
Multiagent Decision by Partial Evaluation

Yang Xiang and Frank Hanshar

University of Guelph, Canada

Abstract. We consider multiagent cooperative decision in stochastic environ-
ments, and focus on online decision during which agents communicate. We gen-
eralize partial evaluation from a specific application to a class of collaborative
decision networks (CDNs), and propose a distributed decision algorithm based
on partial evaluation. We show that when agents have private decision variables,
the new algorithm can significantly speed up decision in comparison with the
earlier CDN algorithm.

1 Introduction

We consider a class of multiagent cooperative decision problems in partially
observable and stochastic environments. One example is collaborative design
in supply chain [5]. Another example is multiagent expedition (MAE) [7]. We
assume that the decision problems can be modeled as CDNs [6, 7], a class of
decision-theoretic, cooperative, multiagent, graphical models. Main assumptions
of CDNs are the following: Application environment (env, a set of variables) is
decomposed into overlapping sub-environments (subenvs), that can be organized
into a hypertree with running intersection property. Each subenv is hosted by an
agentA and consists of decision variables, effect variables, and utility variables.
Dependency among variables in each subenv is modeled as a decision subnet
(influence diagram). Overlaps of subenvs (agent interfaces) consist of decision
variables only.
We focus on online decision making over short horizons rather than offline pol-
icy making, e.g., [4, 2]. That is, agents decide the best joint action based on what
they know about the current env. Focus on current env state, rather than all possi-
ble trajectories as in offline policy making, allows much more efficient decision
making.
An agent makes asimultaneous decision[10] when it decides its actions over
multiple decision variables, all of which have the horizon lengthh = 1. A col-
lection of decisions one from each agent is ajoint decision. This work concerns
joint, simultaneous decisions.An example is collaborative design in supply chain,
where the component design at each agent is a simultaneous decision and the
product design is a joint, simultaneous decision. This work concerns alsosequen-
tial decision, where agents decide and act over time, e.g., in MAE. Agents plan
at every time step withh≥ 1 and act according to joint action for timet = 1.
We term each choice of a decision variable as anaction, e.g., choosing 2GBRAM
for a device under design. For multiple decision variables (possibly for different
time), we refer to a vector of choices, one for each variable, as aplan. If these
variables are contained in a single subenv, the plan islocal, otherwise, it isjoint.
Hence, a component design in collaborative design is a local plan, and so is a



sequenceof h > 1 movements by a MAE agent. A product design is a joint plan,
and so is a collection of local plans of a team of MAE agents. The decision task
is to obtain an optimal joint plan by distributed online computation.
The above decision problem is equivalent to a Dec-POMDP [1, 8], and hence its
optimal solution is generally intractable. During online decision, our agents com-
municate, as in e.g. [3], butnot local observations. For our decision algorithm, we
analyze its communication cost, while our agents do not during decision making.
To improve efficiency in MAE applications, an idea ofpartial evaluationwas
explored in [9]. Significant speedup was achieved in centralized decision, while
application to distributed decision was not productive. This work generalizes par-
tial evaluation to a class of CDNs, where each directed path starts from a decision
node, followed by an effect node, and ends by a utility node. We extend the earlier
algorithm for CDNs [6] based on partial evaluation, and show that when subenvs
contain private decisions the new algorithm can significantly speed up decision
making.
Section 2 introduces CDNs. Sections 3 through 5 present partial evaluation in
subnets of increasing sophistication. The proposed algorithm is presented in Sec-
tions 6 through 8, with performance demonstrated in Section 9.

2 Background

A setA of n agents populates an env. It is represented as a setV of variables,
decomposed into overlapping subenvsV1, ...,Vn, each hosted by an agent. The
decompositionallows the construction of ahypertreeH whose (hyper)nodes are
labeled by subenvs such that intersection of every two nodes is contained in each
node on the path between the two (running intersection).
Each subenvV = D∪E∪U, whereD, E, U are disjoint, is modeled by an agent
A∈A into a decision subnetS=(D,E,U,G,P,T ), whereG is an acyclic directed
graph whose nodes are labeled by elements ofV. D is a set of local decision
variablesD = {d1,d2, ...}, and we denoteρ = |D|. Eachdi has a finite space of
options or actionsOpi = {di1,di2, ...}. Denoteσ = maxi |Opi |.
E is a set of effect variablesE = {e1,e2, ...}, representing outcomes of actions.
Eachei has a finite spaceE fi = {ei1,ei2, ...}. Denoteκ = maxj |E fj |. Eachei has
a setδi ⊆ D of decision variables as its parents inG. The dependency ofei on
δi is quantified by a conditional probability table (CPT)P(ei |δi). P is the set of
CPTs, one for eachei ∈ E.
U is a set of utility variablesU = {u1,u2, ...}, encoding the subjective preference
of A over effects, and we denoteη = |U |. Eachui ∈U has a setπi ⊆ E of effects
as parents inG. Denotem= maxi |πi |. Preference overπi is encoded in a utility
functionui(πi) ∈ [0,1], andT is a set of functions, one for eachui ∈U. Eachui

is associated with a weightwi > 0 such that∑i wi = 1.
If subenvV hosted by agentA is adjacent on the hypertree to subenvV′ hosted
by A′, then the (hyper)link labeledV ∩V ′ is theinterfaceof A andA′. For A, the
interface ispublic, and all other variables inV areprivate relative toA′.
A CDN is a tuple(A ,V ,H ,S ), whereS is a set of decision subnets, one
for eachA∈ A . An example is in Fig. 1, where nodes inD, E, U are drawn as
squares, ovals, diamonds, respectively. Defined as above, every directed path in
a subnet has a length 2, e.g., Fig. 1 (a). This work focuses on such CDNs. More
general subnets can all be converted equivalently to length-2 (with modification
to relevant CPTs and utility functions), and we assume that such is done.
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Fig. 1. (a) CDN subnets. (b) Hypertree.

3 Single Decision Variable
Consider a decision subnet whereρ = 1, η = 1, andV = {di ,ei ,ui}. Expected
utility of taking an actiondi = di j is

eu(di j ) = P(ei1|di j )ui(ei1)+P(ei2|di j )ui(ei2)+ ...,

which requiresκ probability retrievals,κ utility retrievals, κ multiplications,
andκ −1 additions. Actiondi j is fully evaluatedwheneu(di j ) is computed. Its
complexity isO(κ ). Agent’s objective is to compute the optimal decision pair
(d∗

ik,meuv) such thateu(d∗
ik) = meuv= maxj eu(di j). This generally involves a

full evaluation of eachdi j , with the complexityO(σ κ ).
For every action, we refer to an effect with the highest probability (indexed
once and referenced repeatedly) as thepivot effect, and break ties arbitrarily.
Let eik be the pivot effect of actiondik. Theneu(dik) ≤ P(eik|dik)ui(eik)+ (1−
P(eik|dik))umax

i ≡ Qik, whereumax
i = maxxui(eix). We say thatdi j dominatesdik

iff eu(di j )> eu(dik). If Qik < eu(di j ), theneu(dik) < eu(di j) anddik is dominated
by di j . ComputingQik requires one probability retrieval, one utility retrieval, two
multiplications, and two additions. Actiondik is partially evaluatedwhenQik is
computed.
Suppose probabilities of pivot effects fordi are nearly identical. In MAE, a move-
ment decision has alternativesnorth, east, etc. Moving north most likely lands on
north location. Its probability is about the same as that of landing on east location
if moving east. In many envs, each action most likely produces a given effect,
with smaller probabilities to produce other effects. As another example, a mes-
sage may be sent by email or post. Emails most likely arrive in seconds while
post mails most likely in days. Formally, we assume

∀ j,k P(ei j |di j ) = P(eik|dik) = p. (1)

Partial evaluation of actiondik amounts to computep ui(eik)+ (1− p)umax
i . To

determine whether
p ui(eik)+(1− p)umax

i < eu(di j) (2)

holds, we check instead whetherui(eik) <
eu(di j )

p − 1−p
p umax

i holds. We assume
that the right hand side (threshold) has been obtained beforedik is evaluated. Then
if the above inequality holds,dik can be rejected with just one utility retrieval and
one comparison, and the threshold can be reused for evaluating the next action.
In this case, partial evaluation ofdik has a complexity ofO(1).
This leads to the followingpartial evaluation based decisionto obtain(d∗

ik,meuv):
Apply full evaluation for the first action to establish a threshold. For each alter-
native action, apply partial evaluation to reject if warranted. Otherwise, apply full
evaluation to it and update the threshold. The last option accepted isd∗

ik.
Using this method, efficiency is gained by evaluating adik fully only if the above
inequality fails. Letθ ∈ [0,1] be the percentage ofdik fully evaluated. Then the
complexity of partial evaluation based decision isO(θ σ κ +(1−θ) σ).



4 Multiple Decision Variables

Consider the case whereρ > 1 andη = 1, e.g., subnetG2 in Fig. 1 (a), where each
local plan is to be evaluated. Letd be a local plan overD, e be its (compound)
pivot effect (made of pivot effect of each action ind), e′′ be any (compound)
effect, andeu(d) be the expected utility ofd. Then

eu(d) = P(e|d)ui(e)+∑
e′′

P(e′′|d)ui(e′′). (3)

Let β be a subset ofD andγ = D\β . We consider the decision problem to obtain
a pair of functions(meu(β ), peer(β)), wheremeu: β → [0,1] andpeer: β → γ,
such that for each planb over β , meu(b) = maxyeu(b,y) and eu(b, peer(b)) =
meu(b), wherey is a plan overγ, (b,y) denotes ajoin of plans, maximization
is over each plany, and peer(b) equals the optimal plany∗. We refer toβ as
constraint scopeandγ asoptimization scope. In other words,(meu(β ), peer(β))
specifies, for each constraintb, the MEUmeu(b) and the corresponding optimal
pland∗ = (b, peer(b) = y∗).
The task requires evaluatingeu(b,y). Denote planprojectionby b = pro j(d,β ),
y= pro j(d,γ), and writed = (b,y). To evaluateeu(d) by Eqn. (3),P(e′′|d) must
be computed for eache′′. For G2 in Fig. 1 (a),P(e′′|d) = P(e5,e6|d3,d4,d5) =
P(e5|d3,d4)P(e6|d5). In general, computation ofP(e′′|d) for eache′′ involvesm
probability retrievals andm−1 multiplications. Hence, a full evaluation ofd by
Eqn. (3) takesmκ m probability retrievals,κ m utility retrievals,mκ m multiplica-
tions, andκ m−1 additions. Complexity of full evaluation ofd is thusO(mκ m).
To obtainmeu(β )by full evaluation, a total ofσρ alternatived must be evaluated,
and the complexity is thusO(σρ m κ m).
For more efficient decision, we observe

eu(d) = P(e|d)ui(e)+∑
e′′

P(e′′|d)ui(e′′) ≤ P(e|d)ui(e)+∑
e′′

P(e′′|d)umax
i (4)

= P(e|d)ui(e)+(1−P(e|d))umax
i , where umax

i = max
e′′

ui(e′′).

Let ei be an effect variable with parent setδi . Let δik be kth configuration ofδi

andeik be its pivot effect. Assume

∀ i, j,k P(ei j |δi j ) = P(eik|δik). (5)

That is, for each effect variable and its influencing decision variables, probabili-
ties of pivot effects are approximately identical. It then follows that∀d,d′ P(e|d)=
P(e′|d′) = p, wheree′ is the pivot effect of local pland′, andp can be computed
once for all pivot effects. For the example onG2 in Fig. 1, suppose probabilities
of pivot effects forP(e5|d3,d4) is 0.7 and those forP(e6|d5) is 0.9. Then we have
p= 0.63. Now, inequation (4) becomeseu(d) ≤ p ui(e)+(1− p)umax

i .

In general, giveneu(d′) and an alternative pland, if

p ui(e)+(1− p)umax
i < eu(d′), (6)

it follows thateu(d) < eu(d′) andd is dominated byd′. Partial evaluation ofd by
Eqn. (6) takes only one utility retrieval, with complexityO(1).
Extending partial evaluation based decision in Section 3 with the above, the de-
cision problem to obtain(meu(β ), peer(β)) can be solved by PEUtilDec1:



Algorithm 1 PEUtilDec1
Input: subnet over(D,E,U = {ui}); max utility umax

i ; pivot probability p;
constraint scopeβ ⊂ D and optimization scopeγ = D\β ;

for each constraintb overβ ,
pick a plany′ overγ to fully evaluate by Eqn. (3); get eu(b,y′);
set meu(b) = eu(b,y′) and peer(b) = y′;
set threshold th= (eu(b,y′)− (1− p)umax

i )/p;
for each other plany overγ,

retrieve ui(e) for pivot effecte ofd = (b,y);
if ui(e) ≥ th,

fully evaluated by Eqn. (3) to get eu(d);
meu(b) = eu(d), peer(b) = y; th = (eu(d)− (1− p)umax

i )/p;
return(meu(β ), peer(β));

Whenβ = /0, in the return value of PEUtilDec1,meu(β ) becomes a single value
andpeer(β) becomes a single optimal pland∗ over D. Let θ ∈ [0,1] be the per-
centage ofd fully evaluated by PEUtilDec1. Its complexity is thenO(θ σρ mκ m+
(1−θ) σρ) = O(θ σρ mκ m). Proposition 1 summarizes key properties of PEU-
tilDec1.

Proposition 1 PEUtilDec1 satisfies the following: (1) For each constraintb over
β , meu(b) is the MEU. (2) For eachb, peer(b) is the optimal plan overγ. (3) Its
complexity is O(θ σρ m κ m).

5 Multiple Utility Variables

Next, consider a decision subnet whereρ > 1 andη > 1. An example isG1 in
Fig. 1 (a), whereη = 2 and a weightwi is associated with eachui (i = 1,2).
The optimal local plan cannot be obtained by solving independent sub-problems
over{d1,d2} and over{d2,d3}. Hence, fully evaluating a local plan amounts to
compute

eu(d1,d2,d3) =

w1 ∑
e1,e2

P(e1|d1)P(e2|d2)u1(e1,e2)+w2 ∑
e3,e4

P(e3|d2)P(e4|d3)u2(e3,e4).

In general, letd be a local plan overD, e be its pivot effect,e′′ be any alternative
effect, andeu(d) be expected utility ofd. For eachui (i = 1, ...,η ) with parents
πi, let α i be the set of decision ancestors ofui . In G1 of Fig. 1 (a),α1 for u1 is
{d1,d2}. Defineei = pro j(e,πi), anddi = pro j(d,α i ). Then, a full evaluation of
d computes

eu(d) =
η

∑
i=1

wi [P(ei|di)ui(ei)+∑
e′′i

P(e′′i |di)ui(e′′i )]. (7)

We consider the decision problem to obtain(meu(β ), peer(β ))such that for each
planb overβ , meu(b) = maxyeu(b,y) andeu(b, peer(b))= meu(b), wherey is a
plan overγ, andpeer(b) equals optimal plany∗.



Extendingresult from Section 4, the complexity to fully evaluated is O(η mκ m).
We consider partial evaluation with the above example: Ifej is the child node of
di, we denote its pivot effect corresponding todik by ejk. We have

eu(d1x,d2y,d3z)≤
w1P(e1x|d1x)P(e2y|d2y)u1(e1x,e2y)+w2P(e3y|d2y)P(e4z|d3z)u2(e3y,e4z)

+w1(1−P(e1x|d1x)P(e2y|d2y))umax
1 +w2(1−P(e3y|d2y)P(e4z|d3z))umax

2 .

Assumingprobabilities of pivot effects for each effect variableei is identical, de-
noted bypi , we haveeu(d1x,d2y,d3z)≤w1p1p2u1(e1x,e2y)+w2p3p4u2(e3y,e4z)+
w1(1− p1p2)umax

1 +w2(1− p3p4)umax
2 .

Giveneu(d′
1x,d

′
2y,d

′
3z) and another plan(d1x,d2y,d3z), if

w1p1p2u1(e1x,e2y)+w2p3p4u2(e3y,e4z)+w1(1− p1p2)u
max
1

+w2(1− p3p4)umax
2 < eu(d′

1x,d
′
2y,d

′
3z), (8)

holds, it follows thateu(d1x,d2y,d3z) < eu(d′
1x,d

′
2y,d

′
3z), and (d1x,d2y,d3z) is

dominated by(d′
1x,d

′
2y,d

′
3z). Partial evaluation of(d1x,d2y,d3z) by Eqn. (8) takes

only two utility retrievals.
In general, each utility variableui hasπi effect parents, each of which is associ-
ated with a pivot probabilitypi j indexed byj. Giveneu(d′) from a full evaluation,
and an alternative pland, if

η

∑
i=1

wi

(
(∏

j
pi j ) ui(ei)+(1− (∏

j
pi j )) umax

i

)
< eu(d′),

thend is dominated byd′. This leads to threshold and dominance comparison
below:

th = eu(d′)−
η

∑
i=1

wi(1− (∏
j

pi j )) umax
i , (9)

η

∑
i=1

wi(∏
j

pi j ) ui(ei) < th. (10)

By pre-computingwi(∏ j pi j ) for eachi, partial evaluation ofd has a complex-
ity of O(η ). Extending PEUtilDec1, PEUtilDec2 makes partial evaluation based
decision with multiple decision and utility variables, whose properties are stated
below.

Algorithm 2 PEUtilDec2
Input: subnet over(D,E,U); max utility umax

i for each ui;
for each ui and each of its parent, a pivot probability pi j ; β ⊂ D andγ = D\β ;

for each constraintb overβ ,
pick a plany′ overγ and denoted′ = (b,y′);
fully evaluated′ by Eqn. (7) to get eu(d′);
set meu(b) = eu(d′) and peer(b) = y′; set threshold th by Eqn. (9);
for each other plany overγ andd = (b,y),

perform comparison by Eqn. (10);
if comparison fails,

fully evaluated by Eqn. (7) to get eu(d);
meu(b) = eu(d), peer(b) = y, and update th by Eqn. (9);

return(meu(β ), peer(β));



Proposition 2 PEUtilDec2 satisfies (1) and (2) of Proposition 1, as well as the
following: Its complexity is O(θ σρ η mκ m).

Note that, whenβ = /0, the return value of PEUtilDec2,meu(β ), becomes a single
value, andpeer(β) becomes a single optimal pland∗ overD.

6 Utility Message by Leaf Agent

We obtain an optimal joint plan with two rounds of message passing, using PEU-
tilDec1 and PEUtilDec2. Hypertree is directed from an arbitrary root and agents
become parent-child according to the direction. In first round, utility messages
flow from leaf agents towards root. Message from a leaf agent is computed as
follows.
Let the subnet of a leaf agentB be over(D,E,U), and its interface with the
adjacent agentC on hypertree beSD⊂ D. Messageutm0(SD) thatB sends toC
is a MEU function that, for each local plansd overSD, specifies

utm0(sd) = max
rd

eu(sd, rd), (11)

whererd is a local plan overRD = D \SD. From Proposition 2, ifB applies
PEUtilDec2 withβ = SD, the return valuemeu(β ) satisfiesutm0(SD)= meu(β ).
Since this computation is exponential onρ, we seek to improve its efficiency
below.
For each utilityui and itsα i , we defineβi = α i ∩SD and γi = α i \βi. That
is, βi is public andγi ⊂ RD is private relative toC. Utility variables can then be
classified into four exhaustive and mutually exclusive cases:

1. γi = /0. That is,α i = βi is entirely public.
2. γi 6= /0,βi 6= /0, andγi ∩γj = /0 for all j 6= i. That is, there exists no other utility

variableuj , such thatui anduj share a private decision ancestor.
3. γi 6= /0, βi 6= /0, andγi ∩γj 6= /0 for somej 6= i.
4. βi = /0. That is,α i = γi is entirely private.

For example, supposeSD= {d2,d3} in Fig. 2. Thenu2 is under case 1,u1 is
under case 2,u3 is under case 3, andu4 is under case 4.

2d 4d d51d 3d

3u u4u1 u2

Fig. 2. Illustration of correlated cluster

[Case 1] For this case,bi = pro j(sd,βi) = pro j(sd,α i ). We refer to the subnet
segment that containsui and all its ancestors (includingπi andα i) as thesubnet
segment of ui . For instance, subnet segment ofu2 in Fig. 2 includes nodesd2, d3,
u2, the two parent nodes ofu2 and links among them.
We observe that contribution ofui to Eqn. (11) can be evaluated using its subnet
segment, independently of otheruj ∈ U, and the contribution is additive. That
is, if meu(sd) = v is obtained usingB’s subnet,meu(sd) = v′ is obtained using



B’s subnet with nodeui removed, andeu(bi) = v′′ is obtained using the subnet
segment ofui , thenv = v′ + v′′. We therefore computeeu(α i) using the subnet
segment ofui according to Eqn. (3). As it involves full evaluation for eachbi, the
complexity is

O(σ |αi| mκ m). (12)

[Case 2] For this case, the contribution ofui to Eqn. (11) is also additive and
obtainable from its subnet segment. Therefore, we can apply PEUtilDec1 to the
subnet segment. Set the parameters of PEUtilDec1 toD = α i , β = βi , andγ = γi .
Thereturn valuemeu(βi) is the contribution ofui toEqn. (11). Note that the return
valuepeer(βi) will be used later and needs to be saved. Applying Proposition 1
to this case, the complexity to obtainmeu(βi) is then

O(θ σ|αi | m κ m). (13)

[Cases 3 and 4] These utility variables can be grouped intocorrelated clusters
(possibly overlapping): Each cluster is obtained by starting with one variableui
under case 3. Note that whenever cases 1 and 2 do not cover all utility variables,
there exist some under case 3. Be definition, there existsuj such thatui anduj

share a private decision ancestor. Note thatuj may be under case 3 or case 4.
Add uj to the cluster, and continue until no such utility variable can be found. In
Fig. 2,u3 andu4 form a correlated cluster. Formally, a correlated cluster can be
defined as follows.

Definition 1 Let SU= {u1, ...,uη ′ } ⊆U be a subset of utility variables. SU is a
correlated cluster if for each ui (i = 2, ...,η ′), there exists j< i with γj ∩ γi 6= /0,
and no proper superset of SU has such property.

For each correlated cluster with its utility variables indexed asu1, ...,uη ′ , we ap-

ply PEUtilDec2 to its subnet segment. Denoteα ′ = ∪η ′

i=1α i , β ′ = ∪η ′

i=1βi , γ′ =
∪η ′

i=1γi . Set parameters of PEUtilDec2 toD = α ′, β = β ′, andγ = γ′. Return
valuemeu(β ′) is contribution of the cluster to Eqn. (11). Return valuepeer(β ′)
is needed later and is to be saved. Applying Proposition 2, complexity to obtain
meu(β ′) is

O(θ σ|α ′| η ′ m κ m). (14)

Let SU1,SU2, ... be subsets ofU, where∪iSUi = U, and eachSUi is either a
singleton under case 1, or a singleton under case 2, or a correlated cluster from
cases 3 or 4. Letα ′

i , β ′
i andγ′i denote the sets of decision ancestor variables for

SUi . Then Eqn. (11) can be computed as

utm0(sd) = (∑
i

eui(pro j(sd,β ′
i )))+∑

j
meuj (pro j(sd,β ′

j )), (15)

where eacheui() is the contribution from aSUi under case 1, and eachmeuj () is
the contribution either from aSUj under case 2 or from aSUj under case 3 or 4.
From Eqns. (12), (13) and (14), assuming cases 2, 3, 4 dominate the computation,
the complexity to obtainutm0(sd) is the following, whereα ∗ = maxi α ′

i ,

O(θ σ|α ∗ | η mκ m). (16)



It is significantly more efficient thanO(θ σρ η mκ m) (Proposition 2) as it would
be if PEUtilDec2 is directly applied to agent B’s subnet. It is only exponential on
cardinality of the largest cluster ancestor set, while the latter is exponential on
|D|.

7 Utility Message from Non-leaf

Next, we consider non-leaf agents in the first round of message passing. LetD
be the set of decision variables of a non-leaf agentB. B receives utility messages
from child agentsA1, ...,Ak, over interfacesSD1, ...,SDk, respectively, and then
computes and sends a utility message over interfaceSDwith parent agentC.
We denote message fromAj by utmj (SDj ), which specifiesutmj (sdj) for each
local plansdj overSDj . To countutmj (SDj) in computing messageutm0(SD) to
C, we modify subnet as follows: For each decision variabledi ∈ SDj with space
Opi, add a new child nodeei with spaceE fi = Opi . Associate CPTP(ei|di)
such thatP(ei |di) = 1 wheneverei = di andP(ei |di) = 0 otherwise. Hence,ei

is deterministically dependent ondi . Denote the set of new child nodes added
relative toSDj as SEj . Add a new utility nodeutmj with SEj as its parents,
associate it with the functionutmj (SEj), such thatutmj (SEj ) = utmj (SDj ), and
assign it weightwj = 1.
After conversionfor eachSDj , messageutm0(SD) toC is computed by the method
in Section 6 and Eqn. (15). The effect is that for eachsdoverSD, utm0(sd) is the
MEU based on all subnets on the hypertree rooted at the subnet of agentB.
For root agent, after conversion for eachSDj , it performs PEUtilDec2 withβ = /0
to get the optimal local pland∗. The first round of message passing ends. Op-
eration by non-leaf agentB is summarized in Algorithm 3. Its main property is
established in Proposition 3 with proof omitted for space.

Algorithm 3 CollectUtilPE
Input: decision subnet over(D,E,U);

if B is not a leaf agent,
for each child agent Ai,

receive utmj (SDj); add new utility node utmj and its segment to subnet;
if B is root agent, call PEUtilDec2 withβ = /0 and get return valued∗; return;
U ′ = U; classify utility variables in U′ into 4 cases;
while U′ 6= /0,

remove ui ∈U ′ from U′;
if ui is under case 1, compute eu(α i) using subnet segment of ui and Eqn. (3);
else if ui is under case 2,

call PEUtilDec1 with subnet segment of ui and parametersα i , βi , γi ;
get return value(meu(βi), peer(βi)) and save peer(βi);

else
for each uj ∈U ′ in the same correlated cluster with ui , remove uj from U′;
call PEUtilDec2 with subnet segment of the cluster and parametersα ′, β ′, γ′;
get return value(meu(β ′), peer(β ′)) and save peer(β ′);

compute utm0(SD) from eu(α i), meu(βi) and meu(β ′) obtained above by Eqn. (15);
send utm0(SD) to agent C;



Proposition 3 For each non-root agent B, after completing CollectUtilPE, its
messageutm0(SD) is the MEU function with respect to joint plans over the union
of subenvs on the sub-hypertree rooted at B.

8 Decision Message Distribution

The second round of message passing starts at root agent. It projects the optimal
local plan to interface with each adjacent agent on hypertree, and sends the re-
stricted plan to the agent. When a non-root agentB receives the local plansd∗

over its interfaceSD with the parent agentC, it uses the message to compute
its optimal local plan. The computation is organized based on the partition of its
utility variables into the four cases in Section 6.
If ui is under case 1, thenα i ⊂ SD, and the optimal local plan overα i is

sd∗i = pro j(sd∗,α i). (17)

If ui is under case 2,B obtainsb∗i = pro j(sd∗,βi), and retrievesy∗i = peer(b∗i )
using the peer function saved during CollectUtilPE. The optimal local plan over
α i is

sd∗i = (b∗i ,y
∗
i ). (18)

If ui is under cases 3 or 4, the optimal plan over its correlated cluster with decision
ancestor setsα ′ andβ ′ is obtained in one operation (although we still index the
result byi). B obtainsb′∗ = pro j(sd∗,β ′), and retrievesy′∗ = peer(b′∗) using the
peer function saved during CollectUtilPE. The optimal local plan overα ′ is

sd∗i = (b′∗,y′∗). (19)

After the optimal local plan over eachα i (case 1 or 2) orα ′ (case 3 or 4) is
defined, the optimal local plan overD (decision nodes inB) is the join

d∗ = (sd∗1,sd∗2, ...). (20)

The operation byB is summarized in DistributePEPlan.

Algorithm 4 DistributePEPlan
Input: decision subnet over(D,E,U);

if B is root withd∗ derived by CollectUtilPE,
send pro j(d∗,SDj ) to each child agent Aj ; return;

receive messagesd∗ over interface SD with agent C;
U ′ = U; classify utility variables in U′ into 4 cases;
while U′ 6= /0,

remove ui ∈U ′ from U′;
if ui is under case 1, definesd∗i overα i by Eqn. (17);
else if ui is under case 2, definesd∗i overα i by Eqn. (18);
else for each uj ∈U ′ in the same correlated cluster with ui , remove uj from U′;

definesd∗i overα ′ by Eqn. (19);
computed∗ by Eqn. (20);
for each child agent Aj , send message pro j(d∗,SDj ) to Aj ;



Systemcoordinator executes DecisionPE, which combines above algorithms. Its
optimality is established in Theorem 1, with proof omitted for space.

Algorithm 5 DecisionPE

selectan agentC arbitrarily;
call CollectUtilPE in C;
call DistributePEPlan in C;

Theorem 1 After DecisionPE, the joint plan made from joining the local pland∗

at each agent is optimal.

As computation of root agent is dominated by the rest, from Eqn. (16), thetotal
complexity of DecisionPE isO(n θ σ|α ∗ | η m κ m), only exponential on size of
the correlated cluster|α ∗|. This represents an exponential reduction fromσρ to
σ |α ∗| as well as a factorθ reduction, relative to the algorithm in [6].

9 Case Study in MAE

Three agent teams are formed to plan for horizonh = 1. Two of them (referred to
as 3A3D and 3A5D) each has 3 agents, and one (5A5D) has 5 agents. 3A3D and
3A5D are organized into hypertreeA−B−C, and 5A5D into A−B−C−D−E.
Each decision hasσ = 5. Each subnet has between 1 and 3 public decision vari-
ables. Numbers of private decision variables per subnet in 3A3D, 3A5D, 5A5D
are 3, 5, 5, respectively. Hence, the maximum numbers of decision variables per
agent for the three teams are 6, 8, 8, respectively. Maximum numbers of local
plans per agent are 15625, 390625, 390625, respectively. Numbers of joint plans
for the teams are 6.1×109,9.5×1013,1.4×1025, respectively.
Three MAE envs are simulated of different reward distributions. Each team is
placed at 6 distinct positions in each env, creating 18 distinct decision scenarios.
For each scenario, each team is run using the method in [6] (denoted CDNCD)
and that in this work (denoted CDNPE). For all teams and all decision scenar-
ios, CDNPE runs obtained identical plans as CDNCD runs, confirming CDNPE
optimality.

Table 1.Meanµ and standard deviationstd for runtime (in seconds)

Team CDNPE TimeCDNCD Time
µ std µ std

3A3D 3.41 0.05 13.9 0.92
3A5D 4.84 0.24 124 0.58
5A5D 4.78 0.25 127 0.63

Table 1 summarizes runtime per team and method. CDNPE runs significantly
faster than CDNCD. For 3A3D (less expensive agents), CDNPE takes 25% of
the time used by CDNCD. For 5A5D (more expensive), CDNPE takes 3.8% of
the time.



10 Conclusion

We extend multiagent decision algorithm in [6] and generalize partial evaluation
for MAE in [9] to propose a new algorithm for length-2 CDNs under pivot proba-
bility assumption, reducing computation complexity exponentially compounded
with a factor. In relation to MAIDs, ours is tightly coupled while MAIDs are
loosely coupled [7]. In relation to DCOP methods such as DPOP, ours is decision
theoretic while DPOP is not. Its generality rests on allowing pivot probability
beyond a single value. Decision optimality is expected to degrade gracefully as
pivot probability assumption is relaxed, and more experimental study is underway
to confirm this.
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