
Boundary Set Based Existence Recognition
and Construction of Hypertree Agent Organization

Yang Xiang and Kamala Srinivasan

School of Computer Science, University of Guelph, Canada

Abstract. Some of the essential tasks of a multiagent system (MAS) include
distributed probabilistic reasoning, constraint reasoning, and decision making.
Junction tree (JT) based agent organizations have been adopted by some MAS
frameworks for their advantages of efficient communication and sound inference.
In addition, JT organizations have the potential capacity to support a high degree
of agent privacy. This potential, however, has not been fully realized. We present
two necessary and sufficient conditions on the existence of JT organization given
a MAS. Following these conditions, we propose a new algorithm suite, based on
elimination in the so called boundary set of a MAS, that recognizes JT organiza-
tion existence and constructs one if exists, while guaranteeing agent privacy on
private variables, shared variables and agent identities.

1 Introduction

Some of the essential tasks of a multiagent system (MAS) include distributed proba-
bilistic reasoning, constraint reasoning, and decision making (decision theoretic). Ex-
isting frameworks include AEBN [8] and MSBN [10] for probabilistic reasoning, ABT
[4], ADOPT [5], DPOP [7], Action-GDL [9], DCTE [1], and MSCN [12] for constraint
reasoning, and RMM [2], MAID [3], and CDN [11] for decision making. Frameworks
such as AEBN and MAID do not assume specific agent organization. ABT assumes a
total order among agents. ADOPT and DPOPS use a pseudo-tree organization. MSBN,
MSCN, CDN, Action-GDL, and DCTE all use a junction tree (JT) organization (known
as hypertree in the first three frameworks), which is the focus of this work.

In JT-based frameworks, the application environment is represented by a set of vari-
ables, referred to as the env. The env is decomposed into a set of overlapping subenvs,
each being a subset of env. The subenvs are one-to-one mapped to agents of the MAS.
Subenvs (and hence agents) are organized into a JT. A JT is a tree where each node is
associated with a set of variables called a cluster. The tree is structured such that, the
intersection of any two clusters is contained in every cluster on the path between the
two (running intersection). In a JT agent organization, each cluster corresponds to a
subenv and its agent. The organization prescribes communication pathways: an agent
can send a message to another, iff they are adjacent in the JT.

JT-based agent organizations support several desirable properties. First, they allow
efficient communication. For agents to cooperate by utilizing information available lo-
cally at individual agents, it suffices to pass two messages along each link of the JT.
Hence, the time complexity of communication is linear in the number of agents. Second,

O. Zaı̈ane and S. Zilles (Eds.): Canadian AI 2013, LNAI 7884, pp. 187–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



188 Y. Xiang and K. Srinivasan

they support sound inference. Global consistency is guaranteed by local consistency,
e.g., probabilistic reasoning in MSBN [10] is exact, constraint reasoning in MSCN [12]
is complete, and decision making in CDN [11] is globally optimal.

Third, the above two properties are enabled while message contents involve only
shared variables (those in the intersection of subenvs). Hence, JT organizations have
the potential capacity to support a high degree of agent privacy. However, such potential
has not been fully realized in existing JT-based MAS frameworks.

In Action-GDL [9], the JT is built through a centralized mapping operation from
a pseudo-tree where each node is an env variable. The centralized mapping discloses
identities of all variables to the mapping agent. The JT in DCTE [1] is constructed
according to [6], where clusters (one per agent) of env variables are initially organized
into a tree that is generally not a JT. Variable identities are passed along the tree links to
transform the tree into a JT, and hence are disclosed beyond the agent initially associated
with them.

In MSBN [10], MSCN [12], and CDN [11] frameworks, the JT organization is con-
structed by a coordinator agent with knowledge of variables shared by agents. Since
coordinator knows nothing about private variables (those that are contained in a single
subenv), their privacy is ensured. However, shared variables and agent identities are
disclosed to the coordinator.

The contribution of this work is a new algorithm suite for JT organization based
on the so-called boundary-set (see below) of the MAS. Given the boundary-set of a
MAS, the algorithm first determines distributively whether a JT organization exists. If
it does, then a JT will be constructed. The entire process preserves agent privacy on
private variables, shared variables, and agent identities. To the best of our knowledge,
no known JT-based MAS frameworks provide the same degree of agent privacy, except
an alternative approach for distributed JT construction that we report in a related work
[13].

The next section defines the problem that we tackle. The subsequent section presents
a necessary and sufficient condition on the existence of JT organization. This insight
allows a classification of MAS subenv decompositions relative to JT organization ex-
istence. The next section gives another necessary and sufficient condition on JT orga-
nization existence, which leads to an agent privacy preserving algorithm suite for JT
organization existence recognition and construction, illustrated and then specified in
the following two sections.

2 Problem Definition

Consider a MAS populated by a set A = {A0, ...,Aη−1} of η > 1 agents. Let V be the set
of env variables, and be decomposed into a collection of subenvs, Ω = {V0, ...,Vη−1},

such that ∪η−1
i=0 Vi = V . Each Vi is associated with a unique agent Ai, and vice versa.

We refer to the set of shared variables, Ii j = Vi ∩Vj �= /0, between Ai and A j as their
border. For each agent Ai, we denote the set Wi = ∪ j �=i Ii j as its boundary, and we
refer to W = {W0, ...,Wη−1} as the boundary set of the MAS. Fig. 1 (a) shows a subenv
decomposition of a trivial env, with agent boundaries shown in (b). Ai knows A j and
can communicate with A j, iff they have a border. The message between them can only
involve variables included in their border.



Boundary Set Based Hypertree Organization Existence Recognition and Construction 189

(a)

g,h,y,z
e,f,v,w

i,j,v

a,b,u,y

c,d,w,u,y,z

V
V

V

V
V

0

1

2
3

4

W
W

W
W

W

(b)

0

1

2
3

4

u,y

w,u,y,z
y,z

v

v,w

g,h,y,z
e,f,v,w

i,j,v

a,b,u,y

c,d,w,u,y,z

0

1

2
3

4

V
V

V

V
V

u,w,y,z

v,w

v

uy

z w

(d)(c) (e)

Fig. 1. (a) Subenv decomposition. (b) Agent boundaries. (c) Boundary graph. (d) JT from (c). (e)
JT organization for (a).

The general task of JT agent organization is to construct a JT with subenvs as clusters
such that running intersection holds.

A variable x ∈V is private if x is contained in a unique subenv Vi. Agent privacy on
private variables is preserved, if no information on any private variable is disclosed to
other agents, including its existence, identity, domain (of possible values), associated
conditional or marginal probability distribution (in the case of probabilistic reasoning),
or constraint (in the cases of constraint reasoning and decision making), and observed
or assigned value.

A variable x ∈V is shared by Ai and A j, if x ∈ Ii j. Agent privacy on shared variables
is preserved, if no information on any shared variable is disclosed beyond agents who
share it.

An agent is known to another agent, iff they share a border. Privacy on agent iden-
tities is preserved, if for every agent, its identity is not disclosed to any non-bordering
agent.

The boundary set of a MAS can play an important role in privacy preserving con-
struction of JT organizations, as established by a proposition from [13].

Proposition 1. Let V be env of a MAS, Ω be its subenv decomposition,W be the bound-
ary set, and T be a JT with boundaries in W as clusters. Let T ′ be a cluster tree with
subenvs of Ω as clusters, such that it is isomorphic to T with each subenv cluster
mapped to the corresponding boundary cluster in T . Then T ′ is a JT.

Based on Prop. 1, we take the approach to construct a JT organization from the boundary
set W , rather than from the subenv decomposition Ω . This approach guarantees agent
privacy on private variables, because these variables are excluded from input of the task.

Given a boundary set, a JT made of its boundary clusters may or may not exist.
Hence, the problem we tackle in this work is stated as follows. Given the boundary set
of a MAS, determine whether a JT agent organization exists and, if so, construct a JT,



190 Y. Xiang and K. Srinivasan

such that agent privacy on private variables, shared variables, and agent identities are
preserved in the process.

3 Boundary Graph Based Condition on Hypertree Existence

Before the existence of JT organization can be determined algorithmically, we analyze
conditions of its existence, through an alternative representation of the boundary set.
Let W be the boundary set of a MAS. An undirected graph BG is the boundary graph
of the MAS, if its set of nodes is N = ∪η−1

i=0 Wi, and its links are connected so that each
Wi is complete (elements are pairwise connected).

Prop. 2 identifies a condition under which a JT can be constructed from a boundary
graph such that each JT cluster is a boundary. A set of nodes in a graph is a clique, if
they are maximally pairwise connected. Two clusters are comparable, if one is a subset
of the other.

Proposition 2. Let W be the boundary set of a MAS, and BG be its boundary graph,
such that

1. BG is chordal, and
2. for each clique C of BG, there exists Wi ∈W with C ⊆Wi.

Let T be a JT whose clusters are cliques of BG, and no two clusters in T are compara-
ble. Then for every cluster C of T , there exists a boundary Wi =C.

Proof: From subcondition 1, the JT T exists. We prove by contradiction. Suppose there
exists a cluster C in T such that C �=Wi for every Wi ∈W .

From subcondition 2, there exists Wi such that C ⊆Wi. Since C �=Wi, it follows that
C ⊂Wi. Because BG is a boundary graph, Wi is complete in BG. Therefore, there exists
a cluster Ci in T such that Wi ⊆ Ci. From C ⊂ Wi and Wi ⊆ Ci, we have C ⊂ Ci. That
is, T contains two comparable clusters: a contradiction. Hence, every cluster in T is a
boundary. �

Example 1. Fig. 1 (a) shows an env decomposition. The set of boundaries is shown in
(b). The BG is shown in (c), and it satisfies the two conditions. The JT from the BG is
shown in (d), where the two clusters are boundaries W1 and W3.

Utilizing Prop. 2, Theorem 1 establishes a necessary and sufficient condition for the
existence of JT organization.

Theorem 1. Let W be the boundary set of a MAS and BG be its boundary graph. A JT
agent organization exists, iff the following hold.

1. BG is chordal, and
2. for each clique C of BG, there exists Wi ∈W such that C ⊆Wi.



Boundary Set Based Hypertree Organization Existence Recognition and Construction 191

Proof: [Necessity] Suppose a JT H exists, whose clusters are subenvs. For each cluster
in H, remove its private variables. The resultant cluster tree T is still a JT, and its
corresponding undirected graph is BG. From T being a JT, it follows that BG is chordal.
Hence, subcondition 1 holds. The clusters of T are one-to-one mapped to boundaries of
agents, from which subcondition 2 follows.

[Sufficiency] Suppose both subconditions hold. We prove by construction.
Since BG is chordal, a JT T exists whose clusters are cliques of BG. Without losing

generality, assume that clusters of T are not comparable. By Prop. 2, every cluster in T
is a boundary. Hence, for every cluster C such that C =Wi for some i, we can associate
C with an agent Ai.

If not every agent is associated with a cluster yet, consider a remaining agent Ai

without being associated with any cluster of T yet. Since Wi is complete in BG, there
exists a cluster C in T such that Wi ⊆C. Add to T a new cluster Wi, make it adjacent to
cluster C, and associate the new cluster with Ai. Repeat this for each remaining agent,
until each agent is associated with a cluster in T .

Next, for each agent, add its private variables to its associated cluster in T . The resul-
tant T is a JT agent organization with each cluster being a subenv. �

Theorem 1 provides the following insight. As far as the existence of JT organization is
concerned, MAS subenv decompositions can be classified into three types.

Type 1 Boundary graphs are chordal, and their cliques are boundary contained.
Type 2 Boundary graphs are not chordal.
Type 3 Boundary graphs are chordal, but their cliques are not boundary contained.

Example 2. The boundary graph for the subenv decomposition in Fig. 1 (a) is shown
in (c). The subenv decomposition is type 1. The JT of the boundary graph is show in (d).
The two clusters are associated with A1 and A3. For each of the three remaining agents,
a cluster can be added to the JT. The JT organization is shown in (e).

Example 3. Fig. 2 (a) shows another subenv decomposition, with agent boundaries in
(b) and BG in (c). Since BG is not chordal, the subenv decomposition is type 2. By
Theorem 1, it has no JT organization.

h

z

v

w

y u
W

W

W
W

W

(a) (b)

g,h,y,z
e,f,v,w

a,b,u,y

c,d,w,u,y,z

V
V

V

V
V

0

1

2
3

4
h,i,j,v

(c)

0

1

2
3

4

u,y

w,u,y,z
h,y,z

h,v

v,w

Fig. 2. (a) Subenv decomposition. (b) Agent boundaries. (c) Boundary graph.

Example 4. For agent boundaries in Fig. 3 (a), the BG is shown in (b). It has two
cliques. Since one of them, {h,v,w}, is not contained in any boundary, the subenv de-
composition is type 3. By Theorem 1, it has no JT organization.



192 Y. Xiang and K. Srinivasan

z

h
v

w

y u

(a) (b)

W
W

W
W

W

4

u,y

h,w,u,y,z

v,w

h,v

h,y,z

1

3
2

0

Fig. 3. (a) Agent boundaries. (b) Boundary graph.

4 Boundary Set Based Condition of Hypertree Existence

First, we define an operation to eliminate a boundary from a boundary set W . When a
boundaryWi ∈W is eliminated from W relative to boundaryWj ∈W , where Wi∩Wj �= /0,
it yields a reduced boundary set W ′ = (W \ {Wi,Wj})∪{W ′

j}, where

W ′
j =

⋃

Wk∈W,k �=i,k �= j

(Wj ∩Wk).

That is, the set W ′ resultant from eliminating Wi relative to Wj is obtained by deleting
Wi and Wj from W , and replacing with W ′

j . The W ′
j is obtained by the union of bor-

ders of A j, except the border with Ai. In other words, W ′
j is the boundary Wj without

variables that A j uniquely shares with Ai. Consider the boundary set for Fig. 1 (b),
W = {W0, ...,W4}. After W0 is eliminated relative to W1, the reduced boundary set is
W ′ = {W ′

1,W2,W3,W4}, where W ′
1 = {w,y,z}.

Without confusion, we refer to each element of W ′ as a boundary, whether or not it
is identical to an element of the original boundary set. The elimination operation is well
defined on the reduced boundary set, and hence can be performed iteratively.

Example 5. For the boundary set of Fig. 1, elimination can be performed iteratively as
follows.

W = {W0 = {u,y},W1 = {w,u,y,z},W2 = {y,z},W3 = {v,w},W4 = {v}};

Eliminate {u,y} wrt {w,u,y,z} : W ′ = {{w,y,z},{y,z},{v,w},{v}};

Eliminate {v} wrt {v,w} : W ′ = {{w,y,z},{y,z},{w}};

Eliminate {w} wrt {w,y,z} : W ′ = {{y,z},{y,z}};

Eliminate {y,z} wrt {y,z} : W ′ = {{y,z}}.
Note that, each Wi eliminated relative to a Wj has been so chosen to satisfy Wi ⊆ Wj.
The significance of such a choice will be seen below.

Note also that each reduced boundary set W ′ (except the final singleton) is a well-
defined boundary set, in the sense that each variable is shared by at least two bound-
aries in W ′. Take W ′ = {{w,y,z},{y,z},{w}} for example, each of w, y, and z is shared
by two boundaries.



Boundary Set Based Hypertree Organization Existence Recognition and Construction 193

Next, we establish another necessary and sufficient condition on hypertree existence,
based on boundary elimination.

Theorem 2. A MAS with the boundary set W has a JT agent organization, iff W can
be eliminated iteratively into a singleton, such that each Wi eliminated relative to a Wj

satisfies Wi ⊆Wj.

Sketch of proof: For necessity, suppose a JT H exists. Remove private variables in each
cluster. The resultant cluster tree T is a JT, whose set of clusters is W . A leaf cluster
satisfying the condition can be found in T , and eliminated iteratively.

For sufficiency, suppose W can be eliminated into a singleton. Denote the sequence
of reduced boundary sets as W η ,W η−1, ...,W 2,W 1, where W η = W , W 1 is the final
singleton, and the superscript indicates the number of boundaries in the set. Boundaries
in each W x, for x = 2, ...,η , can be organized into a JT. �

5 Distributed Recognition of Hypertree Existence

The condition Wi ⊆Wj in Theorem 2 is equivalent to Wi = Ii j. Hence, Theorem 2 sug-
gests a privacy preserving, distributed computation to identify JT organization exis-
tence. Agents are self-eliminated one by one as long as possible. An agent Ai can be
eliminated if its boundary is equal to the border with another remaining agent A j. After
Ai is eliminated relative to A j, A j removes from its boundary the variables that it shares
uniquely with Ai. If all agents are eliminated except one, then a JT organization exists
for the MAS. Otherwise, the JT does not exist.

We assume that a token is passed between bordering agents, according to depth-
first-traversal. The first round of traversal starts at an arbitrary agent, who possesses
the token tok1. If an agent Ai who holds the token has its boundary equal to the border
with another agent A j, then Ai signifies to each bordering agent that it is eliminated, and
passes a new token tok2 to A j.

A j then starts the second round of traversal among remaining agents, using tok2. If
an agent starts a new round of traversal, and finds that it has no uneliminated bordering
agent, then it announces existence of a JT organization.

On the other hand, suppose an agent A j starts a new round of traversal, with at least
another uneliminated bordering agent. After the token has traversed every uneliminated
agent, and comes back to A j, if A j still has uneliminated bordering agents, then A j

announces non-existence of JT organization.

Example 6. Consider agents in Fig. 4 (a) with their boundaries shown in ovals, where
each link shows a bordering relation. Note that the subenv decomposition is type 1.

Suppose A0 starts first round with tok1. It announces its elimination and passes the
token to A1. In response, A1 reduces its boundary, as in (b), and starts second round
with tok2. It passes tok2 to A2. A2 announces its elimination and passes tok3 to A1. In
response, A1 reduces its boundary again, as in (c), and starts third round. It announces
its elimination and passes tok4 to A3. In response, A3 reduces its boundary, as in (d),
and starts fourth round. It announces its elimination and passes tok5 to A4. Finally, A4

announces existence of a JT organization.



194 Y. Xiang and K. Srinivasan

A 4

A

A

1

3v

v,w

w
A 4

A3

v
v

A
A

A
A

A

0

1

2
3

4

u,y

u,w,y,z
y,z

v

v,w

(a)

A

A
A

A

1

2
3

4

w,y,z
y,z

v

v,w

(b) (c) (d)

Fig. 4. Distributed recognition of JT organization with type 1 subenv decomposition

Example 7. Consider agents and their boundaries in Fig. 5 (a). Note that the subenv
decomposition is type 2.

h,y,z

h,v
(a)

u,y0

1

2

u,w,y,z

3

v,w

A

A

AA4

A

h,y,z

h,v
(b)

1

2

3

v,wA

AA4

A
w,y,z

Fig. 5. Recognition of non-existence of JT organization with type 2 subenv decomposition

Suppose A0 starts first round with tok1, announces its elimination, and passes tok2

to A1. A1 reduces its boundary, as in (b), starts second round, and passes tok2 to A2.
A2 passes tok2 to A4, who in turn passes tok2 to A3. A3 has no unvisited agent to pass
the token to, and returns tok2 to A4. A4 returns tok2 to A2, who in turn returns to A1.
Finally, A1 announces non-existence of JT organization.

Example 8. Consider agents and their boundaries in Fig. 6 (a). Note that the subenv
decomposition is type 3.

A

4A A

v,w

3

1

h,v

h,w

(c)

A

4A A

A

A

v,w

3

2

1

0 u,y

(a)
h,v

h,y,z
h,u,w,y,z

A

4A A

A v,w

3

2

1

(b)
h,v

h,y,z
h,w,y,z

Fig. 6. Recognition of non-existence of JT organization with type 3 subenv decomposition

Suppose A0 starts first round with tok1, and passes tok2 to A1. A1 reduces its bound-
ary, as in (b), starts second round, and passes tok2 to A2. A2 announces its elimination
and passes tok3 to A1. A1 further reduces its boundary, as in (c), starts third round,



Boundary Set Based Hypertree Organization Existence Recognition and Construction 195

and passes tok3 to A3. A3 passes tok3 to A4. Eventually, tok3 is returned to A1, who
announces non-existence of JT organization.

Note that during the traversal, although the active boundary for a remaining agent may
be reduced, the border between any pair of agents never changes.

6 Algorithm for Hypertree Existence Recognition and
Construction

Next, we specify a distributed algorithm suite, that agents execute to implement the
computation described intuitively in the previous section. Each agent’s activities are
driven by responding to the following messages.

– A StartNewDFT (tok) request that calls the receiver to start a new round of depth-
first-traversal with the given token tok;

– An Eliminated notification sent by an agent who has been self-eliminated;
– A DFT (tok) request that calls the receiver to perform depth-first-traversal with the

given token tok;
– A Report message sent by an agent who has been called to perform DFT (tok),

signifying either the called agent has been visited in the current round, or it has
completed DFT and now backtracks to the caller.

We refer to the receiving agent of a message by Ai, who will act in response, and refer to
the message sender by Ac. Every agent performs Init to initialize local data. Flag state∈
{IN,OUT} indicates whether Ai has been eliminated. Flag nbsta(Ak) ∈ {IN,OUT}
indicates the same for a bordering agent. Variable curtok keeps a token value after it
has visited Ai, and visited(Ak) indicates whether the token has visited the bordering
agent. Yi maintains the active boundary of Ai.

Procedure 1 (Init)
1 state = IN; parent = null;
2 initialize current token to curtok = null;
3 set active boundary Yi =Wi;
4 for each bordering agent Ak,
5 nbsta(Ak) = IN;
6 visited(Ak) = f alse;

At the start of each round of traversal, a remaining agent will be be messaged to
StartNewDFT . In the first round, an arbitrary leader agent messages itself. Agent Ai

being messaged does the following.

Procedure 2 (StartNewDFT(tok))
1 if Ac is another agent,
2 nbsta(Ac) = OUT ;
3 if there exists no A j with nbsta(A j) = IN,
4 announce “hypertree exists”;



196 Y. Xiang and K. Srinivasan

5 return;
6 Yi = /0;
7 for each bordering Ak where nbsta(Ak) = IN,
8 Yi = Yi ∪ Iik;
9 curtok = tok; parent = null;
10 run DFT; // Ai has IN bordering agents

When DFT below is run from StartNewDFT (tok), Ai has parent = null, and have at
least one remaining bordering agent A j. If Ai can be eliminated relative to A j, it will
message A j to StartNewDFT . Otherwise, it will send message DFT (tok) to A j.

When DFT is run from DFT (tok) (see below), Ai has parent pointing to Ac, and may
have no unvisited, remaining bordering agent other than Ac. If Ai cannot be eliminated
relative to Ac, it must Report to Ac.

Procedure 3 (DFT)
1 if there exists A j with nbsta(A j) = IN and Yi = Ii j, // self-eliminate
2 state = OUT ;
3 for each Ak �= A j where nbsta(Ak) = IN, send Eliminated to Ak;
4 send StartNewDFT (curtok+ 1) to A j;
5 else // no IN agent satisfies Yi = Ii j

6 for each Ak �= parent where nbsta(Ak) = IN, set visited(Ak) = f alse;
7 if there exists Ak �= parent where nbsta(Ak) = IN and visited(Ak) = f alse,
8 send Ak message DFT (curtok);
9 else send Report to parent;

When a remaining agent Ai receives from Ac the Eliminated message, it responds
by setting its nbsta(Ac) = OUT . When a remaining agent Ai receives from Ac the
DFT (tok) message, it performs the following.

Procedure 4 (DFT(tok))
1 if curtok = tok, // visited
2 send Report to Ac;
3 else // Ai has not seen tok before and has IN bordering agent other than Ac

4 curtok = tok;
5 parent = Ac; visited(Ac) = true;
6 run DFT;

After Ai has messaged A j with DFT (tok), it may receive a Report from A j. In response,
Ai performs the following.

Procedure 5 (Respond to Report)
1 visited(A j) = true;
2 if there exists Ak �= parent such that nbsta(Ak) = IN and visited(Ak) = f alse,
3 select Ak to send message DFT (curtok) to it;
4 else // no unvisited bordering agent
5 if parent = null, announce “no hypertree exists”; // DFT starter
6 else send Report to parent;



Boundary Set Based Hypertree Organization Existence Recognition and Construction 197

The algorithm suite, we refer to as HTBS, terminates when a remaining agent an-
nounces “hypertree exists” or otherwise. Its soundness and completeness is established
below, which follows from Theorem 2.

Corollary 1. A MAS with the boundary set W has a JT agent organization, iff HTBS
terminates with announcement “hypertree exists”. Otherwise, HTBS terminates with
announcement “no hypertree exists”.

An important product of HTBS is the JT organization emerging upon positive an-
nouncement. For every agent Ai self-eliminated relative to A j, Ai is the sender of
StartNewDFT message and A j is the receiver. This relation implies that they are adja-
cent in the JT organization. Readers are encouraged to verify this by comparing Exam-
ple 6 with Fig. 1 (e). This result is summarized below, whose proof is omitted due to
space limitation.

Theorem 3. If a MAS with the boundary set W has a JT agent organization, then agent
adjacency in the JT is defined by StartNewDFT sender-receiver relation during HTBS.

Let e be the number of pairs of bordering agents. In each round of HTBS, at most O(e)
messages are passed. HTBS halts in at most O(η) rounds. Hence, its time complexity
is O(e η).

Since HTBS is based on boundary set, agent privacy on private variables is guaran-
teed. Since HTBS messages contains no information on shared variables, agent privacy
on shared variables is guaranteed. Since HTBS messages are passed between border-
ing agents only, and the message argument is a token only, privacy on agent identity is
guaranteed.

7 Conclusion

The contributions of this research include the following. We proved two necessary and
sufficient conditions for the existence of a JT organization given a MAS subenv decom-
position. One of them provides insight and classification of subenv decompositions, and
the other suggests a distributed reorganization of JT organization existence. Based on
the second condition, we have presented an algorithm suite that recognize JT organi-
zation existence and construct it if exists. The algorithm guarantees agent privacy on
private variables, shared variables, as well as agent identity. To the best of our knowl-
edge, no existing JT-based MAS frameworks provide the same degree of agent privacy,
except a related work based on distributed maximum spanning tree construction which
we report in [13].

Our algorithm identifies correctly when no JT organization exists for a given subenv
decomposition. Further research is needed for distributed revision of the subenv de-
composition under the condition where no JT exists, while preserving agent privacy as
much as possible.

Acknowledgement. We thank anonymous reviewers for their helpful comments. Fi-
nancial support through Discovery Grant from NSERC, Canada is acknowledged.



198 Y. Xiang and K. Srinivasan

References

1. Brito, I., Meseguer, P.: Cluster tree elimination for distributed constraint optimization with
quality guarantees. Fundamenta Informaticae 102(3-4), 263–286 (2010)

2. Gmytrasiewicz, P., Durfee, E.: Rational communication in multi-agent environments. Auto.
Agents and Multi-Agent Systems 4(3), 233–272 (2001)

3. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving games.
In: Proc. 17th Inter. Joint Conf. on Artificial Intelligence, pp. 1027–1034 (2001)

4. Maestre, A., Bessiere, C.: Improving asynchronous backtracking for dealing with complex
local problems. In: Proc. 16th European Conf. on Artificial Intelligence, pp. 206–210 (2004)

5. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed constraint opti-
mization with quality guarantees. Artificial Intelligences 161(1-2), 149–180 (2005)

6. Paskin, M., Guestrin, C., McFadden, J.: A robust architecture for distributed inference in
sensor networks. In: Proc. Information Processing in Sensor Networks, pp. 55–62 (2005)

7. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proc.
19th Inter. Joint Conf. on Artificial Intelligence, pp. 266–271 (2005)

8. Valtorta, M., Kim, Y., Vomlel, J.: Soft evidential update for probabilistic multiagent systems.
Int. J. Approximate Reasoning 29(1), 71–106 (2002)

9. Vinyals, M., Rodriguez-Aguilar, J., Cerquides, J.: Constructing a unifying theory of dynamic
programming DCOP algorithms via the generalized distributive law. J. Autonomous Agents
and Multi-Agent Systems 22(3), 439–464 (2010)

10. Xiang, Y.: Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach.
Cambridge University Press, Cambridge (2002)

11. Xiang, Y., Hanshar, F.: Multiagent expedition with graphical models. Inter. J. Uncertainty,
Fuzziness and Knowledge-Based Systems 19(6), 939–976 (2011)

12. Xiang, Y., Mohamed, Y., Zhang, W.: Distributed constraint satisfaction with multiply sec-
tioned constraint networks. accepted to appear in International J. Information and Decision
Sciences (2013)

13. Xiang, Y., Srinivasan, K.: Construction of privacy preserving hypertree agent organization
as distributed maximum spanning tree. In: ZaÏane, O., Zilles, S. (eds.) AI 2013. LNCS,
vol. 7884, Springer, Heidelberg (2013)


	Boundary Set Based Existence Recognition and Construction of Hypertree Agent Organization
	Introduction
	Problem Definition
	Boundary Graph Based Condition on Hypertree Existence
	Boundary Set Based Condition of Hypertree Existence
	Distributed Recognition of Hypertree Existence
	Algorithm for Hypertree Existence Recognition and Construction
	Conclusion


