
Enumerating Unlabeled and Root Labeled Trees

for Causal Model Acquisition

Yang Xiang, Zoe Jingyu Zhu, and Yu Li

University of Guelph, Canada

Abstract. To specify a Bayes net (BN), a conditional probability table
(CPT), often of an effect conditioned on its n causes, needs to be as-
sessed for each node. It generally has the complexity exponential on n.
The non-impeding noisy-AND (NIN-AND) tree is a recently developed
causal model that reduces the complexity to linear, while modeling both
reinforcing and undermining interactions among causes. Acquisition of
an NIN-AND tree model involves elicitation of a linear number of prob-
ability parameters and a tree structure. Instead of asking the human
expert to describe the structure from scratch, in this work, we develop a
two-step menu selection technique that aids structure acquisition.

1 Introduction

To specify a BN, a CPT needs to be assessed for each non-root node. It is often
advantageous to construct BNs along the causal direction, in which case a CPT is
the distribution of an effect conditioned on its n causes. In general, assessment of
a CPT has the complexity exponential on n. Noisy-OR [7] is the most well known
causal model that reduces this complexity to linear. A number of extensions have
also been proposed such as [4, 3, 5]. However, noisy-OR, as well as related causal
models, can only represent reinforcing interactions among causes [9]. The NIN-
AND tree [9] is a recently proposed causal model. As noisy-OR, the number
of probability parameters to be elicited is linear on n. Furthermore, it allows
modeling of both reinforcing and undermining interactions among causes. The
structure of causal interactions is encoded as a tree of a linear number of nodes
which must be elicited in addition.

An NIN-AND tree can be acquired by asking the expert to describe the tree
structure from scratch. When the number of causes is more than 3, describing the
target NIN-AND tree accurately may be challenging. In this work, we develop a
menu selection technique that aids the structure acquisition. We propose a com-
pact representation through which an NIN-AND tree structure is depicted as a
partially labeled tree of multiple roots and a single leaf, called a root-labeled tree.
As there are too many root-labeled trees for a given number of causes, we divide
the menu selection into 2 steps. In the first step, the human expert is presented
with an enumeration of unlabeled trees for the given number of causes, and is
asked to select one. In the second step, the expert is presented with an enumera-
tion of root-labeled trees that are isomorphic to the selected unlabeled tree. The
two-step menu selection reduces significantly the total number of alternatives to
be presented. It lowers the overall cognitive load to the expert and is expected
to improve the accuracy and efficiency of NIN-AND tree model acquisition.

To implement the two-step menu selection, a proper set of tree structures
must be enumerated at each step. For the first step, we draw from a technique
from phylogenetics [2] for counting evolutionary tree shapes, which are unlabeled
trees of a single root and multiple leaves. We extend the technique for counting
to an algorithm for enumeration (generation) of unlabeled trees of multiple roots
and a single leaf. For the second step, we develop a new algorithm to enumerate
root-labeled trees isomorphic to a given unlabeled tree.

2 Background

This section is mostly based on [9]. An uncertain cause is a cause that can pro-
duce an effect but does not always do so. Denote a set of binary cause variables
as X = {c1, ..., cn} and their effect variable (binary) as e. For each ci, denote
ci = true by c+

i and ci = false by c−i . Similarly, denote e = true by e+ and
e = false by e−.

A causal event refers to an event that a cause ci caused an effect e to occur
successfully. Denote this causal event by e+ ← c+

i and its probability by P (e+ ←
c+
i). The causal failure event, where e is false when ci is true, is denoted as

e+ 6← c+
i . Denote the causal event that a set X = {c1, ..., cn} of causes caused e

by e+ ← c+
1 , ..., c+

n or e+ ← x+. Denote the set of all causes of e by C. The CPT
P (e|C) relates to probabilities of causal events as follows: If C = {c1, c2, c3},
then P (e+|c+

1 , c−2 , c+
3) = P (e+ ← c+

1 , c+
3).

Causes reinforce each other if collectively they are at least as effective in
causing the effect as some acting by themselves. If collectively they are less
effective, then they undermine each other. The following defines the 2 types of
causal interactions generally.

Definition 1 Let R = {W1, W2, ...} be a partition of a set X of causes, R′ ⊂ R,
and Y = ∪Wi∈R′Wi. Sets of causes in R reinforce each other, iff ∀R′ P (e+ ←
y+) ≤ P (e+ ← x+). Sets of causes in R undermine each other, iff
∀R′ P (e+ ← y+) > P (e+ ← x+).

Disjoint sets of causes W1, ..., Wm satisfy failure conjunction iff

(e+ 6← w+
1 , ..., w+

m) = (e+ 6← w+
1) ∧ ...∧ (e+ 6← w+

m).

That is, collective failure is attributed to individual failures. They also sat-
isfy failure independence iff P ((e+ 6← w+

1) ∧ ... ∧ (e+ 6← w+
m)) = P (e+ 6←

w+
1) ... P (e+ 6← w+

m). Disjoint sets of causes W1, ..., Wm satisfy success con-
junction iff e+ ← w+

1 , ..., w+
m = (e+ ← w+

1)∧ ...∧ (e+ ← w+
m). That is, collective

success requires individual effectiveness. They also satisfy success independence
iff P ((e+ ← w+

1) ∧ ... ∧ (e+ ← w+
m)) = P (e+ ← w+

1) ... P (e+ ← w+
m). It has

been shown that causes are reinforcing when they satisfy failure conjunction and
independence, and they are undermining when they satisfy success conjunction
and independence. Hence, undermining can be modeled by a direct NIN-AND
gate (Fig. 1, left), and reinforcement by a dual NIN-AND gate (middle).

2

+ ++ +

+ + +e c ,...,c1 n

1 n...
e ce c + ++ +

+ + +e c ,...,c1 n

1 n...
e ce c

+ + + + +
1 2 3 4e c , c , c , c

+ + + +
1 2 3e c , c , c

4
+ +e c

2
+ +e c

3
+ +e c+ +

1e c

Fig. 1. (Left) Direct NIN-AND gate. (Middle) Dual NIN-AND gate. (Right) The struc-
ture of a NIN-AND tree causal model.

As per Def. 1, a set of causes can be reinforcing (undermining), but the set
is undermining (reinforcing) with another set. Such causal interaction can be
modeled by a NIN-AND tree. As shown in Fig. 1 (right), causes c1 through c3

are undermining, and they are collectively reinforcing c4. The following defines
NIN-AND tree models in general:

Definition 2 The structure of an NIN-AND tree is a directed tree for effect e
and a set X = {c1, ..., cn} of occurring causes.

1. There are 2 types of nodes. An event node (a black oval) has an in-degree
≤ 1 and an out-degree ≤ 1. A gate node (a NIN-AND gate) has an in-degree
≥ 2 and an out-degree 1.

2. There are 2 types of links, each connecting an event and a gate along input-
to-output direction of gates. A forward link (a line) is implicitly directed. A
negation link (with a white oval at one end) is explicitly directed.

3. Each terminal node is an event labeled by a causal event e+ ← y+ or e+ 6←
y+. There is a single leaf (no child) with y+ = x+, and the gate it connects
to is the leaf gate. For each root (no parent; indexed by i), y+

i
⊂ x+,

y+
j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

4. Inputs to a gate g are in one of 2 cases:
(a) Each is either connected by a forward link to a node labeled e+ ← y+,

or by a negation link to a node labeled e+ 6← y+. The output of g is
connected by a forward link to a node labeled e+ ← ∪iy

+
i
.

(b) Each is either connected by a forward link to a node labeled e+ 6← y+,
or by a negation link to a node labeled e+ ← y+. The output of g is
connected by a forward link to a node labeled e+ 6← ∪iy

+
i
.

An NIN-AND tree model for effect e and its causes C can be obtained by
eliciting its structure (with |C| roots) and |C| single-cause probabilities P (e+ ←
c+
i) one for each root event in the structure. The CPT P (e|C) can then be

derived using the model.
By default, each root event in a NIN-AND tree is a single-cause event, and

all causal interactions satisfy failure (or success) conjunction and independence.
If a subset of causes do not satisfy these assumptions, suitable multi-cause prob-
abilities P (e+ ← x+), where X ⊂ C, can be directly elicited and incorporated
into the NIN-AND tree model. The default is assumed in this paper.

3

Some additional notations used in the paper are introduced below. The num-
ber of combinations of n objects taken k at a time without repetition is denoted
C(n, k). We assume that the n objects are integers 0 through n− 1. Each com-
bination is referred to as a k-combination of n objects. We assume n < 10 and
k-combinations can be stored in an array, say, cb. Thus we refer to the i’th k-
combination by cb[i]. We denote the number of k-combinations of n objects with
repetition by C′(n, k). Note C′(n, k) = C(n + k − 1, k).

A partition of a positive integer n is a set of positive integers which sum to
n. Each integer in the set is a part. A base of m units is a tuple of m positive
integers s = (sm−1, ..., s0). A mixed base number associated with a base s is a
tuple x = (xm−1, ..., x0) where 0 ≤ xi < si. Each xi (i > 0) has the weight
wi = si−1 ∗ ... ∗ s0 and the weight of x0 is 1. Each integer k in the range 0
through sm−1 ∗ ...∗s0−1 can be represented as a mixed base number x such that
k =

∑m−1
i=0 xi ∗wi. For base b = (3, 2), integers 0 through 5 can be represented

in that order as (0, 0), (0, 1), (1,0), (1,1), (2, 0), (2, 1). We denote an array z of k
elements by z[0..k− 1].

3 Compact Representation of NIN-AND Tree Structure

NIN-AND tree models allow a CPT of generally exponential complexity to be
obtained by eliciting a tree structure and a linear number of probabilities of
single-cause events. [9] relies on the human expert to describe the tree topol-
ogy. When the number of causes is more than 3, accurate description may be
cognitively demanding. As we will show, for 4 causes, there are 52 alternative
NIN-AND tree structures.

A better alternative is to show the expert a menu of all possible structures
from which one can be selected. To construct the menu, we need to enumerate
alternative structures. To facilitate the enumeration, we seek a compact repre-
sentation of NIN-AND tree structure.

2
+ +e c+ +

1e c

e c , c 1 2
+ + +

+ + + + +
1 2 3 4e c , c , c , c

+ + + +
1 2 3e c , c , c

4
+ +e c

3
+ +e c

Fig. 2. An NIN-AND tree structure corresponding to the same causal model as that
in Fig. 1 (right).

First, we observe that the NIN-AND tree structure in Fig. 2 and that in
Fig. 1 (right) correspond to the same causal model. In both structures, causes
c1 through c3 are undermining, and they are collectively reinforcing c4. We re-
gard the structure in Fig. 2 as superfluous and that in Fig. 1 (right) as minimal,

4

according to Def. 3 below. Our first step towards a compact structure represen-
tation is to adopt minimal structures.

Definition 3 Let τ be an NIN-AND tree structure. If τ contains a gate t that
outputs to another gate g of the same type (direct or dual), delete t and connect
its inputs to g. If such deletion is possible, τ is superfluous. Apply such dele-
tions until no longer possible. The resultant NIN-AND tree structure is minimal.

In a minimal NIN-AND tree structure, if the leaf gate g is a direct gate, then
all gates outputting to g are dual, and their inputs are all from direct gates.
That is, from the leaf towards root nodes, gates alternate in types.

This alternation implies that, for every minimal NIN-AND tree structure τ
with a direct leaf gate, there exists a minimal NIN-AND tree τ ′ replacing each
gate in τ with its opposite type, and vice versa. Therefore, if we know how to
enumerate NIN-AND tree structures for a given number of causes and with a
direct leaf gate, we also know how to enumerate structures with a dual leaf gate.
Hence, our second step towards a compact structure representation is to focus
only on minimal structures with direct leaf gates.

In a minimal structure with a direct leaf gate, types of all other gates are
uniquely determined. If all root events are specified (i.e., root nodes labeled),
then the causal event for every non-root node is uniquely determined. Note,
however, specification of root events is partially constrained. For example, in
Fig. 1 (right), since the leaf gate is dual, every root event connected to the top
gate must be a causal success (rather than failure). Hence, our third step towards
a compact structure representation is to omit labels for all non-root nodes.

In an NIN-AND tree structure, each gate node is connected to its unique
output event. Hence, out final step towards a compact structure representation
is to omit each gate node and connect its input event nodes to its output node.

As the result, our compact representation of the structure of each NIN-AND
tree model is a minimal tree consisting of event nodes with only root nodes
labeled. Its (implicit) leaf gate is a direct gate. Fig. 3 (a) shows the resultant
representation for the NIN-AND tree in Fig. 1 (right). Following the convention
in Def. 2, all links are implicitly directed (downwards away from labeled nodes).
We refer to the graphical representation as root-labeled tree. Note that left-right
order of parents makes no difference. For instance, Fig. 3 (b) is the same root-
labeled tree as (a), whereas (c) is a different root-labeled tree from (a).

e c1
+ + e c+ +

3

e c+ +
2

e c+ +
4 e c+ +

4

(a) (b) (c)

e c1
+ + e c+ +

3

e c+ +
4

e c+ +
2

1
+ +e c

2
+ +e c+ +

3e c

Fig. 3. Compact representations of NIN-AND tree structures.

Theorem 1 establishes the relation between enumeration of root-labeled trees
and enumeration of NIN-AND tree model structures.

5

Theorem 1 Let Ψ be the collection of NIN-AND tree models for n causes and
Ψ ′ be the collection of root-labeled trees with n roots. The following hold:

1. |Ψ | = 2 |Ψ ′|.
2. For each NIN-AND tree model in Ψ , a unique tree in Ψ ′ can be obtained by

minimizing the structure of the model, removing its gate nodes, and removing
labels of non-root nodes.

3. For each tree in Ψ ′, minimal structures of 2 NIN-AND tree models in Ψ can
be obtained by adding gate nodes to the tree, labeling the leaf gate as direct
or dual, and labeling other non-root nodes accordingly.

4 Enumeration of Unlabeled NIN-AND Tree Structures

Due to Theorem 1, we can enumerate NIN-AND tree model structures for n
causes by enumerating root-labeled trees with n roots. The list of structures can
then be presented to the expert for menu selection. However, when n > 3, there
are too many root-labeled trees (and twice as many minimal model structures).
With 4 roots, there are 26 root-labeled trees corresponding to 52 minimal NIN-
AND tree model structures. With 5 roots, the numbers are 236 and 472.

To reduce the cognitive load to the expert, we divide the menu selection
into 2 steps. In the first step, only unlabeled trees will be presented. With 4
roots, the menu size is 5. After the expert selects an unlabeled tree, either root-
labeled trees or minimal NIN-AND tree structures corresponding to the choice
will be presented for the second selection. For instance, if the unlabeled tree
corresponding to Fig. 3 (a) is selected in the first step, a total of 4 root-labeled
trees (or 8 NIN-AND tree structures) will be presented for second selection: at
most 5+8 = 13 items (rather than 52) presented in both steps. The two-step
selection can be repeated until the expert is satisfied with the final selection.
The advantage is the much reduced total number of menu items presented.

To realize the two-step menu selection, we first need to enumerate unlabeled
trees (of a single leaf) given the number of roots. Many methods of tree enumer-
ation in the literature, e.g., [1, 8, 6], do not address this problem. One exception
is a technique from phylogenetics [2] for counting evolutionary tree shapes. The
technique is closely related to our task but needs to be extended before being
applicable:

First, [2] considers unlabeled directed trees with a single root and multiple
leaves (called tips). Those trees of a given number of tips are counted. What we
need to consider are unlabeled directed trees with a single leaf and multiple roots.
This difference can be easily dealt with, which amounts to reversal of directions
for all links. Second, [2] represents these trees with a format incompatible with
the standard notion of graph, where some link is connected to a single node
instead of two (see, for example, Fig. 3.5 in [2]). Third, [2] considers only counting
of these trees, while we need to enumerate (generate) them.

Nevertheless, the idea in [2] for counting so called rooted multifurcating tree
shapes is an elegant one. Algorithm EnumerateUnlabeledTree(n) extends it to
enumerate unlabeled trees with a single leaf and a given number n of roots.

6

Algorithm 1 EnumerateUnlabeledTree(n)
Input: the number of roots n.

1 initialize list T1 to include a single unlabeled tree of one leaf and one root;
2 for i = 2 to n,
3 enumerate partitions of i with at least 2 parts;
4 for each partition ptn of t distinct parts (p0, ..., pt−1),
5 create arrays z[0..t− 1], s[0..t− 1] and cbr[0..t− 1][][];
6 for j = 0 to t− 1,
7 z[j] = number of occurrences of pj in ptn;
8 m = |Tpj |;
9 s[j] = C′(m, z[j]);
10 cbr[j] stores z[j]-combinations of m objects with repetition;
11 count = 1;
12 for j = 0 to t− 1, count = count ∗ s[j];
13 for q = 0 to count− 1,
14 convert q to a mixed base number b[0..t− 1] using base s[0..t− 1];
15 subtree set S = ∅;
16 for j = 0 to t − 1,
17 if z[j] = 1, add tree Tpj [b[j]] to S;
18 else get combination cb = cbr[j][b[j]];
19 for each number x in cb, add tree Tpj [x] to S;
20 T ′ = MergeUnlabeledTree(S);
21 add T ′ to Ti;
22 return Tn;

(b)

T [0]2T [0]1

(a) T [2]4
T [6]5 T [17]6(c)

T [0]3

(d)

T [1]3

(e) (f) T [9](g) 5 (h) T [27]6(i)

Fig. 4. (a), (b) The only unlabeled tree of one and 2 roots, respectively. (c), (d) The
only trees of 3 roots. (e) A tree of 4 roots. (f), (g) Trees of 5 roots. (h), (i) Trees of 6
roots. Links are implicitly directed downwards.

Line 1 creates T1 = (T1[0]) with T1[0] shown in Fig. 4 (a). The first iteration
(i = 2) of for loop started at line 2 creates T2 = (T2[0]) with T2[0] shown in
Fig. 4 (b). The next iteration (i = 3) creates T3 = (T3[0], T3[1]) shown in (c) and
(d). The loop continues to build each tree list of an increasing number of roots,
until the list for i = n roots is obtained.

In line 3, the set of partitions of i with 2 or more parts is obtained. For in-
stance, for i = 4, the set is {{3, 1}, {2, 2},{2,1,1},{1,1,1,1}}. For i = 5, the set
is {{4, 1}, {3,2},{3,1, 1},{2,2, 1}, {2, 1, 1,1}, {1, 1,1,1, 1}}. Each partition sig-
nifies how a tree of 4 roots can be assembled from subtrees. For example, {3, 2}
means that a tree of 5 roots can be assembled by merging a subtree of 3 roots
(an element of T3) with a subtree of 2 root (an element of T2). The for loop
started at line 4 iterates through each partition to enumerate the corresponding

7

trees. Lines 5 through 12 count the number of trees from the given partition
and specify indexes of subtrees to be merged in cbr[]. For each new tree, lines 13
through 21 retrieve relevant subtrees and merge them.

If a part p appears in a partition once (counted by z[j] in line 7), then list
Tp contributes one subtree to each new tree. This can be done in m = |Tp| ways
(line 8). It is counted by s[j] in line 9, where C′(m, 1) = C(m, 1) = m. The
cbr[j] in line 10 will be (cbr[j][0], ..., cbr[j][m− 1]) where each cbr[j][k] = (k)
is a 1-combination that indexes the m elements in Tp. For example, consider
the iteration of the for loop started at line 4 with ptn = {3, 2} and hence
(p0, p1) = (3, 2). After line 10, we have occurrence counting (z[0], z[1]) = (1, 1).
It is used to produce s[0] = C′(2, 1) = 2, s[1] = C′(1, 1) = 1, and combinations
(cbr[0][0], cbr[0][1]) = ((0), (1)) and cbr[1][0] = (0).

The total number of distinct trees due to the partition is counted by the
product of s[j]. For instance, line 12 produces count = 2, which says that there
are 2 unlabeled trees in T5 due to partition {3, 2}.

If a part p appears in a partition z[j] > 1 times, then list Tp contributes
z[j] subtrees to each new tree. This can be done in C′(m, z[j]) ways (line 8).
It is counted by s[j] in line 9. For example, consider the iteration of the for
loop started at line 4 with ptn = {3, 3} and hence p0 = 3 and z[0] = 2. Now
s[0] = C′(2, 2) = 3 and (cbr[0][0], cbr[0][1], cbr[0][2]) = ((0, 0), (1, 0), (1, 1)).

Each iteration of the for loop started at line 13 obtains a new tree in Ti. The
relevant subtrees from earlier tree lists are retrieved and then merged into a new
tree. Consider ptn = {3, 2}, (s[0], s[1]) = (2, 1), (cbr[0][0], cbr[0][1]) = ((0), (1))
and cbr[1][0] = (0) mentioned above. For q = 1, line 14 produces (b[0], b[1]) =
(1, 0). Each iteration of the for loop started at line 16 adds one or more subtrees
to S based on the mixed base number b[]. Since (z[0], z[1]) = (1, 1), the first
iteration adds T3[1] to S and the next iteration adds T2[0]. They are merged
into unlabeled tree T5[6] shown in Fig. 4 (f).

Next, consider ptn = {3, 3}, s[0] = 3, and (cbr[0][0], cbr[0][1], cbr[0][2]) =
((0, 0), (1, 0), (1,1)). The loop started at line 13 iterates 3 times. For q = 2, we
have b[0] = 2. At line 18, cb = cbr[0][2] = (1, 1). At line 19, 2 copies of T3[1] (see
Fig. 4) are added to S.

Next, consider MergeUnlabeledTree(). Two unlabeled trees t and t′ of i and
j ≥ i roots respectively may be merged in 3 ways to produce a tree of i+j roots:

M1 Their leaf nodes are merged, which is how T2[0] is obtained from 2 copies of
T1[0] (see Fig. 4).

M2 The leaf of t′ become the parent of the leaf of t, which is how T3[0] is obtained
from T1[0] and T2[0]. Note that roles of t and t′ cannot be switched.

M3 Both leaf nodes may become the parents of a new leaf node, which is how
T2[0] and T3[1] are merged to produce T5[6].

When k > 2 subtrees are merged into a new tree, 2 subtrees are merged first
and the remaining subtrees are merged into the intermediate tree one by one.
Which of the 3 ways of merging is used at each step is critical. Incorrect choice
produces some trees multiple times while omitting others. The resultant Ti will
not be an enumeration. MergeUnlabeledTree() is detailed below:

8

Algorithm 2 MergeUnlabeledTree(S)
Input: a set S of k ≥ 2 unlabeled (sub)trees.
1 sort trees in S in ascending order of number of roots as (t0, ..., tk−1);
2 if t0 has one root and t1 has one root, merge them to t by M1;
3 else if t0 has one root and t1 has 2 or more roots, merge them to t by M2;
4 else merge them to t by M3;
5 for i = 2 to k − 1,
6 if ti has one root, merge t and ti to t′ by M1;
7 else merge t and ti to t′ by M2;
8 t = t′;
9 return t;

EnumerateUnlabeledTree(n) correctly enumerates unlabeled trees of n roots.
A formal proof of correctness is beyond the space limit. Our implementation
generates list Tn whose cardinality is shown in Table 1 for n ≤ 10:

Table 1. Cardinality of Tn for n ≤ 10.

n 1 2 3 4 5 6 7 8 9 10

|Tn| 1 1 2 5 12 33 90 261 766 2312

5 Enumerate Root-Labeled Trees Given Unlabeled Tree

To realize the second step of menu selection, we enumerate root-labeled trees
for a given unlabeled tree of n roots. Since left-right order of causal events into
the same NIN-AND gate does not matter, the number of root-labeled trees is
less than n!. We propose the following algorithm based on the idea of assigning
labels to each group of roots with mirror subtree (defined below) handling. It
enumerates root-labeled trees correctly, although a formal proof is beyond space
limit. The root-labeled trees are plotted as they are enumerated.

Algorithm 3 EnumerateRootLabeledTree(t)
Input: an unlabeled tree t of n roots.
1 if all root nodes have the same child;
2 label roots using n labels in arbitrary order;
3 plot the root-labeled tree;
4 grp = grouping of roots with the same child nodes;
5 search for mirror subtrees using grp;
6 if no mirror subtrees are found, EnumerateNoMirrorRLT(t, grp);
7 else EnumerateMirrorRLT(t, grp);

Lines 1 to 3 handle cases such as T3[1] (Fig. 4). Otherwise, roots of the same
child nodes are grouped in line 4. For T5[6] (Fig. 4), we have 2 groups of sizes
2 and 3. Two labels out of 5 can be assigned to the left group of size 2 in
C(5, 2) = 10 ways and the right group can be labeled using remaining labels.
Hence, T5[6] has 10 root-labeled trees. It contains no mirror subtrees (which we
will explain later) and line 6 is executed, as detailed below:

9

Algorithm 4 EnumerateNoMirrorRLT(t, grp)
Input: an unlabeled tree t of r roots without mirror subtree; grouping grp of roots with
common child nodes.

1 n = r;
2 g = number of groups in grp;
3 for i = 0 to g − 2,
4 k = number of roots in group i;
5 s[i] = C(n, k);
6 cb[i] stores k-combinations of n objects without repetition;
7 n = n − k;
8 count = 1;
9 for i = 0 to g − 2, count = count ∗ s[i];
10 for i = 0 to count − 1,
11 initialize lab[0..r − 1] to r root labels;
12 convert i to a mixed base number b[0..g − 2] using base s[0..g − 2];
13 for j = 0 to g − 2,
14 get combination gcb = cb[j][b[j]];
15 for each number x in gcb, label a root in group j by lab[gcb[x]];
16 remove labels indexed by gcb from lab[];
17 label roots in group g − 1 using labels in lab[];
18 plot the root labeled tree;

In EnumerateNoMirrorRLT(), lines 3 to 7 process roots group by group. For
each group (except the last one) of size k, the number of ways that k labels can
be selected from n is recorded in s[i]. Here, n is initialized to the number of
roots (line 1), and is reduced by k after each group of size k is processed (line 7).
The labels in each selection are indexed by cb[i]. Lines 8 and 9 count the total
number of root labeled trees isomorphic to t.

Lines 10 and onwards enumerate and plot each root-labeled tree. Tree index
i is converted to a mixed base number b[]. Each b[j] is then used to retrieve the
label indexes in cb[i] (line 14). The label list lab[] is initialized in line 11, whose
elements are used to label a root group in line 15, and the list is updated in line
16. The first g − 1 groups are labeled in the for loop of lines 13 to 16. The last
group is labeled in line 17.

Next, we consider T4[2] in Fig. 4 (e). It has 2 root groups of size 2 and the left
group can be assigned 2 labels in C(4, 2) = 6 ways. However, half of them switch
the labeling between left and right group in the other half. Hence, the number
of root-labeled trees for T4[2] is 3, not 6. Applying EnumerateNoMirrorRLT()
to T4[2] would be incorrect. We define mirror subtrees for such cases.

Definition 4 A subtree s in an unlabeled tree t is a subgraph consisting of a
non-root, non-leaf node of t (as the leaf of s) and all its ancestors in t.

Two subtrees s and s′ are mirror subtrees if they are isomorphic, each has
more than one root node, and the leaf of s and the leaf of s′ have the same path
length from the leaf of t in t.

T4[2] in Fig. 4 (e) has 2 mirror subtrees, each of which is a copy of T2[0],
and so does T5[9] in (g). T6[17] in (h) has 2 mirror subtrees, each of which is a

10

copy of T3[0]. T6[27] in (i) has 3 mirror subtrees, each of which is a copy of T2[0].
None of the other trees in Fig. 4 has mirror subtrees. In general, a tree of n ≥ 4
roots may have mirror subtrees from T[n/2], where [.] denotes the floor function.
Table 2 shows the possible number and type of mirror subtrees for n ≤ 7.

Table 2. Number of mirror subtrees that may be present in a tree of n roots.

n 1 2 3 4 5 6 7

T2[0] 0 0 0 2 2 2 or 3 2 or 3

T3[0] 0 0 0 0 0 2 2

T3[1] 0 0 0 0 0 2 2

At line 5 of EnumerateRootLabeledTree(), mirror subtrees are searched. Most
trees are rejected based on their grp. Otherwise, if the grp of a tree is compatible
with a pattern in Table 2, its leaf is removed, splitting it into subtrees recursively,
and possible mirror subtrees are detected. If mirror subtrees are found, at line 7,
EnumerateMirrorRLT() is performed. We present its idea but not pseudocode.

Suppose an unlabeled tree t with mirror subtrees and n roots have k ≤ n
roots in mirror subtrees. If n − k > 0, remaining roots are labeled first in the
same way as EnumerateNoMirrorRLT(). Then, for each partially root-labeled
tree, mirror subtrees are root-labeled. For example, for T5[9] in Fig. 4 (g), the
left-most root can be labeled in 5 ways as usual, using up one label. The first
mirror subtree is labeled in C(4, 2)/2 = 3 ways, using up another 2 labels. The
second mirror subtree is then labeled using the remaining labels. For T6[27] in
(i), the first mirror subtree is labeled in C(6, 2)/3 = 5 ways, using up 2 labels.
The second mirror subtree is labeled in C(4, 2)/2 = 3 ways, using up another
2 labels. The third mirror subtree is then labeled using the remaining labels.
Table 3 shows the number of root-labeled trees given some unlabeled trees in
Fig. 4 as enumerated by our implementation of EnumerateRootLabeledTree().

Table 3. Number of root-labeled trees for some given unlabeled trees.

Unlabeled tree T4[2] T5[6] T5[9] T6[17] T6[27]

No. root-labeled trees 3 10 15 90 15

Table 4 shows the total number of root-labeled trees with n roots for n ≤ 7.
Since T7 contains 90 unlabeled trees (Table 1), each has on average 39208/90≈
435 root-labeled trees. Its implication is discussed in the next section.

Table 4. Toal number of root-labeled trees with n roots.

n 1 2 3 4 5 6 7

No. root-labeled trees 1 1 4 26 236 2752 39208

6 Remarks

As learning from data is limited by missing values, small samples, and cost in
data collection, elicitation of CPT remains an alternative in constructing BNs

11

when the expert is available. Due to conditional independence encoded in BNs,
a CPT that involves more than 10 causes is normally not expected. Even so,
the task of eliciting up to 210 parameters is daunting. NIN-AND trees provide
a causal model that reduces the number of parameters to be elicited to linear
(10 for 10 binary causes), while capturing both reinforcing and undermining
interactions among causes. A tree-shaped causal structure of a linear number of
nodes (less than 20 for 10 causes), however, must be elicited in addition.

This contribution proposes the two-step menu selection for causal structure
elicitation. The technique reduces the cognitive load on the expert, compared
to structure elicitation from scratch or the single step menu selection. For the
first step, we extend an idea of counting from phylogenetics into an algorithm to
enumerate NIN-AND tree structures with unlabeled root nodes. For the second
step, we develop an algorithm to enumerate completely labeled NIN-AND tree
structures given a structure selected by the expert from the first step. Compared
to off-line enumeration, our online enumeration is interactive. Even though the
choice from the first step may be inaccurate, the two-step selection can be re-
peated easily (in seconds) until the expert’s satisfaction.

As the average number of root-labeled trees is beyond 400 when the number
of causes is beyond 7, we believe that the two-step menu selection is practical
for elicitation of NIN-AND tree (and thus CPT) with up to 7 causes. For CPTs
with 8 causes or beyond, we have developed an alternative technique to be
presented elsewhere. Empirical evaluation of our proposed elicitation techniques
with human experts is underway.

Acknowledgements
Financial support from NSERC, Canada through Discovery Grant to the first author

is acknowledged. We thank reviewers for their comments.

References

1. A. Cayley. A theorem on trees. Quarterly J. Mathematics, pages 376–378, 1889.
2. J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, Mass., 2004.
3. S.F. Galan and F.J. Diez. Modeling dynamic causal interaction with Bayesian

networks: temporal noisy gates. In Proc. 2nd Inter. Workshop on Causal Networks,
pages 1–5, 2000.

4. D. Heckerman and J.S. Breese. Causal independence for probabilistic assessment
and inference using Bayesian networks. IEEE Trans. on System, Man and Cyber-
netics, 26(6):826–831, 1996.

5. J.F. Lemmer and D.E. Gossink. Recursive noisy OR - a rule for estimating complex
probabilistic interactions. IEEE Trans. on System, Man and Cybernetics, Part B,
34(6):2252–2261, 2004.

6. J.W Moon. Counting Labeled Trees. William Clowes and Sons, London, 1970.
7. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-

ference. Morgan Kaufmann, 1988.
8. J. Riordan. The enumeration of trees by height and diameter. IBM J., pages

473–478, Nov. 1960.
9. Y. Xiang and N. Jia. Modeling causal reinforcement and undermining for efficient

cpt elicitation. IEEE Trans. Knowledge and Data Engineering, 19(12):1708–1718,
2007.

12

