A Decision-Theoretic Graphical Model
For Collaborative Design On Supply Chains

Y. Xiang*, J. Chen*, and A. Deshmukh'

* University of Guelph, Canada
1 University of Massachusetts at Amherst, USA

Abstract. We propose a decision-theoretic graphical model for collabo-
rative design in a supply chain. The graphical model encodes the uncer-
tain performance of a product resultant from an integrated design dis-
tributively. It represents preference of multiple manufacturers and end-
users such that a decision-theoretic design is well-defined. We show that
these distributed design information can be represented in a multiply
sectioned Bayesian network. This result places collaborative design in a
formal framework so that it can be subject to rigorous algorithmic study.

1 Introduction

Supply chain literature has focused mostly on supply chain management [4]. This
work emphasizes collaborative design in a supply chain. We consider component-
centered design in which a final product is designed as a set of components sup-
plied by manufacturers in a supply chain. Hence, the manufacturers are collabo-
rative designers. We interpret design under broad design-for-X (DFX) concepts
including design for assembly, manufacture, disassembly, environment, recycla-
bility, etc, with the objective of producing an overall optimal performance.

From the management perspective, a supply chain consists of business enti-
ties such as customers, retailers, manufacturers, and suppliers [4]. We adopt an
abstraction of the supply chain from the design perspective: The supply chain
includes only entities directly involved in the collaborative design and each is
referred to as a manufacturer. In the simplest case, a supply chain produces a
single final product ¢ and we abstract all entities not directly involved in the de-
sign (e.g., retailers, distributors and customers) of ¢ as the end user. We regard
the end user as outside the supply chain.

Such a supply chain can be modeled by a directed acyclic graph (DAG). Each
node corresponds to a manufacturer. Each arc corresponds to a supplying rela-
tion and is directed from a consumer to a supplier (both are manufacturers). The
role of consumer or supplier is relative, depending on which supplying relation
is in question. A manufacturer is a consumer relative to an outgoing arc and is
a supplier relative to an incoming arc. The root (node without parent nodes) R
of the supply chain is the manufacturer of the final product, which supplies the
product to the end user. The leaves are suppliers who are not consumers in the
supply chain.

Contemporary practice of design in a supply chain is either centralized or
essentially top-down [4]. In a top-down design, R designs the product by de-
composing it into components. For each component C' to be supplied to R, a

supplier S further decomposes C' into subcomponents, and the process contin-
ues. In summary, consumers play dominant roles in the design and suppliers
are more passive. Such consumer-dominant designs are unlikely to be optimal
because consumers are unlikely to be in the best position to judge the options
available to suppliers. We propose a computational framework for collaborative
design where suppliers play equally active roles in shaping the final design.

Given a design, the actual performance of the final product is uncertain due
to the uncertainties in raw materials used, in the actual manufacturing process,
and in the operating environment. Conventional approach of deterministic design
is undesirable because it assumes representative maximum loads and minimum
material property, which often leads to overdesign and inability to risk evalua-
tion. Probabilistic approach optimizes design in the face of these uncertainties
[2, 1]. We extend the probabilistic approach to a decision-theoretic approach
which incorporates explicitly the preference of manufactures and end users, and
to collaborative design which requires distributed reasoning.

Many of the objectives of this work have been articulated in the literature
informally, e.g., [7, 4]. The key contribution of this work is the proposal of a for-
mal decision-theoretic graphical model that explicitly encodes the information
on supply chain organization, design constraints, performance measures, utili-
ties of manufactures and end users. Such model provides a rigorous multiagent
framework for computational study of collaborative design and for distributed
decision aids to collaborative designers.

In Section 2, we define the problem of decision-theoretic design in a central-
ized context, which is expressed as a graphical model in Section 3. In Section 4,
we cover the background on multiply sectioned Bayesian networks (MSBNSs) as
a graphical model for multiagent inference. We extend MSBNs into a knowledge
representation formalism for multiagent collaborative design in Section 5. We
outline the research issues and future work in Section 6.

2 Decision-Theoretic Design

A product has a design space described by a set D of variables. Each variable
in D is called a design parameter. For example, the type of CPU used in a
smart appliance is a design parameter and the height of the case is another. As
mentioned in Section 1, we interpret design under broad concepts of DFX and
hence design parameters are interpreted broadly as well. In this paper, we assume
that each design parameter is associated with a discrete domain of possible values
and a naturally continuous parameter is discretized. A (complete) design is an
assignment of values to all variables in D and a partial design is an assignment
of values to variables in a proper subset of D.

An assignment of values to variables in D must satisfy a set of constraints.
Otherwise, the design cannot be realized. For instance, a computer design with
a case of length L and a motherboard of length L' > L cannot be realized.
A constraint involves a subset S C D of variables and specifies the allowable
combinations of values for S [10]. A design (partial or complete) is invalid if it
violates one or more constraints. Otherwise, the design is valid.

Different designs result in products with different performances. Given a de-
sign with a given performance, it may or may not be desirable to different people.
We use the term performance to refer to objective measures of the functionalities
of a product resultant from a design. That is, the value of a performance measure
is independent of who is making the measurement. For example, the maximum
speed of a car is a performance measure. For simplicity, we refer to the perfor-
mance of a product resultant from a design as the performance of the design.
The performance space of a product is described by a set M of variables. Each
variable in M is called a performance measure. In this paper, we assume that
each performance measure is associated with a discrete domain and a naturally
continuous measure is discretized.

The performance of a product also depends on the environment in which
it operates, for instance, high level of humidity may cause a digital system to
fail. We describe such environmental factors by a set T of discrete variables. For
each t € T, a probability distribution quantifies the uncertainty over its possible
values. Hence, formally, each performance measure is a function of a subset of
DuUT.

A principal’s subjective preference of a design is represented by a wtility func-
tion [6]. We assume that the utility of a design is directly dependent on the
performance of the corresponding product. That is, the utility does not depend
on directly on design parameters. This is mainly for conceptual and represen-
tational clarity. For any practical situation where the utility directly depends
on some design parameters, it is always possible to introduce one or more per-
formance measures to mediate the dependency. Formally, we denote the utility
function as U (M).

For simplicity of representation and acquisition, we assume that the util-
ity function U(M) satisfies the additive independence condition [6] and can be
decomposed as follows: First, the performance measures are partitioned into
groups Mg, My, Each group M; is associated with a utility function U;(M;)
whose value is normalized to [0,1]. The overall utility function U (M) satisfies
U(M) =", k; Ui(M;), where each weight k; € (0,1) and), k; = 1.

Due to the uncertainty in the performance of the product given its design,
we can only evaluate the expected utility of a design. Denote a given design by
D = d. Denote one possible combination of performance values of the resultant
product by M = m. Then the probability P(m|d) expresses the likelihood of
performance m of the product resultant from design d. The expected utility of
d relative to utility U;() is EU;(d) = >, Us(m) P(m|d), where U;(m) is evalu-
ated according to U;(M;) with the values in m for variables outside M; dropped.
The expected utility of design d is then EU(d) = }_, ki (3_,,, Ui(m) P(m|d)).
The problem of a decision-theoretic design given (D, T, M,U) can be specified
as to find a valid design d* that maximizes EU(d) among all valid designs.

3 Graphical Model Representation

In order to compute EU(d) effectively, we represent the design problem as a
graphical model, which we term as a design network. The structure of the net-
work is a DAG G = (V, E). The set of nodes is V = DUT U M U U, where,

without confusion, we overload the notation U to denote a subset of nodes each
corresponding to a utility function Uj;().

Each arc in E is denoted (p, ¢) directed from the parent node p to the child
node ¢. As V consists of four types of nodes, there are 16 potential types of arcs.
We define the following 5 types as legal arcs:

1. Arc (d,d') between design parameters d € D and d’ € D.

The arc signifies that the two parameters are involved in a constraint.

2. Arc (d,m) from a design parameter d € D to a performance measure m € M.
The arc signifies that the performance measure m depends on the design
parameter d.

3. Arc (t,m) from an environment variable t € T to m € M.

4. Arc (m,m’') between performance measures m € M and m' € M.

The arc signifies that m' is a composite performance measure function. Be-
cause m is also a performance measure function which may or may not be
composite, all root ancestors of m must be members of D or T. Fig. 1 (a)
illustrates such a case, where m' = f(m(dy,ds),ds, t).

t.u\‘mll d2 Mz, a1 Oy ¢
./:/. < \d 32

che e
LVER Uy, M3y /.
d1 ths My, mzz\d'/ \. 3
m 23
e Uz

do d, Uy, Usp m
t e——em ' du de d ot
51 \
ds/ ? ‘7\4(152/%“52 .U51
~ e
G U41. ‘/mﬂn:z\././ " dss
° d o V52
@ (b)

Fig. 1. (a) Performance measure m’ as a composite function. (b) Graphical model of
a design network.

5. Arc (m,u) from a performance measure m € M to a utility node u € U.

The arc signifies that the utility u depends on the performance measure m.

The other 11 types of arcs are (m,d), (u,d), (u,m), (d,t), (t,d), (¢,t'), (m,1),
(t,u), (u,t), (d,u) and (u,u’). The first 9 of them are inconsistent with the in-
terpretation of environment factor, performance measure and utility. Thus they
are illegal. Arc (d,u) is regarded illegal for reasons of clarity as explained in
Section 2. Arc (u,u) allows arbitrary integration of utilities and enables specifi-
cation of non-additive utilities. It is a source of potential violation of the additive
independence assumption discussed in Section 2. We therefore regard such arcs

as illegal at the current stage of this research. Fig. 1 (b) shows a graphical model
for design.

Each node in the design network is associated with a numerical distribution
of the corresponding variable conditioned on its parent variables. The distribu-
tion at a design parameter encodes a design constraint and that at an environ-
ment variable encodes uncertainty on operating condition. The distribution at
a performance measure encodes a performance function and that at a utility
node encodes a utility function. We propose the following representation such
that each distribution is syntactically a conditional probability distribution. Such
uniform representation allows design computation to be conducted using existing
inference algorithms for probabilistic networks [9, 5, 8, 11].

Consider first a constraint over a subset X C D of design parameters. Jensen
[5] proposed a probabilistic encoding of a constraint over a set X of variables by
introducing an additional binary variable ¢ € {y,n} with its parent set X. For
each combination x of values for variables in X, if it is allowable according to
the constraint, then P(c = y|x) is assigned the value 1. Otherwise, it is assigned
the value 0. The distribution P(c|X) has the space complexity of O(21X+1).

We propose an alternative representation that is more compact. Consider a
constraint over 10 binary variables dy, ..., dg. Suppose that all combinations of
do, ...,ds are allowed. However, for some combinations of dp, ..., dg, some values
of dg are not allowed. We represent this constraint by assigning dp, ..., ds as the
parents of dy. For each combination of values of dy, ..., dy, if it is allowable, we
assign P(dy|dp, ...,ds) = 1. Otherwise, we assign P(dy|dy, ...,ds) = 0. The size
of P(dg|do, ...,ds) is then 21© = 1024 instead of 2!! = 2048 as the alternative
representation.

It is possible that not all combinations of dy,...,ds are allowed either. In
general, for any subset of two or more elements, certain combinations of values
may be disallowed. The following general representation can be used: Let dy
be the parent of d; and let P(d;|dy) be assigned similarly as above. Then, Let
do,d; be the parent of dy and let P(dy|dy,d;) be assigned. Repeat the process
until P(dy|dy, ..., ds) is assigned. For each d; above, if no value of d; is disallowed
for any allowable combination of dy, ...,d;_1, then the corresponding step can
be skipped. This provides the best case space complexity of 1024 and the worst
case complexity of 22 + 23 + ... + 210 = 2044. The alternative representation has
the constant space complexity of 2048. Our method does not need to introduce
additional nodes.

It follows from the types of legal arcs that all root nodes of G are elements
of either D or T. Each root node is associated with a unconditional probability
distribution. P(d) for d € D suggests the most commonly used values of d, given
no other information, and P(t) for t € T reflects the uncertain environment
condition.

For each node m € M whose parents X C D UT, P(m|X) is a typical
probability distribution representing the likelihood of performance values given
partial designs over X. If m is a composite function, in which case, at least one
of its parent m' is an element of M, P(m|X) is interpreted similarly by taking

into account P(m'|X"), where X' is the parents of m/. For the example in Fig. 1
(a), P(m|dy,d2) and P(m'|m,ds,t) together define the likelihood of performance
values of m/ given partial designs over dy,ds,ds with environment condition .

For each utility function U;(M;), there is a utility node w; in G with its
parent set being M;. We assign the corresponding variable u; a binary domain
{y,n}. We assign the distribution at u; as P(u; = y|M;) = U;(M;). We specify
P(u; = n|M;) = 1 — P(u; = y|M;). Thus, P(u;|M;) is a syntactically valid
probability distribution but semantically encodes the utility function U;(M;).

From the above specification of the design network, it is a simple matter
to verify that in its structure G, graphical separation (strictly speaking, d-
separation [9]) corresponds to conditional independence. Since the design net-
work encodes the probabilistic dependence between design and performance as
well as the utility of a principal, it is semantically a value network. On the other
hand, syntactically, the design network is a Bayesian network [9]. It is straight-
forward to show that P(D) can be obtained by the product of distributions
associated with nodes in D and it represents the likelihood of each potential de-
sign. P(D, M) can be obtained by the product of distributions associated with
nodes in D U M and it represents the likelihood of each valid design and each
possible performance of the design.

Suppose we perform a standard probabilistic inference in the above specified
network with a valid design d entered into the corresponding nodes. After belief
propagation, P(M;|d) can be obtained. At node u;, we have

P(u; = yld) = Y, P(u; = y|ms, d)P(ms|d) = 3, P(u; = y|m;) P(m;|d)
= m, Ui(mi) P(m;|d) = EU;(d).

The first equation above is the probabilistic inference known as reasoning by
case. The second equation is due to the independence encoded in the network.
In this case, u; is graphically separated from design parameters by the parent
nodes of u;, namely, M;. This equation represents the normal inference compu-
tation at node u; during belief propagation. The third equation holds due to
the assignment of the distribution to u;. Hence, EU;(d) can be obtained at the
node u; after standard belief propagation. Similar idea is explored by Cooper [3]
in the context of decision making in influence diagrams by using probabilistic
inference.

In addition to the distribution P(u;|M;) associated with each utility node
ui, we also associate u; with the weight k; (see Section 2). Hence, by integrating
EU;(d) for all 4, EU(d) can be obtained for a given design d after standard
probabilistic inference in the design network.

4 Overview of Multiply Sectioned Bayesian Networks

In this section, we briefly review the background on multiagent distributed prob-
abilistic reasoning using a representation known as Multiply Sectioned Bayesian
Networks (MSBNs) [11]. In the next section, we show how to represent knowl-
edge for collaborative design in a supply chain as an MSBN. Our choice using

MSBNSs is deeply rooted: From a few high level requirements, namely, (1) exact
probabilistic measure of agent belief, (2) agent communication by belief over
small sets of shared variables, (3) a simpler agent organization, (4) DAG domain
structuring, and (5) joint belief admitting agents’ belief on private variables and
combining their beliefs on shared variables, it has been shown [12] that the re-
sultant representation of a cooperative multiagent system is an MSBN or some
equivalent.

va 0 gl

vi B3
e
v1lree 0 u
1100 0 !
b0
w0)0l0 3 10
9T
So 3

Fig. 3. Left: The subnet G; for U;. Right: The subnet G for Us.

A Bayesian Network (BN) [9] S is a triplet (V,G, P) where V is a set of
domain variables, G is a DAG whose nodes are labeled by elements of V, and P
is a joint probability distribution (jpd) over V, specified in terms of a distribution
for each variable z € V conditioned on the parents m(z) of z in G. An MSBN
M is a collection of Bayesian subnets that together define a BN. The most well-
studied application of MSBNs is diagnosis and monitoring and we will use such
an example to illustrate: Fig. 2 shows a piece of digital equipment made out of
five components U; (i =0, ..., 4).

Each box in the figure corresponds to a component and contains the logical
gates and their connections with the input/output signals of each gate labeled.

A set of five agents, A; (i = 0,...,4), cooperate to monitor the system and
trouble-shoot it when necessary. Each agent A; is responsible for a particular
component U;. The knowledge of an agent about its assigned component can be
represented as a BN, called a subnet. The subnet for agent A; is shown in Fig. 3
(left) and that for A is shown in the right. Each node is labeled with a variable
name. Only the DAG of the subnet is shown in the figure with the conditional
probability distribution for each variable omitted. The five subnets (one for each
component) collectively define an MSBN, which form the core knowledge of the
multiagent system. Based on this knowledge and limited observations, agents
can cooperate to reason about whether the system is functioning normally, and
if not, which devices are likely to be responsible.

To ensure correct, distributed probabilistic inference, subnets in an MSBN are
required to satisfy certain conditions. To describe these conditions, we introduce
the terminologies first. Let G; = (V;, E;) (i = 0,1) be two graphs (directed or
undirected). Gy and G are said to be graph-consistent if the subgraphs of Gy
and G spanned by V5 N V; are identical. Given two graph-consistent graphs
G; =(V;, E;) (i =0,1), the graph G = (Vo U V4, Ep U Ey) is called the union of
Gy and G, denoted by G = Gy U G;. Given a graph G = (V, E), a partition of
V into V, and V; such that VoUV; =V and VoNV; # 0, and subgraphs G; of G
spanned by V; (1 = 0,1), G is said to be sectioned into Gy and G . See Fig. 4 for
an example. Note that if Gy and G are sectioned from a third graph, then Gg

o, PO lef G g oeh
Tcpc /. [¢D<C—QQ\I>. |
g9 ‘ L ‘

*—O®

| e 9 |
Pt ¢ |, 5% g

&e (@ |ioe N (b)

Fig.4. G in (a) is sectioned into Gy and G1 in (b). G is the union of Go and G;.

and G are graph-consistent. The union of multiple graphs and the sectioning
of a graph into multiple graphs can be similarly defined.

Graph sectioning is useful in defining the dependence relation between vari-
ables shared by agents. It is used to specify the following hypertree condition
which must be satisfied by subnets in an MSBN:

Definition 1 Let G = (V,E) be a connected graph sectioned into subgraphs
{Gi; = (V}, E;)}. Let the subgraphs be organized into an undirected tree ¥ where
each node is uniquely labeled by a G; and each link between Gy and G, is
labeled by the non-empty interface Vi N Vi, such that for each i and j, V; NV
is contained in each subgraph on the path between G; and G; in W. Then ¥ is a
hypertree over G. Fach G; is a hypernode and each interface is o hyperlink.

Fig. 5 illustrates a hypertree for the digital system, where G; and G2 are shown
in Fig. 3.

The hypertree represents an organization of agent communication, where
variables in each hypernode are local to an agent and variables in each hyperlink

are shared by agents. Agents communicate in an MSBN by exchanging their
beliefs over shared variables. We use nodes and variables interchangeably when

Fig. 5. The hypertree for the digital equipment monitoring system.

there is no confusion. Nodes shared by subnets in an MSBN must form a d-sepset,
as defined below:

Definition 2 Let G be a directed graph such that a hypertree over G exists. A
node x contained in more than one subgraph with its parents w(z) in G is a
d-sepnode if there ezists at least one subgraph that contains w(zx). An interface
I is a d-sepset if every x € I is a d-sepnode.

The interface between G1 and G2 contains 13 variables indicated in Fig. 5.
The corresponding nodes in Fig. 3 are underlined. It is a d-sepset because these
variables are only shared by G; and G2, and each variable has all its parents
contained in one of them. For instance, the parents of z4 (ts and wg) are all
contained in G5, while those of ng (ig, g7 and z4) are contained in both Gy
and G2 (see Fig. 3). The structure of an MSBN is a multiply sectioned DAG
(MSDAG) with a hypertree organization:

Definition 3 A hypertree MSDAG G = |J,; G;, where each G; is a DAG, is a
connected DAG such that (1) there exists a hypertree ¥ over G, and (2) each
hyperlink in ¥ is a d-sepset.

Note that although DAGs in a hypertree MSDAG form a tree, each DAG may
be multiply connected: A loop in a graph is a sequence of nodes a, b, ¢, ..., a such
that the first node is identical to the last node and there is a link (not necessarily
in the same direction) between each pair of nodes adjacent in the sequence. Such
a loop is also referred to as an undirected loop. A DAG is multiply connected if

R CGrgla ! Goiii h..i
E T e k§°\/ b
| e o/g
S B e Y 6, |
(e ®o! a

Fig. 6. A MSDAG with multiple paths across local DAGs.

it contains at least one (undirected) loop. Otherwise, it is singly connected. For
example, G in Fig. 3 has two loops. One of them is (ig, vs, 23, Po, N0, 10)- Hence,

(1 is multiply connected. G2 has several loops and is also multiply connected.
Moreover, multiple paths may exist from a node in one DAG to another node
in a different DAG after the DAGs are unioned. For instance, in Fig. 6, there
are several (undirected) paths from node ¢ in G; to node g in G2. There is one
path going through nodes a, I and 7 and another path goes through d, b, n and
k. Each path goes across all three DAGs.

An MSBN is then defined as follows. Uniform potentials (constant distri-
butions) are used to ensure that quantitative knowledge about the strength of
dependence of a variable on its parent variables will not be doubly specified for
the same variable.

Definition 4 An MSBN M is a triplet (V,G,P). V. = |J,V; is the domain
where each V; is a set of variables. G = |J,;G; (a hypertree MSDAG) is the
structure where nodes of each DAG G; are labeled by elements of V;. Let x
be a variable and 7w(x) be all the parents of x in G. For each x, exactly one of
its occurrences (in a G; containing {x} Un(z)) is assigned P(z|n(z)), and each
occurrence in other DAGSs is assigned a uniform potential. P =[], P; is the jpd,
where each P; is the product of the potentials associated with nodes in G;. A
triplet S; = (V;, G, P;) is called o subnet of M. Two subnets S; and S; are said
to be adjacent if G; and G; are adjacent on the hypertree MSDAG.

MSBNs provide a framework for reasoning about an uncertain domain in co-
operative multiagent systems. Each agent holds its partial perspective (a subnet)
of a domain, reasons about the state of its subdomain with local observations
and through limited communication with other agents. Each agent may be devel-
oped by an independent developer and the internals of an agent (agent privacy)
are protected. Using the inference algorithms of MSBNs [11], agents can acquire
observations in parallel and reason distributively, while their beliefs are exact
relative to an equivalent centralized system.

5 Knowledge Representation for Collaborative Design

In this section, we extend the design network for decision-theoretic design pre-
sented in Section 3 to a collaborative design network for design in a supply chain.
Recall that a design network is semantically a value network and syntactically a
Bayesian network. It will be seen that a collaborative design network is seman-
tically a distributed value network and syntactically an MSBN.

Using the MSBN representation, design knowledge is distributed among sub-
nets. Except for public nodes (shared by two or more subnets), the knowledge
about each subdomain is specified by the corresponding manufacturer and is
owned privately. Therefore, a collaborative design network forms a cooperative
multiagent system. Below, we consider knowledge representation issues in this
social context.

10

5.1 How To Generate the Hypertree Structure

We assume that there are n manufacturers in the supply chain and the supply
chain has a topology of a DAG where each arc is directed from a consumer to a
supplier.

A directed acyclic graph may be singly connected (a unique path exists be-
tween any two nodes) or multiply connected. If it is multiply connected, there
must be a undirected cycle and a manufacturer R on the cycle such that R is
the supplier of two consumers C'; and Cy both of which are on the cycle and
are adjacent to R. This dual-supplying relation has two possible cases: either R
supplies two distinct components one to each consumer or R supplies identical
components to both. If the components are distinct, they usually require dif-
ferent design and production processes and involve different departments within
the organization of R. We can then treat each department as a separate supplier.
That is, we replace R and represent the two departments as R; who supplies to
C1 and R» who supplies to C5. This breaks the cycle at R.

It is also possible that R supplies the same component to each consumer.
In this case, we treat the number of components as a design parameter (with
a preferred value of 2) and pretend that R supplies to only one of the two
consumers. The consequence is that the cycle at R is broken by deleting the arc
going from one of the consumers into R.

If we apply the above technique to each cycle in the supply chain graph, it
will eventually become singly connected. Fig. 7 shows an example. The singly

(@) (b) (R} (R

Fig. 7. (a) Supply chain graph where R4 supplies the same type of components to R»
and R3, and Rs supplies different components to R4 and Rs. (b) After removing cycles.

connected supply chain graph becomes the basis for the hypertree of the MSBN.
Each manufacturer in the supply chain is in charge of the representation of a
subnet, the local computation within the subnet, and the necessary communica-
tion with the adjacent subnets. Without confusion, we will use the terms agent
and manufacturer interchangeably.

In particular, each agent A; is associated with a subnet S; = (G, P;), where
G; = (V;, E;) is the graphical subnet structure and P; is the set of conditional
probability distributions defined over V;. Note that in general, each V; contains
a subset of D, a subset of M, and a subset of U, as defined in a design network.

We emphasize that after cycle removal the resultant supply chain graph does
not have to be a directed tree such as the one in Fig. 7 (b). A directed singly
connected graph can have multiple root nodes. Each root node represents a
manufacturer of a final product. A supply chain graph with multiple root nodes

11

thus represents a supply chain that produce multiple related final products. Our
representation is sufficiently general to accommodate such practice.

Our key observation is that with the modification discussed above, a supply
chain graph is isomorphic with a hypertree, and the dependence structure of a
supply chain can be modeled as an MSDAG. Fig. 8 illustrates a collaborative
design network structure which is equivalent to the centralized design network
in Fig. 1 (b).

Gs

tSZ

m m
My M My - %

1 /
o
/—. [\. dzs d'/ e dw
da Usp G, Uz

om
G4 22 Msgy Gs
du de g odﬂ\,.dﬂ/v\.
Myy * ds2 ms, Usy
Uar .dsz 0/'./ ‘\.d53
e —~
.‘mﬂ de das o Us;

Fig. 8. Graphical model of a collaborative design network, where ¥ is the hypertree.

5.2 Partition of Design Responsibility

In a supply chain, each manufacturer is responsible to design a component to be
supplied. As components must interfact with each other, certain design param-
eters will affect multiple components. For example, if an AC adaptor provides
the power for several electronic devices, then the output voltage of the adaptor
will affect the design of these devices. In general, we assume design parameters
such as this are public variables and will be included in the agent interface.

When a design parameter is public, it would cause conflict if each agent that
shares the parameter assigns to it a distinct value. To avoid such conflict, the
value assignment authority should be partitioned among agents. That is, each
agent A; will be assigned a subset D; C D and A; will be the authority to
determine the partial design over D;. The subsets satisfies D; N D; = () for any
distinct 4 and j and U;D; = D. In other words, {Dg, D1,...} is a partition of
D. We will refer to it as the partition of design authority. The partition can be
specified permanently or can be formulated dynamically over the lifetime of the
supply chain. For now, we assume a permanent partition.

In particular, we define the partition of design authority as follows:

1. For each private variable (contained in a single subnet) d € V;, agent A; has
the design authority over d, i.e., d € D;.

2. For each public variable d', one agent, say A;, that shares d' is arbitrarily
selected such that d' € Dj.

12

Note that in practice, for each public variable d, there often exists an agent that
is natural to assume the responsibility to design d. For example, the agent who
designs the AC adaptor is a natural candidate to determine the value for its
output voltage. In such a case, the natural candidate should be given the design
authority. We stipulated above that A; is selected arbitrarily. It simply means
that the proposed framework does not dictate this choice.

5.3 How To Obtain Numerical Distributions
Numerical information encoded in a design network includes the following:

1. Unconditional probability distribution for each root design parameter node.

N

. Conditional probability distribution for each non-root design parameter node.

. Unconditional probability distribution for each root environment node.

3
4. Conditional probability distribution for each performance measure node.
5. Utility distribution for each utility node.

6

. Weight for each utility node.

Using the MSBN representation, these distributions are distributed in sub-
nets. Except for public nodes, these distributions are specified by the corre-
sponding manufacturers and owned privately. Below, we consider each type of
distributions in this social context.

For distributions associated with root design nodes, they provide guidance
to manufacturers on frequently used values for these design parameters. If a
root node is private, the distribution is assigned by the corresponding manu-
facturer and reflects its past design experience. When a root node is public,
the distribution can be assigned by combining the past design experience of all
manufacturers who share the root node. See [11] for details on how to combine
multiple agents’ experience in assigning a distribution. Distributions associated
with root environment nodes are handled similarly.

Distributions associated with non-root design parameter nodes represent de-
sign constraints between the nodes and their parents. If the node is private within
agent A;’s subdomain, then the distribution is assigned by the corresponding
manufacturer. Otherwise, manufacturers who share the node must combine their
opinion in deciding the constraint and assigning the distribution.

Probability distributions at performance measure nodes encode the likelihood
of potential performances given particular designs. Significant expertise and past
experience are needed to assign these distributions. Often, specialized CAD soft-
ware and historical databases are needed in order to assess these probabilities. If
the performance measure is private, a corresponding manufacturer is responsi-
ble to assign the distribution. Otherwise, expertises from all manufacturers that
share the measure can be combined.

For utility distributions, the matter is different from the above. A supply
chain is a cooperative multiagent system and multiple stakeholders exist. Each

13

manufacturer has its own short term and long term interest. The short term
spans, for example, the period during which the final products of the supply
chain are designed and manufactured. The long term spans, for example, the
period during which the equipment needed to manufacture the final products of
the current supply chain must be reused for purposes beyond what are intended
by the current supply chain. Even if the short term interests of all manufacturers
can be assumed the same (e.g., to design and manufacture the products with the
lowest cost subject to end-user’s satisfaction), their long term interests may not
be common. For instance, a particular design may require manufacturer A to
deploy equipment e which fits A’s long term interest, but requires manufacturer
B to deploy equipment e’ which is against B’s long term interest.

We assume that manufacturers in a supply chain are cooperative and are
willing to strike a compromise. Earlier, we have assumed that the overall utility of
the supply chain can be expressed as a weighted sum of multiple utility functions
(the additive independence assumption). This assumption also allows a simple
representation of a compromise of interests of agents in a supply chain: We
require that utility nodes be private. That is, each utility node encodes the utility
of the corresponding manufacturer. Some nodes may correspond to its short term
interest and others correspond to its long term interest. The compromise among
agents is represented by the weights k; for summing individual utilities into the
overall utility. Note that association of a weight k; to each utility node in each
subnet is a minor extension to the standard MSBN subnet representation.

Early in the paper, we excluded the end-users from the supply chain graph.
However, their interest must be explicitly represented as well. We assume that
the interest of each end-user is delegated by the manufacturer of the corre-
sponding final product. This is reasonable since performance measures of the
final product must be either private to the corresponding agent or shared by
this agent. Therefore, the end-user’s utility functions can be encoded within the
agent as utility nodes that depend on the relevant performance measures.

6 Conclusion

With the hypertree structure, the subnets and its associated distributions thus
defined, we term the resultant representation a collaborative design network. Se-
mantically, it is a distributed value network, which encodes collaborative design
space, design constraints, uncertain dependency between performance and de-
sign, and manufacturer utilities of a collaborative design process for a supply
chain. Syntactically, the network is an MSBN. The design space is defined by
D = U;D;, where nodes in each D; are contained in one agent. The likelihood
and validity of each potential design is specified by P(D) - the product of dis-
tributions associated with these distributed nodes. Similarly, the likelihood of
each valid design, each possible environment condition, and each possible per-
formance of the design is specified by P(D,T, M) - the product of distributions
associated with nodes in DUT UM distributed among agents. Using distributed
probabilistic reasoning [11], P(M;|d) for each valid design d can be obtained,
where M; is a set of performance measures that share a common child utility

14

node u; (and hence contained in a single agent’s subdomain). Using a derivation
similar to that in Section 3, the overall expected utility of each design d reflect-
ing the collective preference of all manufacturers and end-users of the supply
chain is well-defined. In summary, a collaborative decision-theoretic design on a
supply chain can be adequately modeled by a collaborative design network. Due
to space limit, we are unable to include a concrete case study. We intend to do
so in our future work.

To solve the collaborative decision-theoretic design problem similar to what
is defined in Section 2, it amounts to the following: For each valid design, com-
pute expected utilities of each corresponding partial design by an agent, and
integrate the local results by agent communication to obtain the collective ex-
pected utility of the design. Repeat the above and determine the best design.
Clearly, exhaustive search is intractable. Our ongoing research is investigating
more efficient distributed algorithms.

Acknowledgement This research is supported by NSERC Research Grant
OGP0155425 and NASA Grant NCC 2-1348 and NCC 2-1353. Assistance from
Zoe Jingyu Zhu is acknowledged.

References

1. S.M. Batill, J.E. Renaud, and X. Gu. Modeling and simulation uncertainty in
multidisciplinary design optimization. In The 8th ATAA/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, pages 5-8, 2000.

2. K.V. Bury. On probabilistic design. J. of Engineering for Industry, Trans of the
ASME, pages 1291-1295, Nov. 1974.

3. G.F. Cooper. A method for using belief networks as influence diagrams. In R.D.
Shachter, T.S. Levitt, L.N. Kanal, and J.F. Lemmer, editors, Proc. 4th Workshop
on Uncertainty in Artificial Intelligence, pages 55-63, 1988.

4. S.H. Huang, G. Wang, and J.P. Dismukes. A manufacturing engineering perspec-
tive on supply chain integration. In Proc. 10th Inter. Conf. on Flexible Automation
and Intelligent Manufacturing, volume 1, pages 204-214, 2000.

5. F.V. Jensen. An Introduction To Bayesian Networks. UCL Press, 1996.

6. R.L. Keeney and H. Raiffa. Decisions with Multiple Objectives. Cambridge, 1976.

7. M. Klein, H. Sayama, P. Faratin, and Y. Bar-Yam. The dynamics of collabora-
tive design: insights from complex systems and negotiation research. Concurrent
Engineering Research and Applications J., 12(3), 2003.

8. R.E. Neapolitan. Probabilistic Reasoning in Ezpert Systems. John Wiley and Sons,
1990.

9. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann, 1988.

10. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

11. Y. Xiang. Probabilistic Reasoning in Multi-Agent Systems: A Graphical Models
Approach. Cambridge University Press, 2002.

12. Y. Xiang and V. Lesser. On the role of multiply sectioned Bayesian networks to
cooperative multiagent systems. IEEE Trans. Systems, Man, and Cybernetics-Part
A, 33(4):489-501, 2003.

This article was processed using the I#TEX macro package with LLNCS style

15

