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Abstract. Non-Impeding Noisy-AND (NIN-AND) Tree (NAT) models offer a
highly expressive approximate representation for significantly reducing the space
of Bayesian Nets (BNs). They can also significantly improve efficiency of BN in-
ference, as shown for binary NAT models. To enable these advantages for general
BNs, advancements on three technical challenges are made in this work. We over-
come the limitation of well-defined Pairwise Causal Interaction (PCI) bits and
present a flexible PCI pattern extraction from general target Conditional Proba-
bility Tables (CPTs). We extend parameter estimation for binary NAT models to
constrained gradient descent for compressing target CPTs into multi-valued NAT
models. The effectiveness of the compression is demonstrated experimentally.
A novel framework is also developed for PCI pattern extraction when persistent
leaky causes exist.

1 Introduction

A discrete BN quantifies causal strength between each effect and its n causes by a
CPT whose number of parameters is exponential in n. Common Causal Indepen-
dence Models (CIMs), e.g., noisy-OR [4], reduce the number to being linear in n,
but are limited in expressiveness. As members of CIM family, NAT models [9, 8,
12, 11] express both reinforcing and undermining as well as their recursive mix-
ture using only a linear number of parameters. Thus, NAT models offer a highly
expressive approximation for significantly reducing the space of BNs.
CIMs are not directly operable by common BN inference algorithms, e.g., the
cluster tree method [1]. Several techniques exist to overcome the difficulty [14, 2,
6, 5]. By applying multiplicative factorization to binary NAT models and compil-
ing NAT modeled BNs for lazy propagation [3], it has been shown that efficiency
of exact inference with BNs can also be improved significantly [8].
The above efficiency gain was shown with binary NAT models. However, binary
NAT models are not sufficiently general. The ultimate goal of this research is to
achieve similar efficiency improvement for inference in general BNs compressed
into multi-valued NAT models [9]. Advancing from binary to multi-valued NAT
models encounters several challenges. In this work, we investigate the following.
To gain efficiency with both space and inference time through NAT modeling,
each (target) CPT in BNs is approximated (compressed) into a NAT model. The
first step is to find a small set of candidate NAT structures to focus subsequent
parameter search. A NAT can be uniquely identified by a function that specifies
interactions between each pair of causes, termed a PCI pattern [10]. Therefore,
we extract a PCI pattern from the target CPT, which yields the candidate NATs.
Since a target CPT is generally not a NAT model, how to extract a PCI pattern
that provides good approximation of its causal interaction structure is a challenge.
The first contribution of this work is a scheme that meets this challenge.
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Once the candidate NATs are obtained, probability parameters of corresponding
NAT models must be assessed. The second contribution of this work is to extend
the framework for doing so with binary NAT models to multi-valued NAT mod-
els. We present a constrained gradient descent as the key component of the ex-
tension. Although the general idea of constrained gradient descent already exists,
this work investigates specific constraints for compressing multi-valued CPTs.
CIMs allow both explicit causes and implicit causes, termed leaky causes. Leaky
causes may be persistent or non-persistent. We analyze implications of both types
of leaky causes to NAT compression of CPTs. We show that persistent leaky
causes raise another challenge. The third contribution of this work is a framework
for PCI pattern extraction with persistent leaky causes.
Sec. 2 briefly introduces the background. Contribution on PCI pattern extraction
from general target CPTs is presented in Sec. 3. Constrained gradient descent
for compressing multi-valued CPTs is covered in Sec. 4. Their effectiveness is
shown through experimental study in Sec. 5. Contribution on PCI extraction with
persistent leaky causes is presented in Sec. 6.

2 Background

Consider an effect e and the set of all causes C = {c1, ...,cn} that are multi-valued
and graded. That is, e has domain De = {e0, ...,eη} (η ≥ 1), where e0 is inactive,
e1, , ...,eη are active, and a higher index signifies higher intensity. The domain of
ci is Di = {c0

i , ...,c
mi
i } (mi > 0). An active value may be written as e+ or c+

i .
A causal event is a success or failure depending on whether e is rendered active
at certain intensity, is single-causal or multi-causal depending on the number of
active causes, and is simple or congregatedependingon the range of effect values.
P(ek← c j

i ) = P(ek|c j
i ,c

0
z : ∀z 6= i) ( j > 0) is the probability of a simple single-

causal success.P(e≥ ek← c j1
1 , ...,c

jq
q ) = P(e≥ ek|c j1

1 , ...,c
jq
q ,c0

z : cz ∈C\X) ( j >
0) is the probability of a congregate multi-causal success, where X = {c1, ...,cq}
(q > 1). It is also denoted P(e≥ ek← x+).
A NAT consists of two types of NIN-AND gates, each over disjoint sets of causes
W1, ...,Wq . An input event of a direct gate is e≥ ek← w+

i and the output event is
e≥ ek← w+

1 , ...,w+
q . An input of a dual gate is e < ek← w+

i and the output event

is e < ek← w+
1 , ...,w+

q . Probability of the output event of a gate is the product of
probabilities of its input events. Interactions among causes may be reinforcing or
undermining.

Definition 1 Let ek be an active effect value, R = {W1,W2, ...} be a partition of a
set X ⊆C of causes, R′ ⊂ R, and Y =∪Wi∈R′Wi. Sets of causes in R reinforce each
other relative to ek, iff ∀R′ P(e≥ ek← y+)≤ P(e≥ ek← x+). They undermine

each other iff ∀R′ P(e≥ ek← y+) > P(e≥ ek← x+).

A direct gate models undermining and a dual gate models reinforcing. A NAT
organizes multiple gates into a tree and expresses mixture of reinforcing and un-
dermining recursively. A NAT specifies interaction between each pair of ci and c j ,
denoted by PCI bit pci(ci,c j) ∈ {u,r}with u for undermining. The collection of
PCI bits is the PCI pattern of the NAT. A NAT can be uniquely identified by PCI
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pattern [12]. Given a NAT and probabilities of input events, called single-causals,
the probability of its output event can be obtained. From the single-causals and
all derivable NATs [7], the CPT P(e|C) is uniquely defined [9].

3 Extracting PCI Patterns from General CPTs

To compress a target CPT over e and C into a NAT model, we need to determine a
NAT over C. This can be achieved by searching for a PCI pattern relative to each
ek and determine the NAT by the best pattern over all k. By Def. 1, given ci and
c j, pci(ci,c j) is well defined relative to ek when one of the following conditions
holds for all active values of ci and c j .

pci(ci,c j) =
{

u : P(e≥ ek ← c+
i ,c+

j ) < min(P(e≥ ek ← c+
i ),P(e≥ ek ← c+

j )),
r : P(e≥ ek ← c+

i ,c+
j ) ≥ max(P(e≥ ek ← c+

i ),P(e≥ ek ← c+
j )). (1)

As shown experimentally (Sec. 5.1), in a general CPT, neither condition may
hold for a significant number of cause pairs. For such a CPT, very few PCI bits
are well defined, resulting in a partial PCI pattern. A partial pattern of a few
bits is compatible with a large candidate set of NATs, making subsequent search
costly. Hence, a best pattern has the most bits. Below, we develop a scheme to
overcome the difficulty where the best PCI pattern has too few well defined bits.
We aim to extract a partial PCI pattern that approximates causal interactions in
a target CPT. For a partial pattern, PCI bit of a given cause pair may be u, r, or
undefined. For uniformity, we expand the domain of a PCI bit into {u,r,nul}with
nul for unclassified.
For a well-defined bit, one condition in Eqn. (1) must hold for all active cause
value pairs. Consider interaction for one value pair first. To indicate the ek value,
we denote the interaction as pci(ek,c+

i ,c+
j )∈ {u,r,nul}. To simplify notation, we

denote P(e≥ ek← c+
i ),P(e≥ ek← c+

j ), and P(e≥ ek← c+
i ,c+

j ) as p,q, and t ,
respectively. A well-defined interaction is extracted by the following rule.

Rule 1 (Well-defined) If t 6∈ [min(p,q),max(p,q)], then

pci(ek,c+
i ,c+

j ) =
{

u : t < min(p,q),
r : t > max(p,q).

A well-defined interaction satisfies t 6∈ [min(p,q),max(p,q)]. Rules below relax
this requirement. When t ∈ [min(p,q),max(p,q)], pci(ek,c+

i ,c+
j ) is deemed nul

only if |p−q| is too small, e.g., less than a threshold τ0 = 0.2.

Rule 2 (Tight enclosure) If t ∈ [min(p,q),max(p,q)] and |p−q| ≤ τ0, then
pci(ek,c+

i ,c+
j ) = nul, where τ0 ∈ (0,1) is a given threshold.

Rational of the rule is the following. Under tight enclosure, both u and r may well
approximate interaction between ci and c j . Hence, NATs compatible with either
should be included in the candidate set, which is what value nul entails.
We refer to condition t ∈ [min(p,q),max(p,q)] and |p− q| > τ0 as loose enclo-

sure, where we compute the ratio R = t−0.5(p+q)
|p−q| . Ratio R ∈ [−0.5,0.5] and the
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bounds are reached when t equals p or q. When R < 0, t is closer to min(p,q).
When R > 0, t is closer to max(p,q). When R = 0, t is equally distant from p and
q. We refer to R as normalized deviation and specify the interaction as follows,
where a possible value for τ1 is 0.4. Its rational follows from the above analysis.

Rule 3 (Sided loose enclosure) Given thresholds τ0,τ1 ∈ (0,1), if t ∈ [min(p,q),
max(p,q)] and |p−q|> τ0, then

pci(ek,c+
i ,c+

j ) =





nul : |R| ≤ τ1,
u : R < −τ1 ,
r : R > τ1.

Given ek, the above determines pci(ek,c+
i ,c+

j ) for a pair c+
i and c+

j . If each cause

has m + 1 values, there are m2 pairs of active values for ci and c j . The next rule
determines the PCI bit pci(ek,ci,c j) by majority of value based interactions. A
possible value for threshold τ2 may be 0.51.

Rule 4 (Majority Value Pairs) Let M be the number of active cause value pairs
(c+

i ,c+
j ), Mu be the number of interactions where pci(ek,c+

i ,c+
j ) = u, and Mr

be the number of interactions where pci(ek,c+
i ,c+

j ) = r. For a given threshold
τ2 ∈ (0.5,1),

pci(ek,ci,c j) =





u : Mu > τ2 M,
r : Mr > τ2 M,

nul : Otherwise.

After PCI bit pci(ek,ci,c j) is extracted for each pair (ci,c j), a set pci(ek) of PCI
bits relative to ek is defined. From η such sets, the next rule selects the best as the
PCI pattern, where a possible value for threshold τ3 may be 0.8.

Rule 5 (Partial PCI pattern) Let n be the number of causes of e, the set of PCI
bits relative to ek (k > 0) be pci(ek)= {pci(ek,ci,c j) | ∀i, j ci 6= c j}, and Nk be the
number of PCI bits in pci(ek) such that pci(ek,ci,c j) 6= nul. Let Nx = maxk Nk
and τ3 ∈ (0.5,1) be a given threshold.
Then select pci(ex) as the partial PCI pattern if Nx > τ3 C(n,2).

If Nx ≤ τ3 C(n,2), the above rule is inconclusive. We require the search procedure
to relax thresholds τ0 through τ3 until a PCI pattern is selected. Effectiveness of
the procedure for reducing NAT space while extracting good NAT candidates is
shown in Sec. 5.2.

4 Parameter Estimation with Constrained Descent

Once a partial PCI pattern is extracted, the set of candidate NATs compatible with
the pattern can be determined [12]. For each candidate NAT, single-causals can be
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estimated from target CPT through gradient descent. From resultant NAT models,
the best NAT model can be selected. These steps parallel those for compression
of binary CPTs into binary NAT models [11]. In this section, we extend gradient
descent to compression of multi-valued CPTs.
A NAT and a set of single-causals define a NAT model M. We measure similarity
of a target CPT PT and the CPT PM of M by Kullback−Leibler divergence,

KL(PT ,PM) = ∑
i

PT (i)log
PT (i)
PM(i)

,

where i indexes probabilities in PT and PM . Gradient descent estimates the set of
single-causals of M such that KL(PT ,PM) is minimized. In experimental study

(Sec. 5), average Euclidean distance ED(PT ,PM) =
√

1
K ∑K

i=1(PT (i)−PM(i))2 is
also obtained, where K counts parameters in PT .
During descent, the point descending the multi-dimensional surface is a vector of
single-causals. For a binary NAT model with n causes, the vector has n parameters
and each can be specified independently. For multi-valued NAT models, where
|De| = η + 1 and |Di| = m + 1 for i = 1, ...,n, the descent point is a ηmn vector.
Each parameter is a P(e+← c+

i ). Unlike the binary case, the ηmn parameters are
not independent. We consider below constraints that they must observe during
descent.
First, each parameter P(e+← c+

i ) > 0. That is, each parameter is lower bounded
by 0, but cannot reach the bound since otherwise c+

i no longer causes e+.
Second, in the binary case, each parameter is upper bounded by 1, but can-
not reach the bound since otherwise ci is no longer an uncertain cause. In the
multi-valued case, this constraint is replaced by a more strict alternative. For
each c+

i , ∑η
j=1 P(e j ← c+

i ) < 1 must hold. If violated, the resultant parameters

P(e1← c+
i ), ...,P(eη← c+

i ) will not be valid single-causals of an uncertain cause.
This amounts to mn constraints, each governing η parameters. To satisfy these
constraints, we extend gradient descent for binary NAT models below.
At the start of each round of descent, each group of η single-causals under the
same constraint are initialized together as follows. Generate η +1 random num-
bers in the range [δ ,1− δ ], where δ > 0 is a small real. Let S be their sum and
0 < γ < 1 be a real close to 1. Drop one number arbitrarily, multiply the remain-
ing η numbers by γ/S, and assign results as initial single-causals. Proposition 1
summarizes properties of the initialization, whose proof is omitted due to space.

Proposition 1 Let P(e1 ← c+
i ), ...,P(eη ← c+

i ) be initial values of parameters
with the same active cause value c+

i . The following hold.
1. For each parameter, P(e j← c+

i )≥ δ , j = 1, ...,η .
2. For the subset of parameters, ∑η

k=1 P(ek← c+
i )≤ γ .

Each step of gradient descent updates the ηmn parameters in sequence. To ensure
that both conditions of Proposition 1 continue to hold, we constrain descent as
follows. After each P(e j← c+

i ) is updated, check if P(e j← c+
i )≥ δ . If not, set

P(e j← c+
i ) = δ and stop P(e j← c+

i ) from further descent. Otherwise, check if
S = ∑η

k=1 P(ek← c+
i ) ≤ γ holds. If not, set P(e j ← c+

i ) to P(e j ← c+
i )+ γ − S

and stop P(e j← c+
i ) from further descent. If both tests succeed, commit to the

updated value of P(e j ← c+
i ) and allow it to continue descent. Proposition 2

summarizes properties of the method, whose proof is omitted due to space.
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Proposition 2 Let P(e1← c+
i ), ...,P(eη ← c+

i ) be current values of a subset of
parameters with the same active cause value c+

i , such that the following hold.
1. For each parameter, P(e j← c+

i )≥ δ , j = 1, ...,η .
2. For the subset of parameters, ∑η

k=1 P(ek← c+
i )≤ γ .

After each P(e j← c+
i ) is updated during descent, the above conditions still hold.

By Proposition 1, each round of descent starts with valid single-causals. By
Proposition 2, for each step of descent, after each parameter is updated, the en-
tire set of single-causals is still valid. Hence, the constrained gradient descent
terminates with valid single-causals.

5 Experimental Results

5.1 Necessity of Flexible PCI Extraction

This experiment reveals difference between general and NAT CPTs and need
for flexible PCI extraction. Two batches of CPTs are simulated each over n = 5
causes with all variable domain sizes being k = 4. The 1st batch consists of 100
random CPTs and the 2nd 100 NAT CPTs (of randomly selected NATs and single-
causals).
Given a target CPT, for each pair of causes, Eqn. (1) is applied relative to each
of e1, e2, and e3. With n = 5, there are C(5,2) = 10 cause pairs. For each pair,
there are 3∗3 = 9 active value pairs. For each pair, the PCI bit is well-defined if
and only if one condition of Eqn. (1) holds for all 9 value pairs. A target CPT has
between 0 and 10 well-defined PCI bits.
In the 1st batch, 97 CPTs have 0 well-defined PCI bit extracted. For each of the 3
remaining CPTs, one well-defined PCI bit is extracted relative to e1, one relative
to e2, and one relative to e3. Hence, the rate of well-defined PCI bits is 0.003 for
each of e1, e2, and e3. In the 2nd batch, 10 well-defined PCI bits are extracted
from each CPT. This shows that general CPTs and NAT CPTs differ significantly
and the flexible PCI pattern extraction presented in Sec. 3 is necessary.

5.2 Performance of Flexible PCI Extraction and Descent Search

This experiment examines compression error and efficiency gain from the flexi-
ble PCI extraction of Sec. 3, as well as the effectiveness of constrained gradient
descent of Sec. 4. A 3rd batch of 100 random CPTs with n = 4 and k ≤ 4 are
generated. Each CPT is compressed by flexible PCI extraction and constrained
descent, referred to as NAT-Com. It is also compressed by descent search exhaus-
tively (hence optimally) for each of 52 NATs of n = 4, referred to as NAT-Opt.
The choice n = 4 is made as NAT-Opt is much more costly for n = 5 with a total
of 472 NATs.
Table 1 compares their performance, where ED refers to ED(PT ,PM), KL refers
to KL(PT ,PM), RT refers to Runtime in seconds, and SR refers to Space Re-
duction. SR is the ratio of numbers of independent parameters between target
CPT and NAT CPT. For instance, if n = 4 and k = 3 for all variables, the ratio
is (35− 1)/(3 ∗ 3∗ 4)= 6.75. SR and ED of NAT-Opt show that NAT compres-
sion by constrained descent is effective with significant space reduction (14.67)
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Table 1. Performance summary of NAT-Com and NAT-Opt

NAT-Com NAT-Opt
Mean Stdev Mean Stdev

ED 0.204 0.043 0.189 0.036
KL 22.189 32.590 17.287 20.822

NAT-Com NAT-Opt
Mean Stdev Mean Stdev

SR 14.670 6.908 14.670 6.908
RT 4.456 3.849 41.258 29.420

while incurring reasonable error (0.189 ED). NAT-Com has 8% larger ED (0.204)
(same space reduction), but is 9 times faster. This shows that flexible PCI extrac-
tion trims NAT space significantly while retaining good NAT candidates. This
efficiency gain is expected to grow exponentially with n as will be shown below.

5.3 Comparison between NAT and Noisy-MAX Compression

This experiment compares effectiveness of NAT compressionwith the well-known
noisy-MAX as a baseline [13]. A 4th batch of 100 random CPTs with n = 5 and
k ≤ 4 and a 5th batch of 100 random CPTs with n = 6 and k ≤ 4 are generated
and are processed together with the 3rd batch (n = 4 and k ≤ 4). Each CPT is
compressed by NAT-Com, as well as by NMAX-Com where each target CPT is
compressed into a noisy-MAX model.
Table 2 compares their performance. From the SR row, as n grows, space reduc-
tion by both method grows significantly (from 14.67 to 89.96). Since NAT-Com
searches through multiple NATs while NMAX-Com processes a single causal
model, NMAX-Com is about 10 times faster.

Table 2. Performance summary of NAT-Com and NMAX-Com

NAT-Com
(n = 4)

Mean Stdev
ED 0.20 0.04
KL 22.19 32.59
SR 14.67 6.91
RT 4.46 3.85

NMAX-Com
(n = 4)

Mean Stdev
0.23 0.07

41.96 70.15
14.67 6.91
0.47 0.32

NAT-Com
(n = 5)

Mean Stdev
0.27 0.08

126.39 119.45
36.60 20.73
14.45 16.54

NMAX-Com
(n = 5)

Mean Stdev
0.37 0.10

283.07 248.31
36.60 20.73
1.49 1.36

NAT-Com
(n = 6)

Mean Stdev
0.32 0.09

453.82 362.47
89.96 53.32
54.12 54.41

NMAX-Com
(n = 6)

Mean Stdev
0.45 0.06

866.06 547.53
89.96 53.32

4.86 3.85

At the same time, as n grows, ED distance by NMAX-Com increases from 0.23
to 0.45, while ED distance by NAT-Com increases from 0.20 to 0.32. On average,
NAT-Com reduces distance to target CPTs by 13%, 27%, and 29%, respectively.
Since target CPTs are randomly generated, the experiment is conducted at the
most general (worst) condition. It is expected that target CPTs from real BNs dis-
play more regularity [13] and compression accuracy by NAT-Com will be further
reduced. We leave this to future work.
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6 PCI Pattern Extraction with Persistent Leaky Causes

A leaky cause in a causal model integrates all causes that are not explicitly named.
In the following, we assume that a leaky cause exists. We denote it by c0 and de-
note other causes as c1, ...,cn . A leaky cause may be persistent or non-persistent.
A non-persistent leaky cause is not always active. Hence, it can be modeled the
same way as other causes. A target CPT in the form P(e|c0,c1, ...,cn) is fully
specified with P(e0|c0

0,c
0
1, ...,c

0
n) = 1 and P(e+|c0

0,c
0
1, ...,c

0
n) = 0.

On the other hand, a persistent leaky cause (PLC) c0 is always active, and a
target CPT has the form P(e|c+

0 ,c1, ...,cn). This has two implications. First, for
all active e+, we have P(e+|c+

0 ,c0
1, ...,c

0
n) > 0. Second, parameters corresponding

to P(e|c0
0,c1, ...,cn) are unavailable. This raises an issue when we compress the

target CPT into a NAT model. Since P(e|c0
0,c1, ...,cn) is undefined, the target

CPT appears as P′(e|c1, ...,cn) = P(e|c+
0 ,c1, ...,cn).

Example 1 A target CPT P(e|c0,c1) over binary e, c0 and c1, where c0 is a PLC,
is shown below (left). Since it is only partially defined and c0 is an implicit cause,
it may be viewed as P′(e|c1) (right) which is fully defined.

c0 c1 e P(e|c0,c1)
c0

0 c0
1 e0 undefined

c0
0 c0

1 e1 undefined
c0

0 c1
1 e0 undefined

c0
0 c1

1 e1 undefined

c0 c1 e P(e|c0,c1)
c1

0 c0
1 e0 0.85

c1
0 c0

1 e1 0.15
c1

0 c1
1 e0 0.32

c1
0 c1

1 e1 0.68

c1 e P′(e|c1)
c0

1 e0 0.85
c0

1 e1 0.15
c1

1 e0 0.32
c1

1 e1 0.68

Should we define the NAT model over {e,c1, ...,cn} to match P′(e|c1, ...,cn)? We
reject this option for two reasons. First, the CPT of a NAT model thus defined has
PM(e+|c0

1, ...,c
0
n)= 0. From the first implication above, we have P′(e+|c0

1, ...,c
0
n)=

P(e+|c+
0 ,c0

1, ...,c
0
n) > 0, which leads to an inherent modeling error.

Second, c0 can undermine or reinforce another cause. There are 2n possible
causal interactions between c0 and c1, ...,cn . They do not approximate target CPT
equally well. It is impossible to parameterize the NAT model according to the
most suitable causal interaction, unless c0 is explicitly represented. In the re-
mainder, we assume that the NAT model is defined over family {e,c0,c1, ...,cn}.
To compress target CPT P(e|c+

0 ,c1, ...,cn) into a NAT model, we need to extract
a PCI pattern. By Eqn. (1), PCI bit pci(ci,c j) is defined based on comparison
among

P(e+← c+
i ),P(e+← c+

j ), and P(e+← c+
i ,c+

j ).

Two difficulties arise when c0 is a PLC. First, when i = 0, the target CPT contains
P(e+← c+

0 ) and P(e+← c+
0 ,c+

j ), but not P(e+← c+
j ). Second, for i, j > 0, none

of P(e+← c+
i ), P(e+← c+

j ), and P(e+← c+
i ,c+

j ) is specified. In summary, when
c0 is a PLC, no PCI bit can be extracted based on Eqn. (1), or based on rules in
Sec. 3. One alternative is to extract pci(ci,c j) for i, j > 0 from comparison among

P(e+← c+
0 ,c+

i ),P(e+← c+
0 ,c+

j ), and P(e+← c+
0 ,c+

i ,c+
j ).

Unfortunately, although they are available from target CPT, it can be shown that
causal interaction between ci and c j does not uniquely correspond comparison
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among the three. To meet this challenge, we investigate another alternative. For
simplicity in presentation, we assume binary variables, i.e., De = {e−,e+} and
Di = {c−i ,c+

i }.
Given c0, ci and c j where i, j > 0, there are 8 causal interaction relations as Fig. 1.
We refer to the 8 NATs as Ta through Th. Their PCI patterns are summarized in

e     c−        +
je     ci

−        +

e     c−        +
0

(a) (b)

e     c−        +
je     ci

−        +

e     c+        +
0

e     c0
+        + e     c+        +

j

e     c−        +
i

(d)

e     c0
+        + e     c+        +

i

e     c−        +
j

(c)

e     c+        +
je     ci

+        +

e     c+        +
0

(e) (f)

e     c+        +
je     ci

+        +

e     c−        +
0

e     c0
−        + e     c−        +

j

e     c+       +
i

(h)

e     c0
−        + e     c−        +

i

e     c+       +
j

(g)

Fig. 1. NATs over c0, ci and c j

Table 3. A target CPT P(e|c+
0 ,c1, ...,cn) specifies the following parameters that

Table 3. PCI patterns of NATs

pci(c0,ci) pci(c0,c j) pci(ci,c j)
Ta r r r
Tb u u r
Tc u r r
Td r u r

pci(c0,ci) pci(c0,c j) pci(ci,c j)
Te u u u
Tf r r u
Tg r u u
Th u r u

involve only c0, ci and c j ,

P(e+← c+
0 ),P(e+← c+

0 ,c+
i ),P(e+← c+

0 ,c+
j ), and P(e+← c+

0 ,c+
i ,c+

j ).

We write them compactly as P(+0),P(+0i),P(+0 j), and P(+0i j). If each NAT
above can be identified by comparing these parameters, PCI bits in Table 3 will
be obtained. We investigate this possibility below.
For Ta, since any disjoint subsets of {c0,ci ,c j} reinforce each other (Fig. 1 (a)),

P(+0i j) > P(+0i),P(+0i j) > P(+0 j), and P(+0i j) > P(+0).

For Te, since any disjoint subsets of {c0,ci ,c j} undermine each other (Fig. 1 (e)),

P(+0i j) < P(+0i),P(+0i j) < P(+0 j), and P(+0i j) < P(+0).
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For Tb (Fig. 1 (b)), P(+0i) results from interaction between c0 and ci. Since
P(+0i j) results from interaction between c0 and group {ci,c j} where ci is re-
inforced by c j , it follows that P(+0i j) > P(+0i). From symmetry between ci and
c j, we derive P(+0i j) > P(+0 j). Since c0 undermines the group {ci,c j}, it fol-
lows that P(+0i j) < P(+0). From the dual relation between Tb and Tf (Fig. 1 (f)),
we derive

P(+0i j) < P(+0i),P(+0i j) < P(+0 j), and P(+0i j) > P(+0).

For Tc (Fig. 1 (c)), since c j reinforces group {c0,ci}, it follows that P(+0i j) >
P(+0i). Since P(+0i j) results from interaction between c j and group {c0,ci}
where c0 is undermined by ci, it follows that P(+0i j) < P(+0 j). Since Td (Fig. 1
(d)) is obtained from Tc by switching between ci and c j , we derive for Td the
following,

P(+0i j) < P(+0i) and P(+0i j) > P(+0 j).

To compare P(+0i j) and P(+0) for Td , we analyze

P(−0)−P(−0i j) = [1−P(+0)]− [1−P(+0)P(+ j)]P(−i)

= 1−P(+0)−P(−i)+P(+0)P(+ j)P(−i) = P(+i)−P(+0)[1−P(+ j)P(−i)].

If P(+i) is close to 1, the sum is about 1−P(+0) > 0. If P(+i) is close to 0, the
sum is about −P(+0)P(− j) < 0. Hence, comparison of P(+0i j) and P(+0) is
non-deterministic for Td . Due to relation between Td and Tc, the same holds for
Tc.
From dual relation between Td and Th, for Th, we have P(+0i j)> P(+0i), P(+0i j)
< P(+0 j), and non-deterministic comparison of P(+0) and P(+0i j). Since Tg re-
sults from switching ci and c j in Th, we derive for Tg P(+0i j) < P(+0i), P(+0i j)
> P(+0 j), and non-deterministic comparison of P(+0) and P(+0i j).

Table 4. Causal probability comparison

P(+0i j) P(+0i j) P(+0i j) P(+0i) P(+0 j) P(+0i)
−P(+0i) −P(+0 j) −P(+0) −P(+0) −P(+0) −P(+0 j)

Ta > 0 > 0 > 0
Tb > 0 > 0 < 0
Te < 0 < 0 < 0
Tf < 0 < 0 > 0
Td < 0 > 0 +/− > 0 < 0 > 0
Tg < 0 > 0 +/− > 0 < 0 > 0
Tc > 0 < 0 +/− < 0 > 0 < 0
Th > 0 < 0 +/− < 0 > 0 < 0

The first 4 columns of Table 4 summarize the above. It can be seen that Ta, Tb, Te

and Tf can be uniquely identified by the comparisons, and hence all three PCI bits
in Table 3. The group of Td and Tg can be identified from two comparisons, and so
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can the group of Tc and Th. This allows specificationof pci(c0,ci) and pci(c0,c j).
Since the two NATs in each group cannot be differentiated, pci(ci,c j) cannot be
specified.

There are C(4,2) = 6 pairs of comparisons among P(+0),P(+0i),P(+0 j), and
P(+0i j), with the remaining shown in the last three columns of Table 4. Com-
parisons between P(+0i), P(+0 j) and P(+0) in col. 5 and 6 are derived from
Table 3. Col. 7 compares P(+0i) and P(+0 j). For Td and Tg, col. 5 and 6 imply
P(+0i) > P(+0) > P(+0 j). For Tc and Th, col. 5 and 6 imply P(+0i) < P(+0) <
P(+0 j). As can be seen, col. 5, 6 and 7 do not improve differentiation.

We conclude the following from this analysis. If target CPT is an unknown NAT
model with a PLC, a partial PCI pattern can be extracted by comparing P(+0),
P(+0i),P(+0 j), and P(+0i j) for each pair of i, j > 0. In particular, pci(c0,c j) is
extractable for all j > 0. For i, j > 0, 50% of bits pci(ci,c j) are extractable on
average. This result can be extended to general CPTs by applying the technique
in Sec. 3 to probability comparison, which we do not elaborate here due to space.

Given c0,c1, ...,cn , there are C(n + 1,2) = (n + 1)n/2 PCI bits. Among them,
pci(ci,c j) where i, j > 0 counts C(n,2) = (n− 1)n/2 bits and pci(c0,c j) counts
n bits. Hence, the proposed framework allows extraction of n(n + 3)/4 PCI bits
on average. It follows that, as n grows from 4 (a total of 5 causes) to 12, the
expected percentage of extractable PCI bits changes from 70% to 58%. In the
next section, we outline future research regarding the remaining PCI bits.

7 Conclusion

The first contribution of this work is a flexible PCI pattern extraction that ob-
tains a partial PCI pattern with a sufficient number of bits from general target
CPTs. Experiment in Sec. 5.1 demonstrates the necessity of such a flexible ex-
traction. Experiment in Sec. 5.2 shows that the extraction significantly reduces
the number of candidate NATs for subsequent parameter estimation while incurs
only minor loss of accuracy. The second contribution extends gradient descent
for compression of binary NAT models to constrained descent for compression
of multi-valued NAT models. Experiment in Sec. 5.3 shows that compression of
random CPTs into NAT models achieves better accuracy than compression into
noisy-MAX models. Further research will examine effectiveness of compression
in real BN CPTs. The impact of compression errors to BN inference will also be
evaluated.

The above compression assumes non-PLCs. If applied to CPTs with PLCs, mod-
eling errors occur when all explicit causes are absent. The third contribution is a
framework for extracting PCI pattern when PLCs exist, which significantly differs
from PCI pattern extraction with non-PLCs. Further research is needed to answer
the following open questions. With PLC presence, if a pci(ci,c j) is unclassified,
does assigning pci(ci,c j)= u or r matter to accuracy of the resultant NAT model?
If it does, can pci(ci,c j) be inferred from higher order conditional probabilities?
Answers to these questions will enable development of a compression algorithm
for target CPTs with PLCs.
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