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Abstract. Variables and constraints in problem domains are often dis-
tributed. These distributed constraint satisfaction problems (DCSPs)
lend themselves to multiagent solutions. Most existing algorithms for
DCSPs are extensions of centralized backtracking or iterative improve-
ment with breakout. Their worst case complexity is exponential. On the
other hand, directional consistency based algorithms solve centralized
CSPs efficiently if primal graph density is bounded. No known multia-
gent algorithms solve DCSPs with the same efficiency. We propose the
first such algorithm and show that it is sound and complete.

1 Introduction

Many practical problems can be solved as constraint satisfaction problems (CSPs).
Often, the variables and constraints in the problem domain are naturally dis-
tributed, spatially, cognitively, or otherwise. These distributed CSPs (DCSPs)
[13] lend themselves naturally to solutions using multiagent systems.

Most existing algorithms for solving DCSPs are extensions of centralized
algorithms based on backtracking or iterative improvement with breakout [13,
11,14, 5, 7, 9, 8]. Their worst case complexity is exponential. Another class of
algorithms [12] is based on truth maintenance, e.g., DATMS [4]. The complexity
of truth maintenance problem is at least NP-hard [6].

On the other hand, directional consistency based algorithms [2,3] solve cen-
tralized CSPs efficiently if the density of the primal graph (measured by tree
width) is upper-bounded. To the best of our knowledge, no existing multiagent
algorithms solve DCSPs with the same efficiency. In this work, we propose the
first such algorithm. We present formally an multiagent representation of DC-
SPs. We prove soundness and completeness of the algorithm and illustrate with
a detailed example. Due to space limitations, however, we omit proofs.

2 Background

CSPs are formally modeled as constraint networks. A constraint network (CN) R
is a pair R = (V, Λ). V is an non-empty set of discrete variables, called domain.
Each variable v ∈ V has a finite space Dv. The space of a subset X ⊂ V is
the Cartesian product of spaces of variables in X and is denoted by DX . Each
x ∈ DX is a configuration of X. Λ is an non-empty set of constraints. Each
constraint is a relation RX ⊆ DX , where X ⊂ V is the scope of the constraint.
The union of scopes of all constraints covers the domain, i.e., ∪RX∈ΛX = V .

A configuration x ∈ DX satisfies a constraint RX if x ∈ RX . Otherwise, it
violates the constraint. The projection of configuration x to Y ⊂ X is denoted
by πY (x) and the projection of relation RX to Y ⊂ X is denoted by πY (RX).
Configuration x is consistent or legal if it satisfies every constraint RY such that



Y ⊆ X. A solution to CN R is a consistent configuration over V . Formally, the
set of all solutions, called the solution set, of R is the relation ./R∈Λ R, where
./ refers to relational operator natural join. R is consistent iff ./R∈Λ R 6= ∅.

The dependence structure of R can be depicted by a primal graph G = (V, E),
where each node is labeled by a variable v ∈ V and each link 〈u, v〉 ∈ E connects
nodes u, v if there exists a constraint RX ∈ Λ such that u, v ∈ X. R can be solved
through an alternative dependence structure compiled from its primal graph. A
cluster is a subset of V . A cluster tree connects a set of clusters into a tree. Each
link, called a separator, connects two clusters whose intersection S 6= ∅, and is
labeled by S. A cluster tree is a junction tree (JT) if the intersection of each pair
of clusters is a subset of every separator on the path between them. Details on
how to compile a graph into a JT can be found in [10].

For DCSP, we assume that variables and constraints are distributed among
multiple agents such that each agent is in charge of a CN. We introduce concepts
for description of primal graphs from multiple CNs to be used later. Let Gi =
(Vi, Ei) (i = 0, 1) be two graphs. G0 and G1 are graph-consistent if subgraphs of
G0 and G1 spanned by V0 ∩V1 are identical. Given two graph-consistent graphs
Gi = (Vi, Ei) (i = 0, 1), the graph G = (V0 ∪V1, E0∪E1) is the union of G0 and
G1, denoted by G = G0 ∪ G1. Given a graph G = (V, E), a partition of V into
V0 and V1 such that V0 ∪ V1 = V and V0 ∩ V1 6= ∅, and subgraphs Gi (i = 0, 1)
of G spanned by Vi, G is said to be sectioned into G0 and G1.

3 Solving CSP With Junction Tree Representation

The method for solving centralized CSPs is attributed to Dechter and Pearl [2,
3, 1]. Our work extends theirs to multiagent systems. We review the method so
that its components can be directly referenced later in presenting our extension.
Our formulation, however, is not necessarily identical to that in the references.

Given CN R = (V, Λ) and its primal graph G, first, compile G into a JT
T . Second, for each constraint RX in Λ, assign RX to a cluster Q in T such
that X ⊆ Q. Third, for each cluster Q in T , replace the set ΛQ of constraints
assigned to it by a single constraint RQ = UQ ./R∈ΛQ R, where UQ is a universal
relation over Q (containing every configuration of Q). Let Λ′ denotes the set
of new constraints one per cluster of T . Note that Λ′ is simply a grouping of
Λ. Finally, let each cluster in T be a variable and its space be configurations
in the relation associated with the cluster. For each pair of adjacent clusters
Q and C with separator S, impose the implicit constraint between Q and C:
πS(q) = πS(c), where q is a configuration of Q and c is a configuration of C. The
triple (V, T, Λ′) is the JT representation of R and its solution set is ./R∈Λ′ R.
Note that Λ′ does not include implicit constraints since they simply allows ./
operation to be well defined. Note also that (V, T, Λ′) is equivalent to a binary
CN. Proposition 1 below establishes the key property of the JT representation
and plays an important role in analysis of our method.

Proposition 1 Let (V, Λ) be a CN and (V, T, Λ′) be its JT representation. The
solution set of (V, Λ) and that of (V, T, Λ′) are identical.

2



The complexity of the compilation is O(|Λ| kq), where k binds the space for
variables in V and q binds the size for clusters in T . (V, T, Λ′) can be solved based
on directional arc-consistency. Given two clusters Q and C with S = Q ∩ C,
configurations q and c are consistent if πS(q) = πS(c). A cluster Q in T is
consistent relative to an adjacent cluster C if, for each configuration in RQ,
there exists a consistent configuration in RC. Let Q∗ be any cluster in T . Given
Q∗, T can be viewed as a tree rooted at Q∗ and each two adjacent clusters
form a parent-child pair. (V, T, Λ′) is directional arc-consistent relative to a root
cluster Q∗ if for every pair of clusters Q and C, where Q is the parent of C, Q
is consistent relative to C.

The following object oriented algorithm is activated at each cluster in T by
a caller, which is either an adjacent cluster or the object T . After it is called in
Q∗ by T , (V, T, Λ′) is directional arc-consistent relative to Q∗.

Algorithm 1 (CollectSeparatorConstraint) When caller calls in cluster Q,
it does the following:

Q calls CollectSeparatorConstraint in each adjacent cluster C except caller;
for each cluster C (whose separator with Q is S),

Q receives from C a constraint RS ;
if RS = ∅, Q sends ∅ to caller and halts;
Q assigns RQ = RQ ./ RS;

if caller is a cluster (whose separator with Q is S′), Q sends πS′(RQ) to caller;

The complexity of CollectSeparatorConstraint is O(t l2), where t is the num-
ber of clusters in T and l binds the size of relation in each cluster. After Col-
lectSeparatorConstraint is called in Q∗, if ∅ is returned, the CN is inconsistent.
Otherwise, (V, T, Λ′) can be solved by T calling the following algorithm in Q∗.
It will then be called recursively at each cluster.

Algorithm 2 (DistributeSeparatorSolution) When caller calls in cluster
Q, it does the following:

if caller is a cluster (whose separator with Q is S),
Q receives from caller a constraint RS of a single configuration;
Q assigns RQ = {q}, where q ∈ RQ ./ RS;

else Q removes all configurations in RQ except one;
for each adjacent cluster C (whose separator with Q is S′) except caller;

Q calls DistributeSeparatorSolution in C with πS′(RQ);

After DistributeSeparatorSolution is called in Q∗, the solution to (V, T, Λ′) can
be obtained by retrieving RQ from each cluster Q and joining them together.

CollectSeparatorConstraint above only achieves directional arc-consistency.
A parent cluster Q (relative to a root) is consistent relative to a child cluster
C, but C may not be consistent relative to Q. This is possible because the
constraint RS sent from C to Q during CollectSeparatorConstraint may contain
a configuration s such that no configuration q in RQ satisfies πS(q) = s. Adjacent
clusters Q and C are consistent if Q is consistent relative to C and vice versa.

3



(V, T, Λ′) is full arc-consistent if every pair of adjacent clusters is consistent. Full
full arc-consistency is not needed to solve (V, T, Λ′) as shown above. However, it
is necessary for solving DCSPs as will be seen.

The following object oriented algorithm can be performed after CollectSep-
aratorConstraint to make a JT full arc-consistent.

Algorithm 3 (DistributeSeparatorConstraint) When caller calls in clus-
ter C, it does the following:

if caller is a cluster (whose separator with C is S),
C receives from caller a constraint RS;
C assigns RC = RC ./ RS;

for each adjacent cluster Q (whose separator with C is S′) except caller,
C calls DistributeSeparatorConstraint in Q with πS′(RC);

The following algorithm combines CollectSeparatorConstraint and Distribute-
SeparatorConstraint.

Algorithm 4 (UnifyConstraint) Choose a cluster Q∗ arbitrarily and call Col-
lectSeparatorConstraint in Q∗. If Q∗ returns ∅, return false. Otherwise, call Dis-
tributeSeparatorConstraint in Q∗ and return true upon completion.

After UnifyConstraint, a JT is full arc-consistent as summarized below.

Proposition 2 Let (V, T, Λ′) be the JT representation of a CN. The CN is in-
consistent iff UnifyConstraint returns false. Otherwise, UnifyConstraint returns
true and the JT is full arc-consistent.

4 Multiply Sectioned Constraint Network

A DCSP involves a large problem domain where variables and constraints are
distributed. We solve a DCSP with a multiagent system, where each agent is
in charge of a subset of variables and constraints. To ensure that computation
is sound and complete as well as efficient, partition of variables and constraints
among agents needs to satisfy certain conditions. We model a DCSP as an mul-
tiply sectioned constraint network (MSCN) which specifies these conditions for-
mally.

Definition 1 From a set of CNs {Ri = (Vi, Λi)} (each called a subnet), an
MSCN R is defined as a pair R = (V, Λ), where V =

⋃
i Vi is the domain (with

each Vi called a subdomain) and Λ =
⋃

i Λi is the set of constraints, such that
the following holds: (1) A JT exists with {Vi} as the set of clusters. (2) For any
two subnets Ri and Rj such that Vi ∩ Vj 6= ∅, their primal graphs are graph-
consistent. The solution set of R is ./i (./R∈Λi R).

This concise definition has a number of implications: First of all, although
there is no mention of agents in the definition, we assume that each subnet Ri

is embodied by a unique agent Ai who is in charge of subdomain Vi. Hence,
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a variable shared by two subnets are public to the corresponding agents and a
variable unique in a subnet is private.

Second, domain partition is required to satisfy the connectivity condition
(a JT is connected). That is, for any two subdomains Vi and Vj , there exists
a sequence of subdomains such that every two adjacent in the sequence share
some variables. This restriction implies that each subnet is relevant to the partial
solution in each other subnet.

Third, domain partition is required to satisfy the JT condition. Although a
natural domain partition may not satisfy this condition, it can be enforced by
making limited private variables public. Agents Ai and Aj are said to be adjacent
if Vi and Vj are adjacent in the JT.

Fourth, primal graphs are required to be graph-consistent. This means that
every constraint over public variables in one subnet must be contained in every
other subnet that share these variables. We assume that this condition is enforced
by communicating any constraint over public variables to other agents in a pre-
processing. Similarly, if a constraint RZ has a scope Z = X∪Y , where X∩Y = ∅,
X is public, and Y is private, we assume that the constraint πX(RZ) has been
communicated to the other agent. The condition essentially ties variable sharing
between subnets with constraint sharing.

Fifth, as each subnet uniquely defines its primal graph and these primal
graphs are graph-consistent, the collection of primal graphs from all subnets
defines a multiply sectioned primal graph over the domain, and hence the name
MSCN.

Sixth, although an MSCN may admit multiple JTs (condition (1)), one of
them, referred to as the hypertree, is agreed upon by all agents and governs
agent communication. That is, if Ai and Aj are adjacent in the hypertree, then
they can communicate directly. We refer to each cluster Vi in the hypertree as a
hypernode, and associate the hypernode with subnet Ri and agent Ai. Hence, the
hypertree is the agent organization. If Ai and Aj are adjacent in the organization,
we refer to Vi ∩ Vj as their agent interface.

Finally, joining a relation multiple times to another relation has the effect of
exactly once. Hence, communicating constraints over public variables, as men-
tioned above, has no impact on the solution set.

Fig. 1 shows a distributed map coloring problem as an example MSCN. The
primal graphs of subnets are shown in (b) and the hypertree is shown in (a). The
space of each variable contains three colors which we denote simply by {0, 1, 2}.
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Fig. 1. The hypertree (a) and primal graphs (b) of an MSCN. Each link in (b) repre-
sents a 6= constraint.

5



5 Linked Junction Forest Representation Of MSCN

To extend JT based solution of CNs to MSCNs, we compile MSCNs to a runtime
representation. Exploring structural similarity between constraint reasoning and
probabilistic reasoning, we adopt key steps in structure compilation of multiply
sectioned Bayesian networks (MSBNs)[10]: cooperative triangulation, local JT
construction, and linkage tree (LT) construction. Formal specification in the con-
text of MSBNs can be found in the reference. Outcome of structure compilation
for the MSCN in Fig. 1 is shown in Fig. 2.
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{g = i, h = i}
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f,n,p

b,r,s
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Fig. 2. The linked junction forest compiled from MSCN in Fig. 1. The constraint
assigned to each cluster is shown in {}.

Each subnet is compiled into a JT, e.g., subnet G1 is compiled into T1. Each
agent interface is compiled into a LT, e.g., the agent interface between A1 and
A2 is compiled into LT L1,2 which consists of two clusters. Each cluster in L1,2

is referred to as a linkage, e.g., {b, c}. Each linkage has two host clusters one in
each JT it links. For instance, linkage {b, c} has host cluster {b, c, t} in T1 and
host cluster {b, c, m} in T2.

After the structure compilation, each agent Ai assigns constraints in Λi to
clusters in Ti as follows: For each constraint RX in Λi, assign RX to a cluster Q
in Ti such that X ⊆ Q. After assignment, for each cluster Q in Ti, Ai replaces the
set ΛQ of constraints assigned to it by a single constraint RQ = UQ ./R∈ΛQ R,
where UQ is the universal relation over Q.

Let each cluster in Ti be a variable and its space be configurations in the
relation associated with the cluster. For each pair of adjacent clusters Q and C
with separator S, let the implicit constraint between Q and C be πS(q) = πS(c),
where q is a configuration of Q and c is a configuration of C. For instance, con-
straint between clusters {c, f, t, u} and {b, c, t} in T1 requires their configurations
to have the same value over c and t. The similar implicit constraint is imposed
relative to each linkage S and its two linkage hosts Q and C. For instance, con-
straint between linkage hosts {b, c, t} in T1 and {b, c, m} in T2 requires their
configurations to have the same value over b and c.

Given an MSCN R = (V =
⋃

i Vi, Λ =
⋃

i Λi), the outcome of compilation
is a tuple (V, T, L, Λ′), where T = {Ti} is a set of JTs each compiled from
a subnet of R, and L = {Li,j} is a set of LTs one compiled from each pair
of adjacent subnets on hypertree. Λ′ = {Λ′

i} is a collection of sets. Each Λ′
i

is a set of constraints one per cluster of Ti. We refer to (V, T, L, Λ′) as the
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linked junction forest representation (LJF) of the MSCN. Again, we assume that
agents are attached to LJF such that each Ti is embodied by Ai. The solution
set of (V, T, L, Λ′) is ./i (./R∈Λ′

i
R). Note that Λ′ does not include implicit

constraints since they simply allow ./ operation to be well defined. The following
theorem establishes an important property of the LJF. It follows from definitions
of solution sets for MSCN and its LJF, as well as the composition of Λ′.

Theorem 1 Let R = (
⋃

i Vi,
⋃

i Λi) be an MSCN and F = (V, T, L, Λ′) be its
LJF representation. Then, R and F have the same solution set.

The compilation computation is dominated by the cooperative triangulation
and local JT construction. The complexity is O(n λ kq), where n is the number
of agents, λ bounds |Λi|, k binds the space for variables in V and q binds the
size for clusters in JTs in T .

6 Solving MSCN with LJF
To solve MSCN using its LJF, we extend directional arc-consistency to LJF.
An agent Ai is interface-consistent relative to an adjacent agent Aj if, for each
configuration Ri associated with Ai (Ri ∈ ./R∈Λ′

i
R), there exists a consistent

configuration associated with Aj. A LJF is directional interface-consistent rela-
tive to a root agent if, for every two agents Ai and Aj where Ai is the parent of
Aj relative to the root, Ai is interface-consistent relative to Aj.

The following two algorithms achieve directional interface-consistency in a
LJF. The first below is used by agent Ai to update constraints in its linkage
hosts based on constraint message from an adjacent agent Aj.

Algorithm 5 (AbsorbInterfaceConstraint) When agent Ai performs Ab-
sorbInterfaceConstraint relative to agent Aj with a set Ω = {RX}, where each
RX is a constraint over a linkage X with agent Aj, Ai does the following:

for each linkage C with Aj with linkage host Q at Ai,
assign RQ = RQ ./ RC, where RC ∈ Ω;
if RQ = ∅, return false;

return true;

The second algorithm below recursively propagates constraint messages inwards
along the hypertree. The agent executing the algorithm is referred to as A0

with local JT T0. The execution is activated by a caller agent, who is either an
adjacent agent, denoted by Ac, or the coordinator. Additional adjacent agents
of A0 are denoted by A1, . . . , Am, if any.

Algorithm 6 (CollectInterfaceConstraint) When caller calls A0 to Collect-
InterfaceConstraint, it does the following:

1 for each agent Ai (i = 1, . . . , m),
2 call CollectInterfaceConstraint on Ai;
3 if Ai returns ∅, return ∅;
4 receive Ωi = {RC} where RC is a constraint over a linkage C with Ai;
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5 perform AbsorbInterfaceConstraint relative to Ai with Ωi;
6 if false is returned, return ∅;
7 perform UnifyConstraint;
8 if false is returned, return ∅;
9 if Ac is an adjacent agent,
10 initialize Ωc = ∅;
11 for each linkage S with Ac of linkage host Q at A0,
12 compute RS = πS(RQ);
13 if RS = ∅, return ∅;
14 else add RS to Ωc;
15 return Ωc to Ac;
16 else return a special set ∇ to coordinator signifying successful completion;

Theorem 2 shows the consistency properties achieved by the above algorithm.

Theorem 2 Let F = (V, T, L, Λ′) be the LJF representation of an MSCN pop-
ulated by agents and CollectInterfaceConstraint is called on any agent A0.

F is inconsistent iff A0 returns ∅. Otherwise, A0 returns ∇ and the following
holds:

1. F is directional interface-consistent relative to A0.
2. Each Ti is full arc-consistent.
3. Each linkage tree Li is full arc-consistent.

The following algorithm generates a (partial) solution for a subdomain con-
strained by a partial solution over the interface with the calling agent.

Algorithm 7 (GetLocalSolution) When agent A0 performs GetLocalSolution
with Ω = {RX}, where each RX is a singleton constraint (consisting of a single
configuration) over a linkage X with agent Ac, it does the following:

if Ω = ∅, call DistributeSeparatorSolution in any cluster in T0;
else

for each linkage C with Ac (whose host cluster is Q),
assign RQ = RQ ./ RC, where RC ∈ Ω;

call DistributeSeparatorSolution in the host of any linkage with Ac;

Note that after the assignment, RQ is not necessarily a singleton. After Dis-
tributeSeparatorSolution is called, it is so. The following recursive algorithm
propagates partial solutions over agent interfaces along the hypertree.

Algorithm 8 (DistributeSolution) When caller calls A0 to DistributeSolu-
tion, it does the following:

1 if caller is an adjacent agent,
2 receive Ω = {RX} where each RX is a singleton constraint over linkage

X with caller;
3 perform GetLocalSolution with Ω;
4 else perform GetLocalSolution with ∅;
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5 for each agent Ai (i = 1, . . . , m),
6 initialize Ω′ = ∅;
7 for each linkage C with Ai (whose host cluster is Q), add πC(RQ) to Ω′;
8 call DistributeSolution on Ai with Ω′;

The following algorithm is executed by the system coordinator.

Algorithm 9 (SolveDCSP) Choose an agent A∗ arbitrarily. Call CollectIn-
terfaceConstraint in A∗. If A∗ returns ∅, return failure. Otherwise, call Dis-
tributeSolution in A∗.

Theorem 3 below establishes that SolveDCSP is sound and complete.

Theorem 3 Let F = (V, T, L, Λ′) be a LJF of an MSCN and SolveDCSP be
executed. Then failure will be returned iff F is inconsistent. Otherwise, R′ =./i

(./Q∈Ti RQ) is a singleton such that R′ ⊆ R, where R is the solution set of F .

Let n be the number of agents, t the maximum number of clusters in a lo-
cal JT, q the maximum size of clusters, and k bind the space for variables in
V . After CollectInterfaceConstraint completes, SolveDCSP is backtracking free.
Hence, computation is dominated by UnifyConstraint during CollectInterface-
Constraint. UnifyConstraint has no more than twice the amount of computation
of CollectSeparatorConstraint, whose complexity is O(t l2) (Section 3), where
l binds the size of relation in each cluster. Instead, we use a conservative com-
plexity estimation, O(t k2q), by replacing l with kq. Therefore, the complexity
of SolveDCSP is O(n t k2q). When q is upper bounded, SolveDCSP is efficient.
Note that q characterizes the density of an MSCN and is equivalent to the tree
width of a centralized CN.

Another advantage of our method is that private variables in each agent and
constraints over them are kept private during compilation and solution.

7 Example
We illustrate solution process for the example MSCN. Its compiled LJF is shown
in Fig. 2. Initial constraints for clusters are listed in Table 1, where relations of
the ‘same’ set of configurations are listed only once. For instance, relations over
clusters {g, h, i} and {b, c, m} are shown in the middle and will be referred to as
R2 over {g, h, i} and R2 over {b, c, m}, respectively.

Suppose SolveDCSP is executed with A∗ = A0. Then, CollectInterfaceCon-
straint is called in A0. In turn, A0 calls CollectInterfaceConstraint in A1, which
calls CollectInterfaceConstraint in A2 and A3.

A3 performs UnifyConstraint by calling CollectSeparatorConstraint in clus-
ter, say, {g, h, i}, which in turn calls CollectSeparatorConstraint in cluster {d, e, g, h}.
In response, {d, e, g, h} sends relation R4 (Table 2) over {g, h} to {g, h, i}, which
causes modification of the constraint at {g, h, i} to R5 (Table 2).

Next, A3 calls DistributeSeparatorConstraint in {g, h, i}, which in turn calls
DistributeSeparatorConstraint in {d, e, g, h} with R4 (Table 2). This results in
no change in the constraint at {d, e, g, h}. UnifyConstraint at A3 returns with
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Table 1. Initial constraints associated with clusters. A single line separates variables
of relations with identical set of configurations which are enclosed by double lines.

R1

d e g h

a b j k

c f t u

0 0 1 2

0 0 2 1
1 1 0 2
1 1 2 0
2 2 0 1
2 2 1 0

R2

g h i

b c m

e r v

b r s

f n p

0 0 1
0 0 2
0 1 2
0 2 1

1 0 2
1 1 0
1 1 2
1 2 0
2 0 1

2 1 0
2 2 0
2 2 1

R3

d e r

a b r

b c t

c f n

0 0 1
0 0 2
0 1 1
0 1 2
0 2 1

0 2 2
1 0 0
1 0 2
1 1 0
1 1 2

1 2 0
1 2 2
2 0 0
2 0 1
2 1 0

2 1 1
2 2 0
2 2 1

Table 2. Constraints as messages between clusters or newly assigned to clusters.

R4

b r

c t

e r

f n

g h

0 1
0 2
1 0
1 2

2 0
2 1

R5

b r s

e r v

f n p

g h i

0 1 2
0 2 1
1 0 2
1 2 0
2 0 1

2 1 0 R6

a b

c f

d e

0 0

1 1
2 2

R7

b c t

0 0 1
0 0 2
0 1 2

0 2 1
1 0 2
1 1 0
1 1 2
1 2 0

2 0 1
2 1 0
2 2 0
2 2 1

R8

a b r

c f n

d e r

0 0 1

0 0 2
1 1 0
1 1 2
2 2 0
2 2 1

true. T3 is full arc-consistent with cluster constraints: R1 (Table 1) for {d, e, g, h}
and R5 (Table 2) for {g, h, i}. Before completing CollectInterfaceConstraint, A3

sends A1 a message containing constraint R6 (Table 2) over linkage {d, e}.
At the same time, A2 also performs UnifyConstraint by calling CollectSep-

aratorConstraint in cluster, say, {a, b, j, k}, followed by calling DistributeSepa-
ratorConstraint in {a, b, j, k}. During CollectSeparatorConstraint, the message
from {b, c, m} to {a, b, j, k} is a universal relation over {b}, which causes no
change in {a, b, j, k}. During DistributeSeparatorConstraint, the message from
{a, b, j, k} to {b, c, m} is the same universal relation that causes no change in
{b, c, m}. UnifyConstraint at A2 returns with true and T2 is full arc-consistent.
Before completing CollectInterfaceConstraint, A2 sends A1 a message contain-
ing two constraints with one over each linkage. The constraint over {a, b} is R6

(Table 2) and that over {b, c} is universal.
After A1 receives the message from A3, it calls AbsorbInterfaceConstraint,

which causes the constraint at linkage host {d, e, r} to be modified into the
relation R8 (Table 2). Similarly, after receiving the message from A2, A1 calls
AbsorbInterfaceConstraint. It modifies the constraint at linkage host {a, b, r}
into the relation R8 (Table 2) but constraint at linkage host {b, c, t} remains as
R3 (Table 1).

Subsequently, A1 performs UnifyConstraint by calling CollectSeparatorCon-
straint in cluster, say, {a, b, r}, followed by calling DistributeSeparatorConstraint.
During CollectSeparatorConstraint, the message sent from {e, r, v} to {d, e, r} is
a universal relation over {e, r} and hence causes no change to the constraint at
{d, e, r}. The message sent from {d, e, r} to {a, b, r} is a universal relation over
{r} and hence causes no change to the constraint at {a, b, r}. The message from
{b, r, s} to {a, b, r} is a universal relation over {b, r} and causes no change to the
constraint at {a, b, r}. The message from {c, f, t, u} to {b, c, t} is R4 (Table 2)
over {c, t} and changes the constraint at {b, c, t} to R7 (Table 2). The message
from {b, c, t} to {a, b, r} is universal over {b} and causes no change to constraint
at {a, b, r}.
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During DistributeSeparatorConstraint, the message from {a, b, r} to {d, e, r}
is a universal relation over {r} and causes no change to the constraint at {d, e, r}.
The message from {d, e, r} to {e, r, v} is R4 (Table 2) over {e, r} and it mod-
ifies the constraint at {e, r, v} to R5 (Table 2). The message from {a, b, r} to
{b, r, s} is R4 (Table 2) over {b, r} and modifies the constraint at {b, r, s} to R5

(Table 2). The message from {a, b, r} to {b, c, t} is a universal relation over {b}
and causes no change to the constraint at {b, c, t}. The message from {b, c, t}
to {c, f, t, u} is R4 (Table 2) over {c, t} and causes no change to the constraint
at {c, f, t, u}. UnifyConstraint at A1 returns with true. T1 is full arc-consistent
with the following cluster constraints: R1 (Table 1) for {c, f, t, u}, R7 (Table 2)
for {b, c, t}, R8 (Table 2) for {d, e, r} and {a, b, r}, R5 (Table 2) for {e, r, v} and
{b, r, s}. Before completing CollectInterfaceConstraint, A1 sends A0 a message
containing constraint R6 (Table 2) over linkage {c, f}.

After A0 receives the message, it calls AbsorbInterfaceConstraint which re-
places the constraint at linkage host {c, f, n} by R8 (Table 2). Afterwards, A0

performs UnifyConstraint by calling CollectSeparatorConstraint in cluster, say,
{f, n, p}, followed by calling DistributeSeparatorConstraint. During CollectSep-
aratorConstraint, the message from {c, f, n} to {f, n, p} is R4 (Table 2) over
{f, n}. It modifies the constraint at {f, n, p} into R5 (Table 2). During Dis-
tributeSeparatorConstraint, the message from {f, n, p} to {c, f, n} is R4 (Ta-
ble 2) over {f, n} and has no effect at {c, f, n}. UnifyConstraint at A0 returns
with true. T0 is full arc-consistent with the following cluster constraints: R8 (Ta-
ble 2) for {c, f, n} and R5 (Table 2) for {f, n, p}. As the result, A0 terminates
CollectInterfaceConstraint and returns ∇.

Subsequently, A0 is called to DistributeSolution. It runs GetLocalSolution
by first calling DistributeSeparatorSolution at, say, {f, n, p}. This produces the
partial solution R11 for {f, n, p} first and then R10 (Table 3) for {c, f, n} at T0.

Table 3. Relations generated during DistributeSolution.

R9

c f t u

2 2 0 1
2 2 1 0

R10

a b r

b c m

b c t

c f n

d e r

2 2 1

R11

b r s

e r v

f n p

2 1 0 R12

a b

b c

c f

d e

2 2

R13

a b j k

c f t u

d e g h

2 2 1 0 R14

g h i

1 0 2

Next, A0 calls A1 to DistributeSolution with the message containing the
relation R12 (Table 3) over {c, f}. In response, A1 modifies its constraint in
linkage host {c, f, t, u} to R9. It then calls DistributeSeparatorSolution in the
host {c, f, t, u}. The resultant partial solution at each cluster of T1 are as fol-
lows: R13 over {c, f, t, u}, R10 over {b, c, t}, {a, b, r}, R11 over {b, r, s}, R10 over
{d, e, r}, and R11 over {e, r, v}.

After that, A1 calls A2 to DistributeSolution with the message containing
relations R12 over {a, b} and {b, c}. In response, A2 generates partial solutions
R13 (Table 3) over {a, b, j, k} and R10 over {b, c, m} at T2.

Similarly, A1 calls A3 to DistributeSolution with the message containing
relation R12 over {d, e}. In response, A3 generates partial solutions R13 over
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{d, e, g, h} and R14 over {g, h, i} at T3. SolveDCSP now terminates successfully
and the natural join of the above partial solutions in all agents is the solution.

8 Conclusion
In this contribution, we proposed a representation of DCSPs as MSCNs, ex-
tended techniques for MSBNs [10] to compilation of MSCNs into runtime LJFs,
and presented the first algorithm suite that solves efficiently DCSPs of bounded
primal graph density. The algorithm suite is shown to be sound and complete.
Therefore, we have shown that MSCNs form a tractable class of DCSPs. Exper-
imental study on distributed scheduling is underway.
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