
Construction of Privacy Preserving Hypertree Agent
Organization as Distributed Maximum Spanning Tree

Yang Xiang and Kamala Srinivasan

School of Computer Science, University of Guelph, Canada

Abstract. Decentralized probabilistic reasoning, constraint reasoning, and deci-
sion theoretic reasoning are some of the essential tasks of a multiagent system
(MAS). Many frameworks exist for these tasks, and a number of them organize
agents into a junction tree (JT). Although these frameworks all reap benefits of
communication efficiency and inferential soundness from the JT organization,
their potential capacity on agent privacy has not been realized fully. The contri-
bution of this work is a general approach to construct the JT organization through
a maximum spanning tree (MST), and a new distributed MST algorithm, that
preserve agent privacy on private variables, shared variables and agent identities.

1 Introduction

Decentralized probabilistic reasoning, constraint reasoning, and decision theoretic rea-
soning (referred to below as decision making) are some of the essential tasks of a
multiagent system (MAS). Many frameworks exist for these tasks, e.g., AEBN [19]
and MSBN [22] for multiagent probabilistic reasoning, ABT [12], ADOPT [13], DPOP
[16], Action-GDL [20], DCTE [2], and MSCN [25] for multiagent constraint reasoning,
and RMM [7], MAID [10], and CDN [24] for multiagent decision making. Some frame-
works do not assume specific agent organizational structure, e.g., AEBN and MAID.
Some assume a total order among agents, e.g., ABT. Some use a pseudo-tree organiza-
tion, e.g., ADOPT and DPOP. Some depend on a junction tree (JT) organization, e.g.,
Action-GDL, DCTE, MSBN, MSCN, and CDN. The organization is known as hyper-
tree in the literature on MSBN, MSCN and CDN, and we refer to JT and hypertree
interchangeably.

This work focuses on JT-based agent organizations. Potential advantages of JT orga-
nizations include communication efficiency, inferential soundness, and agent privacy.
As MAS research progresses, agent privacy has received more attention in recent years
[18,4]. However, few studies are known on the privacy issue related to JT-based agent
organization (see [22,25] for example). Although existing JT-based MAS frameworks
all reap benefits of communication efficiency and inferential soundness, the potential
capacity of JT-based organization on agent privacy has not been fully realized.

A framework component critical to agent privacy is construction of the JT-based or-
ganization. Some frameworks paid no attention to agent privacy at all during the JT
organization construction, and others preserved agent privacy to a limited degree. The
main contribution of this work is a new algorithm suite that constructs JT-based agent
organizations distributively while preserving agent privacy. To the best of our knowl-
edge, no known JT-based MAS frameworks provide the same degree of agent privacy

O. Zaı̈ane and S. Zilles (Eds.): Canadian AI 2013, LNAI 7884, pp. 199–210, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

200 Y. Xiang and K. Srinivasan

enabled by the proposed algorithm, except an alternative approach that we report in a
related work [26].

In the next section, we introduce background on JT-based organization and the re-
lated privacy issue. In the subsequent section, we describe our approach to JT construc-
tion as distributed construction of a maximum spanning tree (MST). After reviewing
relevant work on distributed MSTs, we present our new algorithm suite, followed by an
analysis of its soundness, complexity, and privacy.

2 JT-Based Multiagent Organization and Agent Privacy

JT-based organizations are used in a number of multiagent frameworks, e.g.,
[21,23,27,20,2]. Under these frameworks, the application environment is represented
by a set of variables, referred to as the env. The env is decomposed into a set of overlap-
ping subenvs, each being a subset of env. The subenvs are one-to-one mapped to agents
of the MAS. Fig. 1 (a) shows the subenv decomposition of a trivial env, where subenv
Vi is mapped to agent Ai.

W , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1
u,y

w,u,y,z
y,z

v

v,w

(c)

g,h,y,z
e,f,v,w

a,b,u,y

c,d,w,u,y,z

(b)

{u,y}

{w}

{v}

{y,z}

i,j,v
(a)

g,h,y,z
e,f,v,w

a,b,u,y

c,d,w,u,y,z

i,j,v

V , A0 0

V , A2 2

V , A4 4

V , A3 3

V , A1 1

V , A0 0
V , A1 1

V , A3 3
V , A4 4

V , A2 2

Fig. 1. (a) Subenvs with variables shown in each oval, and their agent association; (b) JT organi-
zation with links labeled by shared variables; (c) Agent boundaries.

The subenvs (and hence the agents) are organized into a JT. A JT is a tree where
each node is associated with a set called a cluster. The tree is so structured that, for
any two clusters, their intersection is contained in every cluster on the path between the
two (running intersection). In a JT-based organization, each cluster corresponds to a
subenv and hence an agent. The organization prescribes direct communication pathways
between agents. That is, an agent can send a message to another agent, iff they are
adjacent in the JT organization.

For each pair of adjacent agents in the JT organization, the intersection of their
subenvs is non-empty, and it is used to label the link between corresponding clusters.
We refer to the intersection as the set of variables shared by the two agents. Fig. 1 (b)
shows a JT organization.

Messages between adjacent agents are restricted to be about shared variables only
(which is sufficient). In multiagent probabilistic reasoning, a message is the sending
agent’s belief over shared variables, e.g., in MSBN [21,22]. In multiagent constraint
reasoning, a message contains partial solutions over shared variables, e.g., in MSCN
[27,25]. In multiagent decision making, a message is either an expected utility function
over shared variables, or a partial action plan over them, e.g., in CDN [23,24].

Construct Privacy Preserving Hypertree Agent Organization as Distributed MST 201

MAS frameworks using JT-based organizations can be grouped based on whether
subenvs are assumed simple or complex. Subenvs are assumed simple under a frame-
work, if each subenv is treated as a subset of variables without internal structure. Subenvs
are assumed complex under a framework, if dependence structure within each subenv is
explicitly represented and manipulated during multiagent probabilistic reasoning, con-
straint reasoning, or decision making. Under this criterion, subenvs in Action-GDL [20]
and DCTE [2] are simple, while subenvs in MSBN, MSCN, and CDN are complex. In
particular, each subenv in a MSBN is modeled as a Bayesian subnet, each subenv in a
MSCN is encoded as a constraint subnet, and each subenv in a CDN is represented as a
decision subnet.

JT-based agent organizations enable a number of advantages.

Efficient Communication. For agents to cooperate using relevant information local
in other agents, it is sufficient to pass two messages along each link of the JT.
Hence, time complexity of communication is linear in the number of agents, which
is derived from the tree topology of JT.

Soundness of Inference. Global consistency is guaranteed by local consistency, which
is derived from running intersection of JT. For instance, multiagent probabilistic
reasoning in MSBN [22] is exact. Multiagent decision making in CDN [24] is glob-
ally optimal.

Agent Privacy. Most information about individual agents can be kept private while the
MAS is fully functioning. This is derived from the restriction of message content
in JT-based communication.

Agent privacy above is desirable, when each agent represents an independent principal.
For instance, agents collaborating in industrial design with a CDN may represent in-
dependent manufacturers in a supply chain [23]. The subenv associated with an agent,
modeled as a decision subnet, contains proprietary technical know-hows of a manufac-
turer, whose non-disclosure is desirable.

More precisely, in a JT-based organization, certain information at individual agents
does not need to be exchanged during normal inference, and thus can potentially be
kept private. Such information includes the following.

Information Related to a Private Variable. An env variable x ∈ V is private, if it is
contained in a single subenv Vi, and hence is associated with a single agent Ai. The
information includes its existence, identity, domain (of possible values), associated
conditional or marginal probability distribution (in the case of probabilistic reason-
ing), or constraint (in the cases of constraint reasoning and decision making), and
observed or assigned value. In Fig. 1 (a), h is a private variable of A2.

Information Related to a Shared Variable. An env variable x ∈ V is shared, if it is
contained in two or more subenvs, and hence associated with two or more agents.
The information about x, as listed above, does not need to be released beyond the
agents who share x. In Fig. 1 (a), y is a variable shared by A0, A1 and A2.

Existence and Identity of a Non-bordering Agent. Two agents are non-bordering if
their subenvs have no common variables. They will not be adjacent in any JT or-
ganization, and need not communicate during inference. Hence, they do not need

202 Y. Xiang and K. Srinivasan

to know the existence or identity of each other. In Fig. 1 (b), A0 and A4 are non-
bordering.

In summary, agent privacy in a JT-based organization involves at least three types: pri-
vacy of private variables, privacy of shared variables, and privacy of agent identity.
Although agent privacy is relevant to both MAS frameworks over complex subenvs and
those over simple subenvs, it is particularly important for frameworks with complex
subenvs, as a simple subenv may contain only a few variables while a complex subenv
may include tens or hundreds or more private variables.

For any given JT-based MAS framework, a critical component related to privacy is
the construction of JT organization. This is because, once the JT organization is con-
structed and functioning, it is relatively easy to maintain privacy during normal infer-
ence operations, due to message content restriction. It is through the JT construction
component, JT-based MAS frameworks demonstrate different degrees of attention to
the privacy issue.

In Action-GDL [20], the JT is built from a pseudo-tree, where each node corresponds
to one env variable, through a centralized mapping operation. The centralized mapping
operation necessarily discloses identities of all variables to the agent who performs the
mapping.

The JT used by DCTE [2] is constructed by a method from [15], where agents are
initially organized into a tree topology. Each agent starts with a cluster of variables
determined by application-based conditions. Hence, the cluster tree generally does not
satisfy running intersection property and is not a JT. The cluster tree is transformed into
a JT through a message passing process, during which each agent communicates, to
each adjacent agent, its local variables as well as variables reachable from other adjacent
agents. The message passing thus propagates identities of variables well beyond the
agent initially associated with them.

For MSBN, MSCN and CDN frameworks, the JT-based organization is constructed
by a centralized coordinator agent [22,25], who has the knowledge of variables shared
by any pair of agents, but does not know any private variable. Hence, privacy of private
variables is ensured. However, shared variables and identities of non-bordering agents
are disclosed to the coordinator, and the corresponding types of privacy are compro-
mised. In this work, we develop a new distributed JT algorithm that respects all three
types of privacy.

3 Distributed JT Construction as MST

Consider a MAS consisting of a set A = {A0, ...,Aη−1} of η > 1 agents. Let V be the set
of env variables, and be decomposed into a collection of subenvs, Ω = {V0, ...,Vη−1},
such that ∪η−1

i=0 Vi =V . Agents in A are one-to-one mapped into subenvs in Ω . If Ai and
A j have shared variables, i.e., Vi ∩Vj �= /0, we refer to the set of shared variables, Ii j =
Vi∩Vj (i �= j), as their border. A JT-based agent organization is a cluster tree, where each
cluster is a subenv and each link is labeled by a border, such that running intersection
property holds. Fig. 1 (b) shows a JT organization, where the border between A1 and A2

is I12 = {y,z}.

Construct Privacy Preserving Hypertree Agent Organization as Distributed MST 203

In [22], it is observed that all private variables of a subenv in the above representation
can be congregated into a single private variable. If a JT can be constructed using the
congregated subenvs, by replacing the congregated private variable with the original
private variables, the new cluster tree is still a valid JT.

In this work, we go one step further and observe that the congregated private variable
is not needed. For each agent Ai, we denote the set Wi = ∪ j �=i Ii j as its boundary. We
refer to W = {W0, ...,Wη−1} as the boundary set of the MAS. Fig. 1 (c) illustrates agent
boundaries. The following Proposition establishes the fact that JT-based organization
can be investigated without reference to private variables, whose proof is straightfor-
ward.

Proposition 1. Let V be env of a MAS, Ω be its subenv decomposition,W be the bound-
ary set, and T be a JT with boundaries in W as clusters. Let T ′ be a cluster tree with
subenvs of Ω as clusters, such that it is isomorphic to T with each subenv cluster
mapped to the corresponding boundary cluster in T . Then T ′ is a JT.

Based on Prop. 1, we can construct a JT-based organization based on the boundary set.
Note that this task formulation on JT organization construction immediately guarantees
privacy of private variables, as they have been excluded from the specification of the
task.

Given the boundary set of an MAS, a JT may or may not exist. Figure 2 (a) shows a
boundary set whose elements cannot be organized into a JT.

x , A1 1

x , A3 3

4 4x , A

2 2x , A

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

x , A0 0

(c)

1
2

u,y

(b)

W , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1
u,y

w,u,y,z

v,w

W , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1

h,y,z

h,v
(a)

h,v

h,v,w
h,y,z

h,w,u,y,z

2

2

3

1

1

1

Fig. 2. (a) A boundary set that does not admit JT organization; (b) A boundary set that has a JT
organization; (c) Weighted graph defined from the boundary set in (b)

In this work, we assume that there exists a JT for the given boundary set, and we
focus on how to distributively construct a JT organization from the boundary set while
preserving agent privacy. In a related work [26], we consider how to identify the exis-
tence of a JT organization distributively given a boundary set without disclosing agent
privacy.

The task of distributed construction of JT-based agent organization can now be stated
as follows.

– A set A = {A0, ...,Aη−1} of agents is associated with the boundary set
W = {W0, ...,Wη−1}, such that a JT exists, with elements of W as its clusters.

– Agents Ai and A j know the identity of each other and can exchange messages, iff
they have a border Ii j =Wi ∩Wj �= /0.

204 Y. Xiang and K. Srinivasan

– Agent Ai knows only Wi =∪ j �=i Ii j, and nothing about variables in other boundaries
beyond Wi.

The task of agents is to compute a JT organization with boundaries as clusters, such that
each agent knows its adjacent agents in the JT, and the process does not disclose infor-
mation on agent boundaries beyond the initial knowledge state. To solve this problem,
we explore the relation between JT and maximum spanning tree (MST) as follows.

– From a boundary set W , define a weighted graphΨ . For each Wi ∈W , create a node
xi. Add a link 〈xi,x j〉, iff there is a border between Wi and Wj, and the weight of the
link is w(xi,x j) = |Ii j|.

– Let Ψ ′ be any MST of Ψ . Define a cluster tree T from Ψ ′, such that for each link
〈xi,x j〉 of Ψ ′, Wi and Wj are adjacent in T .

– Then T is a JT, iff a JT with elements of W as its clusters exists [8,22].

Fig. 2 (c) illustrates Ψ defined from a boundary set in (b). Note that the above formula-
tion of JT organization as a MST immediately guarantees privacy of shared variables,
since the input to MST computation contains only the number of shared variables be-
tween each pair of bordering agents, with other information about these variables ex-
cluded.

From the relation between JT and MST, the task of distributed construction of JT
organization can be cast as follows. Let the weighted graph Ψ be defined distribu-
tively, namely, each agent Ai is associated with node xi, and knows A j and w(xi,x j)
iff 〈xi,x j〉 ∈Ψ . Compute a MST Ψ ′ by passing messages only between adjacent agents
in Ψ , such that each agent knows its adjacent agent in Ψ ′, and the process does not
disclose information on agent identity and weight association beyond the initial agent
knowledge state.

4 Work Related to Distributed MST Construction

Before presenting our privacy preserving distributed MST algorithm, we review rele-
vant literature. Since minimum or maximum spanning trees differ only in the compari-
son operator (Min versus Max), without confusion, we refer to all of them by MST.

In the pioneering work by Gallager et al. [5], MST fragments (each initially made of
a single node) are combined into larger ones according to a level control, until a single
fragment is formed. It has a time complexity O(η log η). The basic algorithm assumes
distinct link weights, which generally does not hold in our application. To accommodate
nondistinct link weights, the modified algorithm either appends node identities to link
weights or identifies fragments by node identities. Since link weights and fragment
identifies are propagated through messages, node identities will be disclosed beyond
node adjacency.

Awerbuch [1] proposed a three-stage algorithm, which was later improved by [3],
with time complexity O(η). It starts with a counting stage to get η . Then the algorithm
in [5] is run to grow each fragment to an Ω(η/log η) size. A variant of [5] follows,
with a more accurate level updating to speed up computation. Non-distinct link weights

Construct Privacy Preserving Hypertree Agent Organization as Distributed MST 205

are handled using the same technique as [5], appending node identities to link weights.
Hence, the method suffers from the same node identity disclosure as [5].

An improved algorithm with time complexity O(d +η0.613 log ∗ η) is proposed in
[6], where d is diameter (maximum length of a simple path) of the weighted graph. It
first uses a variant of [5] to produce multiple fragments of small diameters, and then
combines them into a MST by a rooted operation. Its limitation on node identity disclo-
sure is identical to [5] and [1].

In [11], a two-part algorithm is developed. In the first part, a
√

η-dominating set
D of size at most

√η is computed, as well as a partition of the weighted graph into
fragments one per node in D. The second part combines these fragments into a MST
by the same rooted operation as [6]. Since the first part employs a simplified version of
[5], its limitation on node identity disclosure is identical to the above algorithms.

An approximate MST algorithm is presented in [9]. Due to the necessary and suffi-
cient condition between JT and MST, an approximate MST cannot yield a JT organiza-
tion, and hence the method is not applicable to our task.

Recently, an algorithm for computing a set of MSTs, one for each component of a
disconnected graph, was proposed [14]. As a parallel algorithm, access of the entire
graph by each processor is assumed, and hence it is applicable only when privacy is not
a concern at all.

In summary, existing work on distributed MST construction has largely ignored the
issue of node identity disclosure.

5 Distributed MST Construction with Privacy of Agent Identity

In this section, we present a new distributed algorithm for MST construction that does
not disclose node identity to non-adjacent nodes. In the context of JT organization con-
struction, this translates into non-disclosure of agent identity to non-bordering agents.
For this purpose of privacy preservation, we take a different approach than [5] and its
extensions [1,3,6,11]. Rather than growing multiple fragments simultaneously, we ex-
tend Prim’s algorithm [17] distributively and grow a MST through a rooted control. As
the result, our algorithm does not assume distinct link weights and needs not to append
node identities to link weights either. As will be shown below, our algorithm ensures
that no node identity is disclosed beyond adjacency.

Precisely stated, the task is as follows. Given a distributed representation of a con-
nected, weighted graph Ψ of η nodes, construct a MST T by distributed computation.
As each node is associated with an agent, without confusion, we refer to node and
agent interchangeably. Distributed Ψ representation means that each node has the ini-
tial knowledge about each adjacent node (called neighbor or nb) and the link weight.
It knows nothing about the existence of other nodes nor the links and weights between
them. For any node v and a nb x of v, the weight of link 〈v,x〉 is w(v,x).

The algorithm initializes T with an arbitrary node, referred to as the root and builds
T up as a directed, single-rooted tree in η −1 rounds. An outgoing link of T is a link of
Ψ with only one end in T . In each round, a best outgoing link 〈p,c〉 is selected, where
p is in T , and c is added to T . We refer to p as the tree-parent of c, and c as a tree-child
of p. For any node in T , we refer to its tree-parent or a tree-child as its tree-nb.

206 Y. Xiang and K. Srinivasan

In addition to the initial knowledge, each node v maintains the following local data
structure.

1. The state of v is indicated by variable state ∈ {OUT, IN,DONE}. Value OUT
means that v is not yet in T . IN means that v is in T , but not yet finished its compu-
tation. DONE means that v is in T and has finished its computation.

2. Knowledge of v on the state of each nb x is maintained by variable nbstate(x) ∈
{OUT, IN,DONE}.

3. The tree-parent of v in T is indicated by a pointer so named.
4. A best outgoing weight table (BOWT) is maintained. Each row is indexed by a nb

x of v, that may lead to outgoing links, and contains the best weight of these links
known to v, denoted by bw(x).

During MST computation, nbs of Ψ exchange four types of messages.

Announce Sender announces to each nb, that the former is in MST.
Expand A tree-parent instructs a tree-child to expand current MST, by finding a new

node to add.
Noti f y A tree-leaf notifies a nb that the latter is added to current MST.
Report A tree-child sends to its tree-parent, either to report its termination, or to report

the best outgoing weight via the tree-child, through an argument.

We assume that transmission of each message takes at most one time unit.
When the algorithm starts, every node v in Ψ runs Init to initialize local data struc-

ture.

Procedure 1 (Init)
1 state = OUT, tree-parent pointer = null;
2 for each nb x, nbstate(x) = OUT;
3 create BOWT with one row per nb;
4 for each row of BOWT indexed by x, bw(x) = w(v,x);

An arbitrary node is elected as the root. It starts the MST computation by executing
Start. It first adds itself to T , and then runs Expand to expand T .

Procedure 2 (Start)
1 state = IN;
2 send Announce message to each nb;
3 run Expand;

Proc. Expand can either be called (as in Start), or run in response to an Expand mes-
sage. The node selects a nb y that leads to a best outgoing link, adds y to T if y is OUT ,
otherwise asks y to expand T .

Procedure 3 (Expand)
1 select nb y = argmaxx bw(x) from BOWT table, breaking ties randomly;
2 if nbstate(y) = OUT,
3 send Noti f y message to y;
4 nbstate(y) = IN; record y as a tree-child;
5 else send Expand message to y; // y must be IN

Construct Privacy Preserving Hypertree Agent Organization as Distributed MST 207

When node v receives Noti f y message from nb p, it is in T . It runs Proc. 4 in response.
In the process, it announces its status in T to its nbs. At the end of the process, v replies
to p with a Report message, which contains one of two possible arguments, the state
value of v, or the best outgoing weight bow.

Procedure 4 (Response to Notify)
1 nbstate(p) = IN; point tree-parent pointer to p;
2 delete the row indexed by p from BOWT ;
3 state = IN;
4 for each nb x �= p, send Announce message to x;
5 run Inform;

A node v runs In f orm to send Report message to its tree-parent p.

Procedure 5 (Inform)
1 if no nb y with nbstate(y) = OUT

and each tree-child c has nbstate(c) = DONE,
2 state = DONE;
3 if v is not root, send p message Report(state = DONE);
4 else if v is not root,
5 compute maxbow = maxx bw(x) from BOWT ;
6 send p message Report(bow = maxbow);

When a node v receives Announce message from a nb x, it performs the following. Note
that root cannot receive Announce from its tree-child, but can receive from its non-child
tree-descendent.

Procedure 6 (Response to Announce)
1 nbstate(x) = IN; delete the row indexed by x from BOWT ;
2 if state �= OUT, run Inform;

When a tree-parent v receives Report from a tree-child c, it performs Proc. 7. The report
allows v to know whether c has terminated and, if not, to update its knowledge on the
best outgoing link weight through c.

Procedure 7 (Response to Report)
1 if message argument is (state = DONE),
2 nbstate(c) = DONE; delete the row indexed by c from BOWT ;
3 if no nb y with nbstate(y) = OUT

and each tree-child c has nbstate(c) = DONE,
4 state = DONE;
5 if v is not root, send tree-parent p message Report(state = DONE);
6 else return; // root termination
7 else if maxbow �= bw(c) in BOWT, // argument is (bow = maxbow)
8 bw(c) = maxbow;
9 if v is not root,
10 compute maxbow′ = maxx bw(x) from BOWT ;
11 send tree-parent p message Report(bow = maxbow′);
12 else if no pending Report messages, run Expand; // v is root

208 Y. Xiang and K. Srinivasan

When Proc. 7 returns from line 6 at root, the algorithm suite halts. Consider the example
in Fig. 2 (b). Suppose x0 is the root, whose BOWT at start is (x1 : 2; x2 : 1). It sends
Announce to x2 and Noti f y to x1. Node x1 removes x0 from its BOWT , sends Announce
to x2, x3 and x4, and Report(bow = 3) to x0. Based on the report, x0 revises its BOWT
to (x1 : 3; x2 : 1), and sends Expand to x1.

BOWT at x1 is (x2 : 3; x3 : 2; x4 : 1). Hence, x1 sends Noti f y to x2, which replies
with Report(bow = 1). Based on the report, x1 sends Report(bow = 2) to x0. After x0

has processed Announce from x2 and Report(bow = 2) from x1, its BOWT is (x1 : 2).
Hence, x0 sends Expand to x1, which in turn sends Noti f y to x3.

Eventually, x4 is notified by x3 and sets its state to DONE . When x2 receives Announce
from x4, it sets its state to DONE as well. Node x3 sets state = DONE when it receives
Report from x4, and x1 does so upon receiving Report from x3. In the end, x0 receives
Report from x1 and terminates the computation.

1 1

x , A3 3

4 4x , A

2 2x , A

x , A
�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

x , A0 0 u,y

(b)

W , A
W , A

W , A
W , A

W , A

0 0

2 2

4 4

3 3

1 1

h,v

h,v,w
h,y,z

h,w,u,y,z1
2

2

2

3

1

1

1

(a)

Fig. 3. (a) The MST (dashed links) from Fig. 2 (c); (b) The JT organization.

The resultant MST is shown in Fig. 3 (a) by dashed links, and the corresponding JT
organization is in (b). Throughout the computation, no agent identity is communicated.

6 Soundness and Complexity

We refer to the algorithm suite as DPMST, whose soundness is established below.

Proposition 2. Given a connected, weighted graph Ψ , DPMST computes a MST T of
Ψ that is specified distributively, such that each node knows its tree-nbs.

Proof: DPMST will compute a MST because it extends Prim’s algorithm distributively.
The recursive executions of Proc. 7 let the root know where an outgoing link with the
best weight is located, and recursive executions of Proc. 3 add the other end of the link
to T .

When a node v is added to T , it knows its notifier as its tree-parent, and its notifier
knows v as its tree-child. Hence, when DSMSTC halts, each node knows its tree-nbs in
T . �

We analyze the communication cost and time complexity below. Let d denote the di-
ameter of Ψ , e denote the number of links, and r denote the maximum degree of nodes.

Communication cost: Each node is added to T with at most d Noti f y/Expand mes-
sages: a subtotal of O(d η) messages. Each link of Ψ passes two Announce messages,

Construct Privacy Preserving Hypertree Agent Organization as Distributed MST 209

one for each end when it is added to T : a subtotal of O(e) messages. After a node is
added to T , Report messages are propagated to the root from the node (Proc. 4) as well
as its nbs (Proc. 6): O(r d) messages. This yields a subtotal of O(r d η) messages.
Hence, the total number of messages is O(r d η + e).

Time complexity: The O(d η) Noti f y/Expand messages are sequential, and take
O(d η) time. Announce messages by the same sender take O(r) time. The O(2e)
Announce messages take O(r η) time. The O(r d) Report messages due to one node
addition form r parallel sequences and take O(d) time. The O(r d η) Report messages
take O(d η) time. Hence, time complexity is O((d + r) η).

Agent privacy: By using the boundary set of a MAS, privacy of private variables
is preserved. By using the weighted graph defined from the boundary set, privacy of
shared variables is preserved. Since our distributed MST algorithm does not disclose
node identity, privacy of agent identity is preserved.

7 Conclusion

Our contribution is a general approach for JT organization construction based on MST,
and an algorithm suite for MST construction. Combination of our approach and algo-
rithm suite guarantees agent privacy on private variables, shared variables, as well as
agent identity. To the best of our knowledge, no existing JT-based MAS frameworks
enable agent privacy at such a degree, except a related work based on boundary set
elimination which we report in [26].

The method proposed here assumes that a JT organization exists for the given env de-
composition. Whether the condition (JT existence) holds is not dealt with in the current
work, and is detected distributively in [26].

Our distributed MST algorithm is efficient, but not as efficient as the most efficient
existing algorithms, although they do not allow preservation of agent identity. An open
question is whether it is possible for a distributed MST algorithm to be as efficient as
these algorithms while preserving agent identity.

Acknowledgement. We thank anonymous reviewers for their helpful comments. Fi-
nancial support through Discovery Grant from NSERC, Canada is acknowledged.

References

1. Awerbuch, B.: Proc. 19th ACM Symp. Theory of Computing, pp. 230–240 (1987)
2. Brito, I., Meseguer, P.: Cluster tree elimination for distributed constraint optimization with

quality guarantees. Fundamenta Informaticae 102(3-4), 263–286 (2010)
3. Faloutsos, M., Molle, M.: Optimal distributed algorithm for minimum spanning trees revis-

ited. In: Proc. 14th Annual ACM Symp. Principles of Distributed Computing, pp. 231–237
(1995)

4. Faltings, B., Leaute, T., Petcu, A.: Privacy guarantees through distributed constraint satisfac-
tion. In: Proc. IEEE/WIC/ACM Intelligent Agent Technology, pp. 350–358 (2008)

5. Gallager, R., Humblet, P., Spira, P.: A distributed algorithm for minimum-weight spanning
trees. ACM Trans. Programming Languages and Systems 5(1), 66–77 (1983)

210 Y. Xiang and K. Srinivasan

6. Garay, J., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for minimum-weight
spanning trees. SIAM J. Comput. 27(1), 302–316 (1998)

7. Gmytrasiewicz, P., Durfee, E.: Rational communication in multi-agent environments. Auto.
Agents and Multi-Agent Systems 4(3), 233–272 (2001)

8. Jensen, F.: Junction tree and decomposable hypergraphs. Tech. rep., JUDEX, Aalborg, Den-
mark (February 1988)

9. Khan, M., Pandurangan, G.: A fast distributed approximation algorithm for minimum span-
ning trees. Distributed Computing 20(6), 391–402 (2008)

10. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving games.
In: Proc. 17th Inter. Joint Conf. on Artificial Intelligence, pp. 1027–1034 (2001)

11. Kutten, S., Peleg, D.: Fast distributed construction of smallk-dominating sets and applica-
tions. J. Algorithms 28(1), 40–66 (1998)

12. Maestre, A., Bessiere, C.: Improving asynchronous backtracking for dealing with complex
local problems. In: Proc. 16th European Conf. on Artificial Intelligence, pp. 206–210 (2004)

13. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed constraint opti-
mization with quality guarantees. Artificial Intelligences 161(1-2), 149–180 (2005)

14. Nobari, S., Cao, T., Karras, P., Bressan, S.: Scalable parallel minimum spanning forest com-
putation. In: Proc. 17th ACM SIGPLAN Symp. Principles and Practice of Parallel Program-
ming, pp. 205–214 (2012)

15. Paskin, M., Guestrin, C., McFadden, J.: A robust architecture for distributed inference in
sensor networks. In: Proc. Information Processing in Sensor Networks, pp. 55–62 (2005)

16. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proc.
19th Inter. Joint Conf. on Artificial Intelligence, pp. 266–271 (2005)

17. Prim, R.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. (36),
1389–1401 (1957)

18. Silaghi, M., Abhyankar, A., Zanker, M., Bartak, R.: Desk-mates (stable matching) with pri-
vacy of preferences, and a new distributed CSP framework. In: Proc. Inter. Florida Artificial
Intelligence Research Society Conf., pp. 83–96 (2005)

19. Valtorta, M., Kim, Y., Vomlel, J.: Soft evidential update for probabilistic multiagent systems.
Int. J. Approximate Reasoning 29(1), 71–106 (2002)

20. Vinyals, M., Rodriguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic
programming DCOP algorithms via the generalized distributive law. J. Autonomous Agents
and Multi-Agent Systems 22(3), 439–464 (2010)

21. Xiang, Y.: A probabilistic framework for cooperative multi-agent distributed interpretation
and optimization of communication. Artificial Intelligence 87(1-2), 295–342 (1996)

22. Xiang, Y.: Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach.
Cambridge University Press, Cambridge (2002)

23. Xiang, Y., Chen, J., Deshmukht, A.: A decision-theoretic graphical model for collaborative
design on supply chains. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS
(LNAI), vol. 3060, pp. 355–369. Springer, Heidelberg (2004)

24. Xiang, Y., Hanshar, F.: Multiagent expedition with graphical models. Inter. J. Uncertainty,
Fuzziness and Knowledge-Based Systems 19(6), 939–976 (2011)

25. Xiang, Y., Mohamed, Y., Zhang, W.: Distributed constraint satisfaction with multiply sec-
tioned constraint networks. Accepted to appear in International J. Information and Decision
Sciences (2013)

26. Xiang, Y., Srinivasan, K.: Boundary set based existence recognition and construction of hy-
pertree agent organization. In: ZaÏane, O., Zilles, S. (eds.) AI 2013. LNCS (LNAI), vol. 7884,
Springer, Heidelberg (2013)

27. Xiang, Y., Zhang, W.: Multiagent constraint satisfaction with multiply sectioned constraint
networks. In: Kobti, Z., Wu, D. (eds.) Canadian AI 2007. LNCS (LNAI), vol. 4509,
pp. 228–240. Springer, Heidelberg (2007)

	Construction of Privacy Preserving Hypertree Agent Organization as Distributed Maximum Spanning Tree
	Introduction
	JT-Based Multiagent Organization and Agent Privacy
	Distributed JT Construction as MST
	Work Related to Distributed MST Construction
	Distributed MST Construction with Privacy of Agent Identity
	Soundness and Complexity
	Conclusion

