional independence
among variables in V' is conveyed by node separation in G, and by separator
separation in F. It has been shown [12] that G and F encode exactly the same
dependence relations within V. Hence, we will switch between the two graphical
views from time to time.

3 Local computation for measure of goodness-of-fit

The goodness-of-fit of a DMN M to an underlying (unknown) domain model
can be measured by the K-L cross entropy between them. It has been shown [15]
that to minimize the K-L cross entropy, it suffices to minimize the entropy of M
which can be computed as

Hy(V) =) H(C)=) H(S), (1)

where C' is a cluster in the corresponding JF and S is a separator. Hence we
shall use the entropy of a DMN M as the measure of goodness-of-fit, denoted as
(M) = Hy (V).

During learning, a large number of alternative DMN structures need to be
evaluated using the score. Since most of the clusters and separators do not
change between successive structures, it is inefficient to compute the entropy of
all of them for each structure. It is much more efficient to identify a small set of
clusters and separators that contribute to the incremental change of the score
after a set of links has been added to the current structure. In the following, we
study how these clusters and separators can be identified effectively.

First, we define the context in which the learning takes place: At each step
of learning, a set of links L is added to the current structure G to obtain a
supergraph G’ of G. The cardinality |L| depends on whether it is single-link
lookahead (|L| = 1) or multi-link lookahead (|L| > 1). The initial G at the start
of learning is an empty (chordal) graph. We require that at each step, G’ is
also a chordal graph and the endpoints ED of L are contained in a clique of
G'. We shall call G’ the chordal supergraph of G induced by L. We denote the
corresponding JF of G’ by F’.

4 The notion of crux

In this section, we identify a small subset of V called cruz that are defined by
the structural change due to adding links L to a chordal graph. We establish
some properties of crux. In the next section, we show that the crux is a sufficient
subset of variables necessary to compute the incremental change of of entropy.

Lemma 1 Let G be a chordal graph and G’ be a chordal supergraph of G induced
by a set L of links. Then the clique that contains FE D, the set of endpoints of L,
1§ unique.



Proof:

Suppose that two distinct cliques C' and @ exist in G’ that contain ED. Then
there exist ¢ € C' and q € @ such that ¢ € Q and ¢ € C. That is, {c, ¢} is not a
link in G’ and hence not in G as well.

Let {z,y} be any link in L. Since z, y and ¢ are all in C, they must be
complete in G'. Since {z,c} and {y,c} are not in L, they must be links in G.
Similarly, {z, ¢} and {y, ¢} must be links in G. We have therefore found a cycle
(z,¢,y,q,2) in G and neither {z,y} nor {c,q} is a link in G: a chordless cycle.
This contradicts that G is chordal. a

Definition 2 Let G be a chordal graph and G’ be a chordal supergraph of G
induced by a set L of links. Let C' be the unique clique in G' that contains the
endpoints of L. Let @ be any clique of G' such that Q N C # B and @ is not a
clique in G. Denote the set of all such cliques by . Then the union of elements
n @, namely, Uer Q s called the crux induced by G and L, and the set @ is
called the generating set of the cruz.

Note that the crux contains C'. Note also that since each pair of cliques in
a chordal graph is incomparable, given the crux R, its generating set @ can be
uniquely identified.

Figure 1 illustrates the concept of crux in different cases. In each box, the
upper graphs are chordal graphs G and G where dashed link(s) indicate the set
L of links added. The lower graphs in each box depict the corresponding JFs
where the dashed cluster(s) form the generating set @. For example, in (a) and
(b), the generating set @ contains only a single cluster which is the crux itself.
In (c), however, @ consists of {b, ¢, f} and {e, e, f} while the crux is {b, ¢, e, f}.

The following proposition says that each clique in @ contains the endpoints
of at least one link in I, and @ is made of all such cliques.

Proposition 3 Let G be a chordal graph and G’ be a chordal supergraph of G
induced by a set L of links. Let R be the cruzx induced by G and L and @ be its
generating set.

1. For each ) € ®, there exists a link {z,y} € L such that {z,y} C Q.

2. For each clique Q) in G’, if there exists a link {z,y} € L such that {z,y} C Q,
then () € ®.

Proof:

(1) Suppose for @ € &, no such {z,y} is contained in @Q. Then @ is not a
clique newly created or enlarged by the addition of L to GG. That is, G is a clique
in GG: contradiction to @) € ®.

(2) Let @ be aclique in G’ such that the stated condition holds. The QNC #
and @ is not a clique in G. O

The following proposition shows that the crux is in fact the union of all
cliques newly formulated due to the addition of L. In the proposition, “\” is the
set difference operator.



Fig. 1. Tllustration of crux

Proposition 4 Let G be a chordal graph and G’ be a chordal supergraph of G
induced by a set L of links. Let £2 be the set of cliques in G, 2’ be the set of
cliques in G', R be the cruzr induced by G and L, and ® be the generating set of
R. Then & = '\ £2.

Proof:

Each clique contained in R is in 2\ §2 by the definition of crux. We only
need to show that each @ € §2'\ £2 is also contained in R, that is @ N C # 0,
where C'is the unique clique in G’ that contains endpoints E D of L. Each clique
@ in G that is created or is modified from cliques of G due to adding I must
contain elements of ED, and hence Q N C # 0. O

Although Proposition 4 gives a much simplier definition of crux, Definition 2
allows more efficient computation of the crux. Based on Proposition 4, the crux
can be obtained by computing '\ £2. The complexity is O(|£2]?) since || ~ |£2].
On the other hand, based on Definition 2, one pass through 2’ is needed to find
C', another pass is needed to find cliques intersecting with C' (assuming & such
cliques are found), and additional & passes through 2 are needed to identify the
newly created or enlarged cliques. The complexity is O((k + 2) |£2]). The value
of k is usually a very small integer. Hence for large problem domains, k& + 2 is
much smaller than |£2|. Since the crux needs be obtained for every structure to
be evaluated, significant computational savings can be obtained if Definition 2



is followed.
The following proposition says that the generating set of the crux forms a
subtree in F’.

Proposition 5 Let G be a chordal graph and G’ be a chordal supergraph of G
induced by a set L of links. Let R be the cruz induced by G and L and F’ be the
corresponding JF of G'. The generating set ® of R forms a connected subtree in
F'.

Proof:

We prove by contradiction. Let C' be the unique clique of G that contains
endpoints E'D of L. Suppose that members of @ do not form a connected subtree
in F'. Then there exists a cluster ) € @ and a cluster Z ¢ @ such that Z is on the
path between C' and @ in F’. This implies Z D C' N Q. By Proposition 3, there
exists {z,y} € L such that {z,y} C Q. By Lemma 1, we also have {z,y} C C.
Therefore, we have {z,y} € Z. By Proposition 3, this implies that Z € &: a
contradiction. O

5 Sufficient subdomain for entropy score computation

The following proposition shows that if the two corresponding junction forests
I and F’ share some clusters, then there exists one such cluster that is terminal
in F'.

Proposition 6 Let G be a chordal graph and G’ be a chordal supergraph of G
induced by a set L of links. Let F and F' be the corresponding JF of G and G’,
respectively. If F' shares clusters with F, then at least one of them is terminal
in F'.

Proof:

Suppose the conclusion does not hold. Let R be the crux induced by G and
L. Then the generating set of R will not form a connected subtree in F’: a
contradiction with Proposition 5. O

The following proposition says that if a cluster shared by F and F’ is terminal
in F’, then its boundary is complete and identical in both chordal graphs, G and
G

Proposition 7 Let G be a chordal graph and G’ be a chordal supergraph of G
induced by a set L of links. Let F and F' be the corresponding JF of G and G’,
respectively. Let () be a cluster shared by F and F', and is terminal in F'. Then
the boundary between @ and V' \ Q in both G and G’ is complete and identical.

Proof:



Since @ is terminal in F”, its boundary with V' \ @ in G’ is complete. Since
@ is shared by F and F', it does not contain any {z,y} € L by Propositions 3
and 4. Hence, its boundary with V' \ @) in G was not altered by adding L to G.
This implies that its boundary with V' \ @ in G is identical to that in G'. O

The following proposition shows that the increment of entropy score can be
correctly computed without variables in a shared terminal cluster. Let G be the
structure of a DMN M over V. Let @ be a clique in G with a complete boundary
S. If we remove variables @\ S from V' and remove the corresponding nodes from
G, the resultant graph is still chordal and is a valid structure of a DMN. We call
the resultant DMN a reduced DMN.

Proposition 8 Let G be the structure of a DMN M over V and G’ be the
structure of another DMN M’ that is a chordal supergraph of G induced by a set
L of links. Let H(V) and H'(V') be the entropy of M and M', respectively. Let
Q be a cluster shared by F and F’, and is terminal in F'. Let S be the separator
of @ in F'. Then 6h = H(V) — H'(V) can be computed using reduced DMNs
where variables in V' \ (Q \ S) are removed.

Proof:
Denote V* = V' \ (@ \ S). Since S is the boundary of @) in G’, we have

H'(V)=H'(V") + HQ) - H(S) ,

where H'(V*) is the entropy of the DMN obtained by removing variables @ \ .S
from M’. By Proposition 7, S is also the boundary of @ in GG. We have

H(V)=H(V")+ H(Q) - H(S),

where H(V*) is the entropy of the DMN obtained by removing variables @ \ S
from M. Hence 6h = H(V)— H'(V)=H(V*)—- H'(V*). O

By recursively applying Proposition 8, the following theorem establish the
correctness of local computation for the incremental entropy score.

Theorem 9 Let G be the structure of a DMN M over V and G’ be the structure
of another DMN M’ that is a chordal supergraph of G induced by a set L of
links. Let H(V) and H'(V) be the entropy of M and M’', respectively. Then
the crur R induced by G and L is a sufficient subset of V needed to compute
dh=H(V)—-H'(V).

Proof:

Let F be the corresponding JF of G, and F’ be that of G'. If F and F’
have shared clusters, by Proposition 6 a terminal cluster ) shared by F and F’
can be found. Denote the separator of @ in F/ by S and V* =V \ (Q\ S). By
Proposition 8, §h can be computed as H(V*) — H'(V*). By recursively applying
Propositions 6 and 8, eventually we can remove all clusters shared by F and



F'. The remaining clusters is the generating set @ of R, and hence dh can be

computed as dh = H(R) — H'(R). O

Theorem 9 suggests the following method to compute dh by local computa-
tion: First compute the crux R based on Definition 2. Then compute the sub-
graphs of G and G’ spanned by R. Convert the subgraphs into junction forest
representations and compute dh using equation 1.

6 Complexity of a decomposable Markov network

We now shift to the computation of the complexity of a DMN, which we define as
the total number of unconstrained parameters needed to specify P. We denote
the space of a set X of variables by Dx. The following Lemma derives the
complexity of two adjacent cluster representations in a DMN. Due to space
limit, the proofs for all formal results on the complexity will be included in a
longer version of this paper.

Lemma 10 Let C be a cluster in the junction forest representation of a DMN,
@ be its terminal parent, and S be their separator. Then the total number of
unconstrained parameters required to specify P(CUQ) is |Dc|+|Dg|—|Ds|—1.

The following theorem derives the complexity of a DMN whose structure is

aJT.

Theorem 11 Let {2 be the set of clusters in the junction tree representation of
a DMN over variables V and W be the set of separators. Then the total number
of unconstrained parameters needed to specify P(V) is

N= > |[Dc|- > |Ds,|—1.

C.en S;ev¥

The following corollary extends Theorem 11 on the complexity of a JT rep-
resentation to a junction forest representation.

Corollary 12 Let £2 be the set of clusters in a junction forest representation of
a DMN over V and ¥ be the set of separators. Let the junction forest consist of
k junction trees. Then the total number of unconstrained parameters needed to

specify P(V) is
N= > |Dc|- > |Ds,|—k.
C,en S;e¥

Based on Corollary 12, we have the measure of complexity of a DMN M as

n(M)y= Y |De|= > [Ds,|— k.

C,en S;ev¥



7 Local computation of DMN complexity

Following the same idea of local computation of §h, we want to find a small
subset of variables sufficient to compute the incremental change of complexity
due to the addition of links L to the current DMN. We show below that the crux
is just such a subset.

The following proposition says that a terminal cluster unchanged by the
addition of L is irrelevant to the computation of the incremental complexity.

Proposition 13 Let G be the structure of a DMN M over V and G’ be the
structure of another DMN M’ that is a chordal supergraph of G induced by a
set L of links. Let N and N’ be the total number of unconstrained parameters
needed to specify P(V) for M and P'(V) for M', respectively. Let Q be a cluster
shared by F and F’', and is terminal in F'. Let S be the separator of @ in F’.
Then én = N' — N can be computed using reduced DMNs where variables in
VA (Q\ S) are removed.

The following theorem shows that the crux is sufficient for computing the
incremental complexity.

Theorem 14 Let G be the structure of a DMN M over V and G’ be the structure
of another DMN M’ that is a chordal supergraph of G induced by a set L of links.
Let N and N' be the total number of unconstrained parameters needed to specify
P(V) for M and P'(V) for M', respectively. Then the cruz R induced by G and
L is a sufficient subset of V needed to compute én = N' — N .

Theorem 14 suggests the following method to obtain the incremental change
to the DMN complexity by local computation: First compute the crux R based
on Definition 2. Then compute the subgraphs of G and G’ spanned by R. Con-
vert the subgraphs into junction forest representations and compute dn using
Corollary 12.

8 Conclusion

We have shown that crux forms a subset of variables sufficient to compute the
incremental change of both goodness-of-fit and complexity of a DMN during
search of alternative dependence structures. The overall incremental improve-
ment due to adding links L is " = h — a dn, computed using the crux. Search
can terminate when no alternative structures provide positive §I'. The compu-
tation is much more efficient than direct evaluation as the crux is small and
computation is local. There is no loss of accuracy due to the local computation.
The method is currently being implemented in WEBWEAVR-III toolkit.
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