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Abstract. We consider multiagent cooperative decision in stochastic environ-
ments, and focus on online decision during which agents communicate. We gen-
eralize partial evaluation from a specific application to a class of collaborative
decision networks (CDNSs), and propose a distributed decision algorithm based
on partial evaluation. We show that when agents have private decision variables,
the new algorithm can significantly speed up decision in comparison with the
earlier CDN algorithm.

1 Introduction

We consider a class of multiagent cooperative decision problems in partially
observable and stochastic environments. One example is collaborative design
in supply chain [5]. Another example is multiagent expedition (MAE) [7]. We
assume that the decision problems can be modeled as CDNs [6, 7], a class of
decision-theoretic, cooperative, multiagent, graphical models. Main assumptions
of CDNs are the following: Application environmergify, a set of variables) is
decomposed into overlapping sub-environments (subenvs), that can be organized
into a hypertree with running intersection property. Each subenv is hosted by an
agentA and consists of decision variables, effect variables, and utility variables.
Dependency among variables in each subenv is modeled as a decision subnet
(influence diagram). Overlaps of subenvs (agent interfaces) consist of decision
variables only.

We focus on online decision making over short horizons rather than offline pol-
icy making, e.g., [4, 2]. That is, agents decide the best joint action based on what
they know about the current env. Focus on current env state, rather than all possi-
ble trajectories as in offline policy making, allows much more efficient decision
making.

An agent makes aimultaneous decisiofi0] when it decides its actions over
multiple decision variables, all of which have the horizon lengts 1. A col-
lection of decisions one from each agent ifoant decision. This work concerns
joint, simultaneous decisions. An example is collaborative design in supply chain,
where the component design at each agent is a simultaneous decision and the
product design is a joint, simultaneous decision. This work concernsaigoen-

tial decision where agents decide and act over time, e.g., in MAE. Agents plan
at every time step witlh > 1 and act according to joint action for tinte= 1.

We term each choice of a decision variable ageation e.g., choosing@BRAM

for a device under design. For multiple decision variables (possibly for different
time), we refer to a vector of choices, one for each variable, pga If these
variables are contained in a single subenv, the pldadal, otherwise, it igoint.
Hence, a component design in collaborative design is a local plan, and so is a



sequencef h > 1 movements by a MAE agent. A product design is a joint plan,
and so is a collection of local plans of a team of MAE agents. The decision task
is to obtain an optimal joint plan by distributed online computation.

The above decision problem is equivalent to a Dec-POMDP [1, 8], and hence its
optimal solution is generally intractable. During online decision, our agents com-
municate, as in e.g. [3], bubtlocal observations. For our decision algorithm, we
analyze its communication cost, while our agents do not during decision making.
To improve efficiency in MAE applications, an idea pfrtial evaluationwas
explored in [9]. Significant speedup was achieved in centralized decision, while
application to distributed decision was not productive. This work generalizes par-
tial evaluation to a class of CDNs, where each directed path starts from a decision
node, followed by an effect node, and ends by a utility node. We extend the earlier
algorithm for CDNs [6] based on partial evaluation, and show that when subenvs
contain private decisions the new algorithm can significantly speed up decision
making.

Section 2 introduces CDNs. Sections 3 through 5 present partial evaluation in
subnets of increasing sophistication. The proposed algorithm is presented in Sec-
tions 6 through 8, with performance demonstrated in Section 9.

2 Background

A set.«Z of n agents populates an env. It is represented as & sgtvariables,
decomposed into overlapping subenys ..., V,, each hosted by an agent. The
decomposition allows the construction ohgpertrees# whose (hyper)nodes are
labeled by subenvs such that intersection of every two nodes is contained in each
node on the path between the two (running intersection).

Each subenv = DUE UU, whereD, E, U are disjoint, is modeled by an agent
A€ o into a decisionsubn&= (D,E,U,G,P,T), whereGis an acyclic directed
graph whose nodes are labeled by element¥ oD is a set of local decision
variablesD = {d;,d,, ...}, and we denot@ = |D|. Eachd; has a finite space of
options or action®p = {di1,di2,...}. Denotec = max |Op|.

E is a set of effect variableB = {ey, ey, ...}, representing outcomes of actions.
Eache; has afinite spack fi = {€1,€2,...}. Denotek = max; |E fj|. Eache; has

a setd C D of decision variables as its parents@ The dependency of on

4 is quantified by a conditional probability table (CPP}e |&). P is the set of
CPTs, one for each c E.

U is a set of utility variable®) = {uy,uy, ...}, encoding the subjective preference

of A over effects, and we denote= |U|. Eachu; € U has a sefs C E of effects

as parents iis. Denotem = max; |75|. Preference overs is encoded in a utility
functionu;(7) € [0,1], andT is a set of functions, one for eache U. Eachy;

is associated with a weight; > 0 such thaty;w; = 1.

If subenw hosted by agenA is adjacent on the hypertree to subarivhosted

by A, then the (hyper)link labeled NV’ is theinterfaceof A andA’. For A, the
interface ispublic, and all other variables i areprivate relative toA'.

A CDN is a tuple(«, ¥, 5¢,.), where.” is a set of decision subnets, one
for eachA € «7. An example is in Fig. 1, where nodes i E, U are drawn as
squares, ovals, diamonds, respectively. Defined as above, every directed path in
a subnet has a length 2, e.g., Fig. 1 (a). This work focuses on such CDNs. More
general subnets can all be converted equivalently to length-2 (with modification
to relevant CPTs and utility functions), and we assume that such is done.



(b)

Fig. 1. (a) CDN subnets. (b) Hypertree.
3 Single Decision Variable

Consider a decision subnet whepe= 1, n = 1, andV = {d;,e,u;}. Expected
utility of taking an actiond; = djj is
eu(d;j) = P(ei|dij)ui(en) + P(eiz|dijui(&i2) + ...,

which requiresk probability retrievals,k utility retrievals, k multiplications,
andk — 1 additions. Actiond;; is fully evaluatedvheneu(d;j) is computed. Its
complexity isO(k). Agent's objective is to compute the optimal decision pair
(dj.meuy such thateu(dj) = meuv= max; eu(d;j). This generally involves a

full evaluation of eaclu;j, with the complexityO(o k).

For every action, we refer to an effect with the highest probability (indexed
once and referenced repeatedly) as pieot effect and break ties arbitrarily.

Let g be the pivot effect of actioy. Theneu(di) < P(ek|dik)ui(ek) + (1 —
P(ei|dik) ) U™ = Qy, whereu"® = max Ui (ex). We say thatl; dominatesd;,

iff eu(dj) > eu(dy). If Qi < eu(d;j), theneu(dy) < eu(d;j) andd; is dominated

by dij. ComputingQjk requires one probability retrieval, one utility retrieval, two
multiplications, and two additions. Actiod is partially evaluatedwhenQj is
computed.

Suppose probabilities of pivot effects fdrare nearly identical. In MAE, a move-
ment decision has alternativasrth, eastetc. Moving north most likely lands on
north location. Its probability is about the same as that of landing on east location
if moving east. In many envs, each action most likely produces a given effect,
with smaller probabilities to produce other effects. As another example, a mes-
sage may be sent by email or post. Emails most likely arrive in seconds while
post mails most likely in days. Formally, we assume

Vi,k P(ejj|dij) = P(ek|dik) = p. ()

Partial evaluation of actiody amounts to computp u (&) + (1 — p)u® To
determine whether
max

p ui(ek) + (1 - p)u" < eu(dij) 2

holds, we check instead whethex(ey) < eudi) _ ﬂu{“ax holds. We assume

that the right hand side (threshold) has been obtained béfpieevaluated. Then

if the above inequality holdgly can be rejected with just one utility retrieval and
one comparison, and the threshold can be reused for evaluating the next action.
In this case, partial evaluation df; has a complexity 00(1).

This leads to the followingartial evaluation based decisido obtain(d; , meuy:
Apply full evaluation for the first action to establish a threshold. For each alter-
native action, apply partial evaluation to reject if warranted. Otherwise, apply full
evaluation to it and update the threshold. The last option acceptd is

Using this method, efficiency is gained by evaluatindafully only if the above
inequality fails. Letf € [0, 1] be the percentage @y fully evaluated. Then the
complexity of partial evaluation based decisiord§d o K+ (1— 0) o).



4  Multiple Decision Variables

Considerthe case whepe> 1 andn =1, e.g., subnéb; in Fig. 1 (a), where each
local plan is to be evaluated. Let be a local plan oveb, & be its (compound)
pivot effect (made of pivot effect of each action i), € be any (compound)
effect, andeu(d) be the expected utility of. Then

eu(d) = P( +2Pe’ i (€7). (3)

Let 3 be a subset dd andy =D\ 8. We consider the decision problem to obtain
a pair of functiongmeu ), peer(8)), wheremeu: 8 — [0,1] andpeer: 3 — v,
such that for each plab over 8, meyb) = maxeu(b,y) and eub, peer(b)) =
meub), wherey is a plan overy, (b,y) denotes goin of plans, maximization
is over each plary, and peer(b) equals the optimal plag*. We refer toB as
constraint scop@ndy asoptimization scopen other words(meu3), peer(3))
specifies, for each constraibf the MEUmeub) and the corresponding optimal
pland* = (b, peer(b) = y*).
The task requires evaluatirei(b,y). Denote plarprojectionby b= proj(d,8),
y= proj(d,y), and writed = (b,y). To evaluateu(d d) by Eqgn. (3),P(e”|d) must
be computed for eacl’. For G, in Fig. 1 (a), P(e”|d) P(es,€5/d3,d4,ds) =
P(es|ds, ds)P(eg|ds). In general, computation d?(€”|d) for eache” involvesm
probability retrievals andn— 1 multiplications. Hence, a full evaluation dfby
Eqn. (3) takesn k™ probability retrievals k™ utility retrievals, m k™ multiplica-
tions, andk™ — 1 additions. Complexity of full evaluation af is thusO(m k™).
To obtainmey 3) by full evaluation, a total ofP alternatived must be evaluated,
and the complexity is thu®(oP m k™).
For more efficient decision, we observe

eu(d) = P(gd)ui(®) + 5 P(e"[d)ui(¢”) < P(gld)ui(® +zp (F[d)um (4)
g
= P(gld)ui(®) + (1—P(gd))u™® where "®= maxu;(€").
e/

Let g be an effect variable with parent sat Let & bekth configuration of&
andey be its pivot effect. Assume

Vi, j,k P(&j|d)) = P(ew/dk). (5)

That is, for each effect variable and its influencing decision variables, probabili-
ties of pivot effects are approximately identical. It then follows tfaid’ P(g|d) =
P(¢|d’) = p, where¥ is the pivot effect of local plad’, andp can be computed
once for all pivot effects. For the example @3 in Fig. 1, suppose probabilities

of pivot effects forP(es|ds,dy4) is 0.7 and those fdP(eg|ds) is 0.9. Then we have
p= 0.63. Now, inequation (4) becomesi(d) < p t;i(&) + (1 — p)ul

In general, givereu(d’) and an alternative plad, if

PU(E) +(1-pu™ < eud), (6)

it follows thateu(d) < eu(d’) andd is dominated byl’. Partial evaluation o by

Eqgn. (6) takes only one utility retrieval, with complexi®(1).

Extending partial evaluation based decision in Section 3 with the above, the de-
cision problem to obtaifimey3), peer8)) can be solved by PEULilDec1:



Algorithm 1 PEUtiIDecl
Input: subnet ovetD,E,U = {u;}); max utility y"®; pivot probability p;
constraint scopg8 C D and optimization scopg=D\ 3;

for each constrainb overf,
pick a plany’ overy to fully evaluate by Eqgn. (3); get¢ny);
set me(b) = eu(b,y’) and peefb) =
set threshold th= (eu(b,y’) — (1— p)u,max)/p;
for each other plary overy,
retrieve y(g) for pivot effecte ofd = (b,y);
if uj(€) > th,
fully evaluated by Eqn. (3) to get el
meub) = eu(d), peerb) =y; th= (e
return (meuB), peer(B));

U( d)— (1= p)u™)/p;

Whenf = 0, in the return value of PEUtiIDecipey 8) becomes a single value
and peer(B8) becomes a single optimal plaft overD. Let 8 < [0,1] be the per-
centage ofl fully evaluated by PEUtiIDec1. Its complexity is th@{8 o mk™+
(1—-6) oP) = 0O(6 oP mk™M). Proposition 1 summarizes key properties of PEU-
tilDecl.

Proposition 1 PEULtiIDec1 satisfies the following: (1) For each constrambver
B, meub) is the MEU. (2) For eaclb, peerb) is the optimal plan ovey. (3) Its
complexity is @0 o mk™).

5 Multiple Utility Variables

Next, consider a decision subnet whgre> 1 andn > 1. An example €51 in

Fig. 1 (a), wheren = 2 and a weighty; is associated with eacly (i = 1,2).

The optimal local plan cannot be obtained by solving independent sub-problems
over {dq,d>} and over{d,,d3}. Hence, fully evaluating a local plan amounts to
compute

eu(dy,d,d3) =

wy 3 P(e1]d1)P(ez]dz)us(er,€2) +W, y P(es|dz)P(es|ds)uz(€s, ).
E e

In general, led be a local plan oveb, € be its pivot effectg” be any alternative
effect, andeu(d) be expected utility oid. For eachy; (i = 1,...,n) with parents
1%, let a; be the set of decision ancestorswpf In G; of Fig. 1 (a),a1 for u; is
{dy,d»}. Defineg = proj(g 1), andd; = proj(d, a;). Then, a full evaluation of
d computes

ZW, (g]d)ui(g +2Pg (7)

We consider the decision problem to obt&mel{ﬁ) eer(8)) sui:h that for each
planb over B, meyb) = maxeu(b,y) andeu(b, peer( b)) = meub), whereyis a
plan overy, andpeer(b) equals optimal plag*.



Extendingresult from Section 4, the complexity to fully evaluatés O(n mk™).
We consider partial evaluation with the above example; lis the child node of
di, we denote its pivot effect correspondingdg by ejx. We have
eu(dlm d2y7 dSZ) <

Wi P(€1x/d1x) P(€2y|day) U1 (€1, €2y) +W2P(€3y|day) P(€47d3z) Up(E3y, €47)

+wy (1 —P(eyd1x) F)(62y|dZy))uTaD(+ Wo(1— P(e?>y|d2y) P(e4z|d32))ug]ax'
Assumingprobabilities of pivot effects for each effect variatgeis identical, de-
noted bypi, we haveeu(dsy, day, dsz) < W1 p1 poUs(€1x, €2y) +Wa2 P3P4U2(€3y, €47) +

W1 (1= p1p2)ul"™®+Wo(1 — pgpa)ud’ ™
Giveneu(dy,, déy,dgz) and another plaidsy, dyy, dz,), if

W1 P1P2U1 (€15, €2y) + W2 P3Palz(€3y, €47) + Wi (1 — prp2)uf ™
+W2(1 —P3 p4) Ug]ax< eU(dix, déyv déz)v (8)

holds, it follows thateu(dyy,dpy,ds;) < eu(d’lx,déy,déz), and (diy,day,ds;) is
dominated by(d;,, déy,dgz). Partial evaluation ofdsy, dyy, d3;) by Eqn. (8) takes
only two utility retrievals.

In general, each utility variable; hasr effect parents, each of which is associ-

ated with a pivot probability;; indexed byj. Giveneu(d’) from a full evaluation,
and an alternative plad, if

n _
_ZWi <(|_| pij) Ui (&) + (1= ([ pij)) Uimax) <eud),
i= J J

thend is dominated byd’. This leads to threshold and dominance comparison
below:

n
th=eud)— Y w(1— ([ pij)) um ©
Snome
n

_Zwi(ﬂ Pij) Ui (&) <th. (10)
i= j

By pre-computingw;([; pij) for eachi, partial evaluation ofl has a complex-

ity of O(n). Extending PEULilDec1, PEUtIDec2 makes partial evaluation based
decision with multiple decision and utility variables, whose properties are stated
below.

Algorithm 2 PEULtilDec2
Input: subnet ove(D, E,U); max utility y"®for each y;
for each y and each of its parent, a pivot probability;jp 3 ¢ D andy =D\ j3;

for each constrainb overf,
pick a plany’ overy and denotel’ = (b,y');
fully evaluated’ by Eqn. (7) to get ed’);
set meub) = eu(d’) and peer(b) = y’; set threshold th by Eqn. (9);
for each other plary overy andd = (b,y),
perform comparison by Eqn. (10);
if comparison fails,
fully evaluated by Eqgn. (7) to get efd);
meub) = eu(d), peerb) =y, and update th by Eqn. (9);
return (meuB), peer(B));



Proposition 2 PEUtiIDec? satisfies (1) and (2) of Proposition 1, as well as the
following: Its complexity is ©9 o n mk™).

Note that, wher8 = 0, the return value of PEUtiIDecthey3), becomes a single
value, andpeer(3) becomes a single optimal plaft overD.

6 Utility Message by Leaf Agent

We obtain an optimal joint plan with two rounds of message passing, using PEU-
tiiDecl and PEULtilDec2. Hypertree is directed from an arbitrary root and agents
become parent-child according to the direction. In first round, utility messages
flow from leaf agents towards root. Message from a leaf agent is computed as
follows.

Let the subnet of a leaf ageB be over(D,E,U), and its interface with the
adjacent ager® on hypertree bé&sD C D. Messageitmy(SD) thatB sends taC

is a MEU function that, for each local plau over SD, specifies

utmy(sd) = maxeu(sd rd), (11)
rd

whererd is a local plan ovelRD = D\ SD. From Proposition 2, if8 applies
PEULiIDec2 withf = SD, the return valueney 8) satisfiesutmy(SD) = meu3).
Since this computation is exponential gn we seek to improve its efficiency
below.
For each utilityy; and itsaj, we defineBi = aiNSD and y = a;\ Bi. That
is, Bi is public andy; C RD s private relative taC. Utility variables can then be
classified into four exhaustive and mutually exclusive cases:

1. ¥ = 0. Thatis,a; = f; is entirely public.

2. ¥ #0,6 #0,andyNy; =0 forall j #i. Thatis, there exists no other utility

variableuj, such thau; andu; share a private decision ancestor.

3. ¥ #0,B5 #0,andy Ny; # 0 for somej #1i.

4. B =0. Thatis,a; = y is entirely private.
For example, suppos8D = {d,,d3} in Fig. 2. Thenu, is under case 1y is
under case 2J3 is under case 3, ang is under case 4.

;dl d2 d3h N
u, ®u, U,

u;

Fig. 2. lllustration of correlated cluster

[Case 1] For this caséy = proj(sd,3;) = proj(sd a;j). We refer to the subnet
segment that containg and all its ancestors (includimg anda;) as thesubnet
segment of u For instance, subnet segmentpfin Fig. 2 includes noded,, ds,

Uy, the two parent nodes ob and links among them.

We observe that contribution of to Eqn. (11) can be evaluated using its subnet
segment, independently of othef € U, and the contribution is additive. That
is, if meysd) = v is obtained usind's subnetmey(sd) = V' is obtained using



B's subnet with nodei; removed, andeu(b;) = v" is obtained using the subnet
segment oflj, thenv = v +Vv". We therefore computeu(a;) using the subnet
segment ofy; according to Eqgn. (3). As it involves full evaluation for edghthe
complexity is

O(al% mk™). (12)

[Case 2] For this case, the contribution @fto Eqn. (11) is also additive and
obtainable from its subnet segment. Therefore, we can apply PEULtiIDec1 to the
subnet segment. Set the parameters of PEUtiIDe&+toq;, 3 = §i, andy = y.
Thereturn valuemeu ) is the contribution ofj; to Egn. (11). Note that the return
value peer(() will be used later and needs to be saved. Applying Proposition 1
to this case, the complexity to obtaimeu 3;) is then

0(8 ol%l mk™M). (13)

[Cases 3 and 4] These utility variables can be grouped @otwelated clusters
(possibly overlapping): Each cluster is obtained by starting with one variable
under case 3. Note that whenever cases 1 and 2 do not cover all utility variables,
there exist some under case 3. Be definition, there existuch that; andu;

share a private decision ancestor. Note thamay be under case 3 or case 4.
Add uj to the cluster, and continue until no such utility variable can be found. In
Fig. 2,uz anduy form a correlated cluster. Formally, a correlated cluster can be
defined as follows.

Definition 1 Let SU= {ug,...,uy } € U be a subset of utility variables. SU is a
correlated cluster if for each u(i = 2,...,n’), there exists k i with y; Ny # 0,
and no proper superset of SU has such property.

For each correlated cluster with its utility variables indexedigs..,u,,, we ap-
ply PEULiIDec? to its subnet segment. Denote= U{’;lai, B = Ui;lﬁi, y =
U{’;lw. Set parameters of PEUtiIDec2 @ = o/, B = B/, andy = y. Return
valuemey ') is contribution of the cluster to Eqn. (11). Return valpeer(3’)
is needed later and is to be saved. Applying Proposition 2, complexity to obtain
mey ') is

0(6 d@I n’ mk™). (14)
Let SU;,SU,, ... be subsets o), whereu;SU = U, and eactsy is either a
singleton under case 1, or a singleton under case 2, or a correlated cluster from
cases 3 or 4. Letr/, B/ andy/ denote the sets of decision ancestor variables for
SU. Then Eqn. (11) can be computed as

utmy(sd) = (Y eu(proj(sd ) + Y mey(proj(sdp)),  (15)
i ]

where eacley () is the contribution from &U under case 1, and eaatey () is

the contribution either from &U; under case 2 or from 8U; under case 3 or 4.

From Egns. (12), (13) and (14), assuming cases 2, 3, 4 dominate the computation,
the complexity to obtaimitmy(sd) is the following, wherex* = max ai,

0(8 a!®I n mk™). (16)



It is significantly more efficient tha®(6 P n mk™) (Proposition 2) as it would

be if PEUtiIDec? is directly applied to agent B’s subnet. It is only exponential on
cardinality of the largest cluster ancestor set, while the latter is exponential on
DI

7 Utility Message from Non-leaf

Next, we consider non-leaf agents in the first round of message passinD. Let
be the set of decision variables of a non-leaf ader receives utility messages
from child agentsAy, ..., Ay, over interfacesSDy, ..., SDy, respectively, and then
computes and sends a utility message over inter&igeiith parent agent.

We denote message froAy by utm; (SD;), which specifiesitm;(sd;) for each
local plansd; overSD;. To countutm; (SDj) in computing messagetmy (SD) to

C, we modify subnet as follows: For each decision variadjle SD;j with space
Op;, add a new child node; with spaceE fi = Op;. Associate CPTP(g|d;)
such thatP(e|di) = 1 whenevere, = d; and P(g|dj) = O otherwise. Henceg

is deterministically dependent atf. Denote the set of new child nodes added
relative to SD; as SE;. Add a new utility nodeutm; with SE as its parents,
associate it with the functiontm; (SE), such thautm; (SE) = utm;(SD;), and
assign it weightvj = 1.

After conversionfor eacBDj, messagatmy(SD) toC is computed by the method
in Section 6 and Eqn. (15). The effect is that for eadover SD, utny(sd) is the
MEU based on all subnets on the hypertree rooted at the subnet of Bigent

For root agent, after conversion for ea8D), it performs PEULiIDec2 with3 = 0

to get the optimal local plad*. The first round of message passing ends. Op-
eration by non-leaf ager is summarized in Algorithm 3. Its main property is
established in Proposition 3 with proof omitted for space.

Algorithm 3  CollectUtIIPE
Input: decision subnet oveD,E,U);

if B is not a leaf agent,
for each child agent A
receive utm(SD;); add new utility node utmand its segment to subnet;
if B is root agent, call PEUtIDec2 witl8 = 0 and get return valual*; return;
U’ = U; classify utility variables in U into 4 cases;
while U’ £ 0,
remove y<c U’ fromU';
if uj is under case 1, compute ém) using subnet segment of and Eqgn. (3);
elseif y is under case 2,
call PEULtiIDec1 with subnet segment gfand parameters, §i, yi;
get return valugimey i), peen3;)) and save pe€iB));
else
foreachy ¢ U’ in the same correlated cluster with,remove y from U
call PEUtiIDec2 with subnet segment of the cluster and paramedérg’, y/;
get return valug mey '), peer(8)) and save pe€iB’);
compute uty(SD) from eu a;), meyB;) and meuiB’) obtained above by Eqn. (15);
send utrg(SD) to agentC;



Proposition 3 For each non-root agent B, after completing CollectUtIlPE, its
message utg{SD) is the MEU function with respect to joint plans over the union
of subenvs on the sub-hypertree rooted at B.

8 Decision Message Distribution

The second round of message passing starts at root agent. It projects the optimal
local plan to interface with each adjacent agent on hypertree, and sends the re-
stricted plan to the agent. When a non-root agémeceives the local plasd*

over its interfaceSD with the parent agert, it uses the message to compute

its optimal local plan. The computation is organized based on the partition of its
utility variables into the four cases in Section 6.

If uj is under case 1, themy C SD, and the optimal local plan ovex; is

s = proj (5, a1). (17)

If u; is under case 2B obtainsbf = proj(sd*, §;), and retrieves;” = peer(by)
using the peer function saved during CollectUtilPE. The optimal local plan over
aj is

sq" = (b, ). (18)
If uj is under cases 3 or 4, the optimal plan over its correlated cluster with decision
ancestor seta’ and 3’ is obtained in one operation (although we still index the
result byi). B obtainsb™ = proj(sd¥, 8’), and retrievey’™* = peer(b™*) using the
peer function saved during CollectUtiIPE. The optimal local plan aveis

sdf = (b,y%). (19)

After the optimal local plan over eact (case 1 or 2) om’ (case 3 or 4) is
defined, the optimal local plan over (decision nodes ifB) is the join

d* = (sdf,sdj, ...). (20)

The operation byB is summarized in DistributePEPIlan.

Algorithm 4 DistributePEPIlan
Input: decision subnet oveD,E,U);

if B is root withd* derived by CollectUtilPE,
send projd*,SDj) to each child agent 4 return;
receive messagad® over interface SD with agentC;
U’ = U; classify utility variables in U into 4 cases;
while U’ # 0,
remove y<c U’ fromU';
if uj is under case 1, defingd* overa; by Eqn. (17);
else if y is under case 2, defineq" overaj by Eqn. (18);
else for each yc U’ in the same correlated cluster with uemove y from U
definesd* overa’ by Eqn. (19);
computed* by Eqn. (20);
for each child agent A send message prég*, SD;) to Aj;




Systemcoordinator executes DecisionPE, which combines above algorithms. Its
optimality is established in Theorem 1, with proof omitted for space.

Algorithm 5 DecisionPE

selectan agent C arbitrarily;
call CollectUtIIPE inC;
call DistributePEPlanin C;

Theorem 1 After DecisionPE, the joint plan made from joining the local pkin
at each agent is optimal.

As computation of root agent is dominated by the rest, from Eqn. (16)otia¢
complexity of DecisionPE iO(n 6 ol nm k™), only exponential on size of
the correlated clustdo*|. This represents an exponential reduction frof to
0!l as well as a factof reduction, relative to the algorithm in [6].

9 Case Study in MAE

Three agent teams are formed to plan for horiaeal. Two of them (referred to

as 3D and 3A5D) each has 3 agents, and ond%B) has 5 agents.A8D and

3A5D are organized into hypertree— B—C, and A5D into A—B—C—-D —E.

Each decision has = 5. Each subnet has between 1 and 3 public decision vari-
ables. Numbers of private decision variables per subnetABCB 3A5D, 5A5D

are 3, 5, 5, respectively. Hence, the maximum numbers of decision variables per
agent for the three teams are 6, 8, 8, respectively. Maximum numbers of local
plans per agent are 15625, 390625, 390625, respectively. Numbers of joint plans
for the teams are.f x 10%,9.5 x 10'3,1.4 x 10%°, respectively.

Three MAE envs are simulated of different reward distributions. Each team is
placed at 6 distinct positions in each env, creating 18 distinct decision scenarios.
For each scenario, each team is run using the method in [6] (denoted CDNCD)
and that in this work (denoted CDNPE). For all teams and all decision scenar-
ios, CDNPE runs obtained identical plans as CDNCD runs, confirming CDNPE
optimality.

Table 1. Meanu and standard deviatiastd for runtime (in seconds)

Team CDNPE TimeCDNCD Time
u std u std
3A3D|3.41 0.05 (13.9 0.92
3A5D|4.84 0.24 [124 0.58
5A5D|4.78 0.25 [127 0.63

Table 1 summarizes runtime per team and method. CDNPE runs significantly
faster than CDNCD. For 3A3D (less expensive agents), CDNPE takes 25% of
the time used by CDNCD. For 5A5D (more expensive), CDNPE tak8%63of

the time.



10 Conclusion

We extend multiagent decision algorithm in [6] and generalize partial evaluation
for MAE in [9] to propose a new algorithm for length-2 CDNs under pivot proba-
bility assumption, reducing computation complexity exponentially compounded
with a factor. In relation to MAIDs, ours is tightly coupled while MAIDs are
loosely coupled [7]. In relation to DCOP methods such as DPOP, ours is decision
theoretic while DPOP is not. Its generality rests on allowing pivot probability
beyond a single value. Decision optimality is expected to degrade gracefully as
pivot probability assumption is relaxed, and more experimental study is underway
to confirm this.
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