
Planning in Multiagent Expedition with

Collaborative Design Networks

Y. Xiang and F. Hanshar

University of Guelph, Canada

Abstract. DEC-POMDPs provide formal models of many cooperative
multiagent problems, but their complexity is NEXP-complete in general.
We investigate a sub-class of DEC-POMDPs termed multiagent expedi-
tion. A typical instance consists of an area populated by mobile agents.
Agents have no prior knowledge of the area, have limited sensing and
communication, and effects of their actions are uncertain. Success relies
on planing actions that result in high accumulated rewards. We solve an
instance of multiagent expedition based on collaborative design network,
a decision theoretic multiagent graphical model. We present a number
of techniques employed in knowledge representation and demonstrate
the superior performance of our system in comparison to greedy agents
experimentally.

1 Introduction

Decentralized partially observable Markov decision processes (DEC-POMDPs)
(e.g., [1]) extend POMDPs to multiagent systems. DEC-POMDPs provide formal
models of many cooperative multiagent problems. However, in general, their
complexity is nondeterministic exponential time complete (NEXP-complete) [2].

We consider a sub-class of DEC-POMDPs which we term as multiagent ex-
pedition. A typical instance consists of a large area populated by objects as well
as mobile agents. Activities of agents include moving around the area, avoid-
ing dangerous objects, locating objects of interests, and manipulating objects in
various ways depending on the nature of application. The effect of an action is
generally uncertain. Agents have no prior knowledge on the area. That is, they do
not know, a priori, where dangerous or interesting objects are located. Instead,
they try to identify nearby objects based on limited sensing of the local envi-
ronment. Successful manipulation of an interesting object sometimes requires
proper actions of a single agent and sometimes requires cooperation of multiple
agents through limited communication. The success of an agent team depends
on the number of objects successfully manipulated as well as the quality of each
manipulation. Practical examples of multiagent expedition include undersea ad-
venture, planet expedition, disaster rescue, anti-air defense, etc. In this paper, we
specify precisely the instance of multiagent expedition used in this investigation.

Our knowledge representation is based on collaborative design networks (CDNs)
originally proposed [10,11] as a decision-theoretic framework for multiagent, op-
timal industrial design. The expressive power of the framework, however, goes
beyond design. As long as domain dependencies can be encoded into sparse and
distributed graphical structures, the framework supports autonomous, optimal,

and efficient multiagent decision making. To further explore its generality, this
work investigates the application of CDNs to multiagent expedition.

Section 2 introduces background on CDNs. The instance of multiagent ex-
pedition that we investigate is specified in Section 3. How we approach this
generally intractable problem computationally is detailed in Section 4 and our
experimental results are reported in Section 5. Additional related work is dis-
cussed in Section 6 after presenting ours, to facilitate comparison.

2 Background on CDNs

We briefly review background on CDNs, whose full technical details can be
found in [10, 11]. CDNs are motivated by collaborative industrial design in supply
chains. An agent responsible for the design of a component encodes its design
knowledge and preference into a design network (DN) S = (V, G, P). The domain
is a set of discrete variables V = D ∪ T ∪M ∪U , where D, T, M, U are disjoint.
D is a set of design parameters. T is a set of environmental factors (working
conditions) of the product under design. M is a set of objective performance
measures and U is a set of subjective utility functions of the agent’s principal.

The dependence structure G = (V, E) is a directed acyclic graph (DAG)
whose nodes are mapped to elements of V and whose set E of arcs is from the
following legal types: Arc (d, d′) (d, d′ ∈ D) signifies a design constraint. Arc
(d, m) (m ∈ M) represents dependency of performance on design. Arc (t, t′)
(t, t′ ∈ T) represents dependency between environmental factors. Arc (t, m) sig-
nifies dependency of performance on environment. Arc (m, m′) defines a com-
posite performance measure. Arc (m, u) (u ∈ U) signifies dependency of utility
on performance. Fig. 1 (a) shows a trivial DN.

(a)d_c_voltage u_perf

d_memory

u_cost
d_b_chipset

d_io_controler
m_cost

u_io_perf
m_io_perf

d_12vm_stability

t_humidity

u_stability
m_perf

d_c_chipsett_temperature (b)

PC Video CardPower Supply

CPU
Motherboard

Monitor

Fig. 1. (a) A trivial DN for PC motherboard. First letter of a node label indicates its
type. (b) Hypertree of a simple CDN.

P is a set of potentials, one for each node x, and each is formulated as a
probability distribution P (x|π(x)), where π(x) is the parent nodes of x, but its
semantics depends on x. P (d|π(d)) encodes a design constraint. P (t|π(t)) and
P (m|π(m)) are typical probability distributions. Each utility variable has the
domain {y, n}. P (u = y|π(u)) is a utility function u(π(u)) whose values range
in [0, 1]. P (u = n|π(u)) is assigned 1 − P (u = y|π(u)). Each node u is assigned
a weight k ∈ [0, 1] such that weights of all utility nodes sum to one.

2

With P thus defined,
∏

x∈V \U P (x|π(x)) is a joint probability distribution
over D∪T∪M . With the assumption of additive independence among utility vari-
ables, the expected utility of a design d is EU (d) =

∑
i ki (

∑
m ui(m) P (m|d)),

where d (bold) is a configuration of D, i indexes utility nodes in U , m (bold) is
a configuration of parents of ui, and ki is the weight of ui.

Each supplier in a supply chain is a designer of the supplied component.
Agents, one per supplier, form a collaborative design system. Each agent em-
bodies a design network called a design subnet and agents are organized into
a hypertree: Each hypernode corresponds to an agent and its subnet. Each hy-
perlink (called agent interface) corresponds to design parameters shared by the
two subnets (referred to as public variables). Hypertree organization specifies
to whom an agent can communicate directly. Each subnet is assigned a weight
wi, representing a compromise of preferences among agents, and

∑
i wi = 1.

The collection of subnets {Si = (Vi, Gi, Pi)} forms a CDN. Fig. 1 (b) shows
the hypertree of a simple CDN for customized PC design, where the subnet on
motherboard is shown in (a).

The product
∏

x∈V \∪iUi
P (x|π(x)) is a joint probability distribution over

∪i(Di ∪ Ti ∪ Mi), where P (x|π(x)) is associated with node x in a subnet. The
expected utility of a design d is EU (d) =

∑
i wi (

∑
j kij (

∑
m uij(m) P (m|d))),

where d is a configuration of ∪iDi, i indexes subnets, j indexes utility nodes
{uij} in ith subnet, m is a configuration of parents of uij, and kij is the weight
associated with uij. Through communication along the hypertree, agents can
determine the optimal design d∗ that has the maximum EU (d) [11].

3 The Multiagent Expedition Testbed

The following instance of multiagent expedition is used in our investigation:
The area is abstracted as a grid of cells. At any cell, an agent has five possible
actions: moving to an adjacent cell along one of four directions (referred to as
north, south, east, west) or remaining in the current cell (referred to as halt). The
effect of an action is, however, uncertain. That is, the action north may cause
the agent to land on each of four unintended cells.

The desirability of an object (located at a cell) is indicated by a numerical
reward. For simplicity, we abstract away the object and associate the reward
with the cell. A cell that is neither interesting nor harmful has a reward of
a base value. The reward at a harmful cell is lower than the base value. The
reward at an interesting cell is higher than the base value and can be further
increased through agent cooperation. When a physical object at a given location
is to be manipulated (e.g., digging, lifting, pushing, etc.), cooperation is often
most effective when a certain number of agents are involved, and the per-agent
productivity is reduced when less or more agents are involved. We set the most
effective level at 2, although other levels can also be used. For instance, the
reward that can be collected by a single agent from a given cell may be 0.3.
However, if two agents cooperate and meet at the cell, each receives 0.4. If three
or more agents meet at the cell, two of them each receives 0.4 and the other

3

agents receive the base value. This feature promotes effective cooperations and
discourages unproductive ones. It is encoded by associating each cell with a
reward pair (r1, r2), where r1 is the reward collected by a single agent and
r2 is the total reward collected by two cooperating agents. Hence, the above
mentioned cell has the reward (0.3, 0.8). After a cell has been visited by any
agent, its reward is decreased to the base value. As a result of this feature,
wandering within a neighborhood will not be productive and agents must move
around strategically.

Agents have no prior knowledge about the area on how the rewards are
distributed. Instead, at any cell, an agent can perceive the cell’s absolute location
(e.g., through GPS on Earth or triangulation with two base stations on Mars).
It can also perceive the reward distribution in its neighborhood. We set the
neighborhood to be the 13 cells shown in Fig. 2 (a), although different settings
are also possible. An agent can also perceive the location of another agent if the
latter is within a 10 step radius. It can communicate with agents within this
radius as well. The objective of agents is to move around the area, cooperate as
needed, and maximize the team reward over a finite horizon. They must do so
based on local observations and limited interagent communication.

This instance of multiagent expedition is a DEC-POMDP. The state of the
environment is described by the location of all agents as well as the distribution of
rewards. It is stochastic since the effect of actions are uncertain. It is Markovian
as the new state is conditionally independent of the history given the current
state and the joint action of agents. It is partially observable because each agent
can only perceive its neighborhood, but not the distribution of rewards and
agents beyond.

Because an agent can perceive its own location and agents nearby, a sig-
nificant amont of relevant information in the environmental state is obtained
through observation. On the other hand, not all relevant information has been
obtained, because knowing the reward distribution beyond the neighborhood
will allow the agent to plan better. To capture this difference from the case
where agents cannot perceive its own location reliably, we refer to the stochastic
process as a decentralized weakly partially observable Markov decision process
(DEC-W-POMDP).

4 A Decision-Theoretic Graphical Models Approach

Consider the general case of the problem instance with n agents and horizon k.
Given the current positions of agents, each agent has five possible actions. Hence,
there are 5n joint actions and 5nk joint plans of horizon k. Since each action
has five possible effects, a joint action has 5n possible effects, a joint plan has
5nk possible effects, and the 5nk joint plans have a total of 52nk possible effects.
Each automonous agent needs to evaluate these effects, identify the optimal joint
plan, and obtain its own optimal action sequence. For six agents and horizon 2,
each agent needs to evaluate 524 ≈ 6 × 1016 possible effects. To carry out the
computation more efficiently, we take the following measures:

4

Splitting Agent Team into Groups We divide n agents into smaller groups
to allow high inner-group interaction and low inter-group interaction. Grouping
has no negative effect on scaling up. It allows group members to stay closely so
that they can cooperate effectively, as long as the group size is no smaller than
the number of agents to be involved in a most effective cooperation. It allows
different groups to stay away from each other, which not only allows the team
to explore the area more effectively, but also allows reduction of computation
by reducing inter-group interaction. In this work, we consider group size of 3,
although larger sizes can also be used. We present inner-group interaction first
and inter-group interaction later. We also limit horizon to 2. These two measures
allow the per-agent evaluation to be reduced to 512 ≈ 2.4× 108 possible effects.

Graphical Modeling These effects are evaluated by agents using a CDN. We
denote the three agents in a group by A, B and C. The subnet dependence
structure for B is shown in Fig. 2 (b). The subnets for A and C have the same
structure. In the subnet, each decision variable mvx,i has 5 possible values. Each

BG

ABC,1
Brw B

B

A,2ps

C,2ps

B
B

C,1B,1
A,1 psBps

ps mv

(b)(a)

C,2

ABC,2
Brw

B,2
Bps

mv B,2
A,2mv

C,1mvB,1mvA,1mv

Fig. 2. (a) The 13 neighborhood cells whose rewards are perceivable by the agent.
(b) Subnet structure for agent B. Design parameter mvA,1 denotes first movement
decision of agent A and is a public variable. Performance measure psA,1

B denotes position
of A after first movement and is a private variable in B. The utility variable rwABC,2

B

denotes reward received by B after second movement due to interaction with A and C.

position variable psx,1 has five possible values and each position variable psx,2 has
13 possible values. Each reward variable rwABC,i

B is binary. After compilation,
its runtime representation is a cluster tree of 8 clusters (see Fig. 5 (a) for an
alternative cluster tree). The size of total state space of this cluster tree (the total
number of probability potential values) is 619244. For each round of planing,
agent B must process this state space once for each of the 56 = 15625 joint
plans. Agents A and C incur the same amount of computation. The entire round
of group planing takes 7380 seconds (2 hours and 3 minutes) running in IBM
ThinkPad 2GHz Core Duo (Java implementation without runtime optimization).

Restricting Inner-Group Interaction To speed up the computation, we re-
strict inner-group agent interaction to pairwise. We only allow direct cooperation
between A and B and between B and C. This essentially imposes an organiza-
tional structure A − B − C for the group. This restriction will not jeopardize

5

the effectiveness of agent cooperation because the number of agents who can
cooperate equals the most effective level of cooperation of the environment (see
Section 3).

The subnets for agents A and B in the resultant CDN are shown in Fig. 3.
The subnet for C is similar to that of A. From (a), it can be seen that variables

mv A,1 mv B,1 mv C,1

mv A,2
B,2mv

BC,2

B
B

psC,2

psA,2

B

B

(a) (b)

G GA B

BC,1

C,2mvps
psB psA,1

B,1 C,1

rwAB,2
B

rwB

rwB

A,2
A psB,2

A

A

ps

mv A,2
B,2mv

rwAB,2

B,2rwAB,1
B

B

mv A,1 mv B,1

ps
psA,1

B,1

A
A

rwAB,1
A ps

Fig. 3. (a) Subnet for agent A. (b) Subnet for agent B.

corresponding to agent C have disappeared from GA (the similar occurs with
GC). In (b), the rewards due to B’s cooperations with the other agents have
now been decomposed.

The group organization A − B − C does not, by itself, prevent interactions
between A and C as they could still meet even though the meeting is not planed.
In fact, the group could behave such that all three are trying to meet: an unpro-
ductive cooperation. To prevent such behavior, the planning computation steers
A and C away from each other. How to achieve this is presented below.

Guiding Agents with Group Direction To reduce the state space of agent
cluster trees, we require that agents’ movements be guided by a group direction.
If the current group direction is north, then A and C are not allowed to attempt
south.

Adopting the group direction allows reduction of the space for variables mvA,i

and mvC,i by one alternative action, thus reducing the state space of agent
cluster trees. Furthermore, this restriction allows the agent group to move less
randomly and more strategically because the movements of A and C are better
coordinated. Note that even though A and C are not allowed to attempt south
in the above scenario, they may still move to south due to the uncertain effect
of their movement actions.

Because group direction affects the spaces of public variables mvA,i and
mvC,i, at any time, the three agents must agree on what is the current group
direction. This is achieved by two measures: First of all, group members are
required to stay within the 10 step radius to each other. We elaborate later how
agents can achieve this through planning with CDN. The consequence is that
it allows group members to perceive each other’s position. Second, a common
algorithm is used by group members to compute the group direction based on
their positions.

6

The algorithm handles a given situation depending on whether there is a
meeting. As mentioned above, the planning computation prevents meeting of
the group. Hence, a meeting can occur only between A and B or between B and
C. In such a case, the group direction is pointing from A to C. If there is no
meeting, the group direction is determined according to the maximum angle in
the agent triangle, as illustrated in Fig. 4 (a). Given positions of group members,

B

(a) (b) (c)

C BA

B C

A

A

C

Fig. 4. Determine group directions based on agent positions.

a triangle is formed with angles, ∠A, ∠B and ∠C. If a maximum angle exists, it
must be either ∠B as in (a), or ∠A as in (b), or ∠C as in (c). The dashed arrow
indicates the group direction in each case. If a maximum angle does not exist, a
default direction can be used. We omit computational details here due to space
limitations.

The method enforces the following properties: First, it steers the group to
move in formation A − B − C. Agent B is positioned between A and C, and
three of them tend to arrange into a straight line. This helps prevent unwanted
direct interaction between A and C. Second, it steers the group to move in
the direction pointing from A to C. Therefore, the group direction will not
change dramatically from move to move, promoting strategic group movement
and avoiding wandering around in a small confined region. Third, the group
direction does not dictate individual agent movement rigidly. Each agent still
has enough flexibility to choose its action. For instance, suppose that bottom
right cell in Fig. 4 (c) has a high r2 value. Then, B can plan to go south twice
and C can plan to halt first and then go east.

To further reduce the state space of agent cluster trees, we do not allow agents
to attempt halt in the second movement. Action halt is necessary for two agents
to meet when they are in certain relative positions such as that of Fig. 4 (c).
Our stipulation will force C to halt in the first step. This requirement, combined
with the previous measures, reduces the space of variables mvA,2 and mvC,2 to
size 3 and that of mvB,2 to size 4.

The resultant cluster trees for agents A and B are shown in Fig. 5. The
cluster tree for C is similar to TA. The size of total state space of TB is 48169:
about 12-fold reduction. The size of total state space of TA is 10152: about 61-
fold reduction. One round of group planing takes 135 sec (Java implementation
without runtime optimization): about a 55-fold speed up.

Enforcing Desirable Behavior Through Utility As mentioned above, within
a group, we expect cooperation between A and B and between B and C, but

7

ps A
B,1ps0C

(b)

BT

, ,

, , , ,

, , , ,

, ,

, , , ,

, ,

A,1

A
AB,2rwA

B,2psA
A,2ps1C

, , A
AB,1rwA

rwB
C,1psB,1

Bps

8C

10C

1C

9C

0CB

3C
BC,1

4C

3C 5C

A
B,1psA

A,1psmv B,2A,2mvA,1C
, , , ,

, , , ,

, , ,

, , , ,

(a)

AT

2 mvA
A,2ps

A
B,1psA

A,1ps A
B,2psmv B,2A,2mv

, , ps

A
B,1psmv B,2A,2mvB,1mvA,1mv

A,2mv A
A,1ps A

B,2

B

B
C,1psmv C,2

11C
, , , ,A,1mv A,2mv B

A,1psmv

ps

BC,2
BrwB

C,2psB,2
Bps

, , ,5C
B
C,2psB,2

B

B,2

mv

, , , ,6C
B
C,1psmv C,2 B,2

Bpsmv B,2B,1mv

B,1

B,1mv

7C , , , ,B,1
Bps B

C,1ps B,2
Bpsmv B,2

Bpsmv B,2B,1mv

A,2mv B
A,1psmv B,2B,1mv B

A,2

B,2

A,1ps B,1
Bps B

A,2psmv B,2B,1mv

B
A,2psB,1

Bps

ps

C , , , ,C,1mv mv B,2 mv C,2
B
C,1psB,1mv

4C , ,

2

B,1
Bps B

AB,1rwB
A,1ps

B
A,2ps B,2

Bps B
AB,2rw

Fig. 5. (a) Cluster tree TA for agent A. (b) Cluster tree TB for agent B.

avoidance of direct interaction between A and C. We also expect different groups
to avoid each other. We would like to achieve such desirable behavior of agents
through reasoning within CDN. To do so, we replace each reward variable rwx,i

y

by a new utility variable utx,i
y . Recall that rwx,i

y is a binary variable and dis-
tribution P (rwx,i

y = y|π(rwx,i
y)) associated with rwx,i

y encodes utility function
u(π(rwx,i

y)), where π(rwx,i
y) is the parent nodes of rwx,i

y and consists of position
variables psz,i

y . The distribution P (utx,i
y = y|π(rwx,i

y)) associated with utx,i
y is

obtained by modifying u(π(rwx,i
y)) as follows:

If π(rwx,i
y) corresponds to a group configuration where either A and B are

too far away (according to a distance threshold), or B and C are too far away,
or A and C are too close, or agent y is too close to any other agent outside
the group, P (utx,i

y = y|π(rwx,i
y)) is set to 0. Otherwise, P (utx,i

y = y|π(rwx,i
y)) =

u(π(rwx,i
y)).

Jumping in Barren Area When a group moves into a barren area where all
cells have the reward at or below base value, any movement not causing danger
will be regarded by the agents just as good as any other. The group movement
will then be dominated by danger avoidance and the group could wander around
the barren area forever: an unproductive behavior.

To avoid being so trapped, agents could follow an exception rule outside
CDN-based planning and move in the group direction for a number of steps.
However, such blind jump, combined with the uncertain effect of actions, may
violate intra and inter-group formation or enter dangerous cells.

We have instead let agents plan their jump through CDN. Jumping is trig-
gered by the inference computation with CDN when the optimal group plan has
a utility at or below the base value. In the next step, each agent checks the
observed rewards for the next two cells in the group direction. If their reward
values do not correspond to danger, the cells will be treated as if their reward
values are 1 (the highest value) during planning with CDN.

This solution has the following advantages: First, the jumping behavior is
produced in the uniform computational framework of normal movement, which
facilitates analysis and implementation. Second, danger avoidance is enabled.

8

Third, if the target cells do not correspond to danger, the high reward values
will be used in the distributions associated with variables rwx,i

y . Because these
distributions are subject to the modification into those associated with utx,i

y , as
mentioned above, desirable behavior regarding intra and inter-group formation
will be enforced during jumping. In short, this solution implements jumping
along group direction as a soft guideline and combines it with other criteria
naturally.

5 Experimental Results

To empirically verify the effectiveness of our method, an Environment Simulator
is implemented as well as the agents. The Simulator models the grid, reward
distribution and effect of agent actions (the probability of intended effect of
an action is set at 0.9). It feeds agents with observations and updates environ-
mental state according to agent actions. Each agent communicates with group
members according to CDN hypertree and with Simulator on observations and
action decisions. Agent performance is measured by rewards collected over a
finite horizon.

To test the robustness of our method under different environments, three
types of reward distributions were used. In a dense distribution, every 10 × 10
region has at least one high reward cell. In a barren distribution, high reward
cells are located in clusters. Each cluster is no larger than a 6×6 region and two
clusters are at least 20 cells apart. In a path distribution, some high reward cells
form a pathway and, along the pathway, a high reward cell is no less than two
cells away from another one. Examples distributions are shown in Fig. 6. For
each distribution type, the initial locations of agents are identical in all runs.

21 21 21 c)b)a)

Fig. 6. Example distributions. Left: barren (120 by 120); middle: dense (60 by 60);
right: path (80 by 80). Each arrow indicates the starting locations of three agents.

To compare our CDN agents with simpler but non-trivial alternatives, we
implemented two types of greedy agents. The domain of decisions mv1 and mv2

is {north, south, east, west, halt}. The first type (GRD) is based on unilateral
reward rwu and maximizes rwu(mv1)+rwu(mv2), where rwu(mvi) is the unilat-
eral reward of the i’th movement. The second (GRDB) considers bilateral reward
rwb as well and maximizes rwu(mv1) + rwu(mv2) + rwb(mv1) + rwb(mv2). For

9

both types, each agent acts independently and there is no direct communication
between agents.

Table 1 shows the experimental results. A team of six agents of the same
type is used for each run which lasts for 80 time-steps. Each type of agents have
five runs for each type of distribution.

Table 1. Experimental results. Mean rewards µ, as well as max and min, are obtained
from 5 runs. Highest means for each distribution is shown as bold.

CDN GRD GRDB
µ max min µ max min µ max min

barren 51.82 53.9 48.3 49.42 49.8 48.8 49.28 49.8 48.4
dense 72.46 81.5 59.8 60.52 62.4 58.4 68.56 76.5 58.1
path 96.48 100.5 91.1 72.56 78.2 65.2 74.44 84.6 68.7

On average, CDN agents collected highest rewards across all three types of
distributions. Results for barren distribution were the closest among the three
types of agents. As high reward clusters were far apart, agents’ observation range
is far below minimal distance between such clusters, and agents were started far
from any such clusters, performance of a single run is more subject to chance.
As a result, the minimal reward collected by CDN agents were lower than the
minimal collected by greedy agents, even though on average CDN agents still
outperform. For dense and path distributions, CDN agents outperform greedy
agents on every run. For path distribution, the lowest reward collected by CDN
agents was higher than the highest reward collected by greedy agents. The su-
perior CDN performance may be attributed to at least two properties. First,
CDN agents can plan bilateral visiting of a cell, whereas greedy agents have no
direct coordination. Second, CDN agents keep groups apart and thus can explore
different regions of the environment and avoid revisiting cells. Of two types of
greedy agents, GRDB type outperforms GRD in dense and path distributions
since it considered bilateral actions whereas GRD did not.

6 Other Related Work
The space precludes an extensive literature review and we discuss only a small
subset which is considered the most relevant.

Mazes have been abstracted from office delivery applications and used in em-
pirical study of centralized POMDP algorithms, e.g. [5]. A typical maze consists
of walls, hallways, rooms and a single agent. The agent must travel to a goal
location through a long sequence of movements. The agent knows the topology
of the maze but may not know its starting location. Its sensors can perceive
nearby walls but are noisy. In multiagent expedition, at any time, multiple alter-
native goals (of different reward) exist for each agent and each requires a short
sequence of movements. The objective of planning is to choose among these goals
wisely. Agents have no prior knowledge of the environment and the environment
is multiagent.

Also abstracting from office delivery applications, Pollack and Ringuette [7]
proposed Tileworld multiagent testbed, where agents’ goals are to push tiles into

10

holes. As multiagent expedition, a Tileworld agent can pursue one of multiple
alternative goals at any time; but unlike multiagent expedition, each goal requires
a long sequence of movements. The environment is fully observable (agents can
perceive tiles, holes and other agents) and deterministic (actions have intended
effects). In contrast, the environment of multiagent expedition is weakly partially
observable (agents cannot perceive beyond local region) and stochastic (effects
of actions are uncertain).

Tiles and holes in Tileworld dynamically appear and disappear. The feature
is reasonable in office delivery applications but insensible in the expedition en-
vironment. In multiagent expedition, after being visited by any agent, a cell’s
reward is reduced to the base value. As a consequence, wandering in the same
neighborhood is unproductive and agents must move around strategically.

Work on independent DEC-MDPs [1] shares some features with multiagent
expedition. It assumes that actions of one agent cannot affect other’s observation
and state, and an agent cannot observe other agent’s state and communicate with
them. In multiagent expedition, agents can observe the state of others if they are
close by, they must plan to meet to maximize reward, and CDN utilizes limited
inter-agent communication to achieve optimal joint plan.

Noh and Gmytrasiewicz [6] applied the recursive modeling method (RMM)
to agents cooperating in anti-missile defense. In their environment, incoming
missiles are fully observable. Uncertainty originates from the unknown state of
other agents as well as the effect of intercept action.

Artificial birds [8] display formation behavior somewhat similar to the group
formation presented in this work. The formation can be viewed as the ends of
their birds and the behavior is generated by following simple rules. The formation
of agents in expedition is the means to serve the ends. It is generated as part of
the desirable behavior through decision-theoretical planning.

Multiagent expedition differs from exploration. As commonly referred, e.g.,
[4,9], the main task of exploration is to produce a map in an unknown environ-
ment by moving around and sensing. The map produced can then be used for
navigation as in mazes described above. Multiagent expedition, as we presented,
does not require a map.

In posing the challenge of Mars rover operations [3], the need to take resource
constraints and concurrent actions into account in planning is emphasized. CDNs
encode constraints explicitly through design parameters and address concurrent
actions through multiagent planning. Hence, CDN based planning provides a
promising research direction towards meeting the challenge.

7 Conclusion
Multiagent expedition forms a class of DEC-W-POMDPs and captures a number
of practical applications. In this work, we solve one instance of DEC-W-POMDP.
The knowledge representation is based on CDN, a formal decision theoretic
graphical model that supports autonomous, optimal, and efficient multiagent
decision making. The generality of CDN allows incorporation of grouping, group
direction, jumping and comprehensive preference encoding to achieve efficiency
while maintaining optimality. Experiment shows superior performance of CDN

11

agents over greedy agents. Our method can easily scale up to a larger number of
agents by employing more groups as well as a larger group size. The addition of
groups essentially has no impact on complexity. Large group size with the hy-
perchain group organization maintained will cause increase of complexity linear
on the group size.

Theoretical and experimental comparison of our approach to RMM [6] is
underway, through which we hope to gain a better understanding of the pros
and cons of our tightly-coupled agent architecture and their loosely-coupled one.

Acknowledgement
Financial support to the first author through Discovery Grant from NSERC,
Canada and that to the second author through OGS from MTCU, Ontario are
acknowledged.

References

1. R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman. Solving transition indepen-
dent decentralized Markov decision processes. J. Artificial Intelligence Research,
22:423–455, 2004.

2. D.S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentral-
ized control of Markov decision processes. In Proc. 16th Conf. on Uncertainty in
Artificial Intelligence, pages 32–37, Stanford, 2000.

3. J. Bresina, R. Dearden, N. Meuleau, S. Ramkrishnan, D. Smith, and R. Wash-
ington. Planning under continuous time and resource uncertainty: a challenge for
ai. In Proc. 18th Conf. on Uncertainty in Artificial Intelligence, pages 77–84, San
Francisco, CA, 2002. Morgan Kaufmann.

4. S. Carpin, H. Kenn, and A. Birk. Autonomous mapping in the real robot rescue
league. In D. Polani, B. Browning, A. Bonarini, and K. Yoshida, editors, RoboCup
2003: Robot Soccer World Cup VII, Lecture Notes in Artificial Intelligence (LNAI)
3020. Springer, 2004.

5. M.L. Littman, A.R. Cassandra, and L.P. Kaelbling. Learning policies for partially
observable environments: scaling up. In A. Prieditis and S. Russell, editors, Proc.
12th Inter. Conf. on Machine Learning, pages 362–370, San Francisco, CA, 1995.
Morgan Kaufmann.

6. S. Noh and P.J. Gmytrasiewicz. Coordination and belief update in a distributed
anti-air environment. In Proc. 31st Annual Hawaii Inter. Conf. on System Sciences,
pages 142–151, 1998.

7. M. Pollack and M. Ringuette. Introducing the Tileworld: experimentally evaluating
agent architectures. In T. Dietterich and W. Swartout, editors, Proc. 8th National
Conf. on Artificial Intelligence, pages 183–189, Menlo Park, CA, 1990. AAAI Press.

8. C.W. Reynolds. Flocks, herds, and schools. In Computer Graphics, 21, Proc.
SIGGRAPH’87, pages 25–34, 1987.

9. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.
10. Y. Xiang, J. Chen, and A. Deshmukh. A decision-theoretic graphical model for

collaborative design on supply chains. In A.Y. Tawfik and S.D. Goodwin, editors,
Advances in Artificial Intelligence, LNAI 3060, pages 355–369. Springer, 2004.

11. Y. Xiang, J. Chen, and W.S. Havens. Optimal design in collaborative design
network. In Proc. 4th Inter. Joint Conf. on Autonomous Agents and Multiagent
Systems (AAMAS’05), pages 241–248, 2005.

12

