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Abstract. In order to represent cooperative multi-agents who must rea-
son with uncertain knowledge, a coherent framework is necessary. We
choose multiply sectioned Bayesian networks (MSBNs) as the basis for
this study because they are based on well established theory on Bayesian
networks and because they are modular. In this paper, we focus on the
semantics of a MSBN-based multi-agent system (MAS) for cooperative
distributed interpretation. In particular, we establish the conditions un-
der which the joint probability distribution of a MSBN-based MAS can
be meaningfully interpreted. These conditions imply that a coherent
MSBN-based MAS can be constructed using agents built by different
developers. We show how the conditions can be satisfied technically un-
der such a context. (Keywords: Knowledge representation, probabilistic
reasoning, multi-agent systems.)

1 Introduction

Bayesian networks (BNs) [10, 9, 7, 6] provide a coherent formalism for repre-
senting and reasoning with uncertain knowledge in AI systems. As commonly
applied, a BN assumes a single-agent paradigm. That is, a single processor ac-
cesses a single global network representation, updates the joint probability dis-
tribution (jpd) over the domain variables as evidence becomes available and
answers queries. A multiply sectioned Bayesian networks (MSBN) [20] is a set
of interrelated Bayesian subnets over a large problem domain decomposed into
a set of loosely coupled subdomains. Each subnet encodes the knowledge about
a subdomain. MSBNs allow modular knowledge representation in large domains
and facilitate efficient inference computation [19].

As originally developed, a MSBN is intended for a single-agent system and
as an aid to probabilistic inference of a single user. In such a system, the MSBN
encodes the knowledge of a single developer/expert. The jpd represents the co-
herent belief of the expert. This is the semantics of a single-agent MSBN.

An agent in a multi-agent system (MAS) [1, 2, 4, 14] is an autonomous in-
telligent subsystem. Each agent holds its partial domain knowledge, accesses an
external information source and consumes some computational resource. Each
communicates with others in achieving its goal. Agents may be cooperative in
achieving a common goal or may be self-interested with conflicting goals. Agents



may be homogeneous or heterogeneous. Concurrent approaches in MASs are es-
sentially logic-based, which do not have a coherent framework for representing
agents with uncertain knowledge. The fundamental question that inspired this
study is “In order to represent cooperative multi-agents who must reason with
uncertain knowledge, what would be a proper framework?” We choose MSBNs
as a basis for this study because they are based on well established theory on
BNs and therefore are coherent and general (no built-in ad-hoc assumptions),
and because they are modular,

We consider the extension of MSBNs into cooperative and homogeneous MASs.1

In particular, the extension is intended for distributed interpretation tasks. As
defined by Lesser and Erman [8], an interpretation system accepts evidence from
some environment and produces higher level descriptions of objects and events
in the environment. A distributed interpretation system is needed when sensors
for collecting evidence are distributed, and communication of all evidence to a
centralized site is undesirable. Potential applications include sensor networks,
diagnosis and trouble-shooting of complex systems, distributed image interpre-
tation, etc.

Figure 1 shows major components of an agent in a MSBN-based MAS. The
subnet is the central component that holds the knowledge and belief of the agent
on the subdomain. The reasoner is responsible to update the belief when evidence
is obtained from local sensors. The communicator is responsible to perform belief
propagation among agents. The sensitivity analyzer suggests the most valuable
evidence to acquire next based on the current belief. The decision maker deter-
mines the actions that affect the external world. The structure verifier verifies
the correctness of global structure through distributed operations.

To extend single-agent MSBNs into MASs, many issues need to be resolved.
Earlier works involve the coherent agent communication [15], the optimization
of communication scheduling [16], and the distributed structure verification [18].
The focus of this paper is the semantics of a MSBN-based MAS:

– What is the interpretation of the jpd of the MSBN and under what conditions
such an interpretation is well-defined?

– How can we build a coherent MSBN-based MAS by multiple developers?
– What is the advantage of a MSBN-based MAS over a set of BN-based agents

without organized as a MSBN?

The rest of the paper is organized as follows. Section 2 briefly introduces
single-agent MSBNs. Section 3 establishes the semantics of MSBN-based MASs.
Section 4 discusses technical issues in constructing a coherent MSBN by multiple
developers. Section 5 analyzes why agents should be organized into a MSBN for
probabilistic inference. Section 6 presents an example.

1 It is our belief that unless we understand well how to perform uncertain inference
coherently in a homogeneous MAS, we are less likely to succeed in dealing with the
issue in a heterogeneous MAS.
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Fig. 1. Major components of an agent in a MSBN-based MAS.

2 Single-Agent MSBNs

To make the paper self-contained, we briefly introduce the single-agent MSBNs
[20, 19]. A BN [10, 9, 7, 6] is a triplet S = (N, E, P ). N is a set of nodes. Each
node is labeled with a variable associated with a space. We shall use ‘node’ and
‘variable’ interchangeably. Hence N represents a problem domain. E is a set of
arcs such that D = (N, E) is a directed acyclic graph (DAG). We shall refer to
D as the structure of the BN. The arcs signify directed dependencies between
the linked variables. For each node Ai ∈ N , the strengths of the dependen-
cies on the set of parent nodes πi are quantified by a conditional probability
distribution p(Ai|πi). For any three sets X, Y and Z of variables, X and Y
are said to be conditionally independent given Z under probability distribution
P if P (X|Y Z) = P (X|Z) whenever P (Y Z) > 0. The basic dependency as-
sumption embedded in BNs is that a variable is conditionally independent of its
non-descendants given its parents. This allows the jpd P to be specified by the
product P =

∏
i p(Ai|πi).

A MSBN M consists of a set of interrelated Bayesian subnets over a large
problem domain or total universe. Each subnet represents dependencies of a sub-
domain and shares a non-empty set of variables with at least one other subnet.
The intersection between each pair of subnets satisfies a d-sepset condition.

Definition 1 (d-sepset) Let Di = (N i, Ei) (i = 1, 2) be two DAGs such that
D = (N1∪N2, E1∪E2) is a DAG. The intersection I = N1∩N2 is a d-sepset
between D1 and D2 if, for every Ai ∈ I with its parents πi in D, either πi ⊆ N1

or πi ⊆ N2. A node in a d-sepset is called a d-sepnode.

The condition essentially requires that for each node in the d-sepset, at least
one subnet contains all its parent nodes. It can be shown that, when a pair



of subnets are isolated from M , their d-sepset renders them conditionally in-
dependent. Figure 2 (left) shows the structure of a trivial MSBN for diagnosis
of Median nerve lesion (Medn), Carpal tunnel syndrome (Cts) and Plexus up-
per trunk lesion (Plut). It consists of three subnets Di (i = 1, 2, 3) for clinical,
electromyography (EMG) and nerve conduction subdomains, respectively. The
d-sepset between each pair of subnets is {Medn, Cts, P lut}. 2

Subnets of M are organized into a hypertree structure. Each hypernode is a
subnet of M . Each hyperlink is a d-sepset between a pair of subnets. A hypertree
is so structured that it ensures that each hyperlink render the two parts of M
that it connects conditionally independent. The subnets in Figure 2 (left) can
be organized into the hypertree in Figure 2 (middle). Figure 2 (right) depicts a
general hypertree structured MSBN (unrelated to the one in the middle).
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Fig. 2. Left: An example MSBN for neural muscular diagnosis. Middle: The hypertree
organization of the MSBN in the left. Right: A general hypertree structured MSBN.

Each subnet in M may be multiply connected (more than one path between
a pair of nodes), e.g., D1. In order to perform inference more efficiently in each
subnet, the hypertree structured M is converted into a linked junction forest
(LJF) F of the identical structure as its run time representation. Each hyper-
node in the hypertree is a junction tree (JT) (clique tree) converted from the
corresponding subnet through moralization and triangulation [7, 6]. Each hyper-
link in the hypertree is a set of linkages which covers the d-sepset between the
two corresponding subnets.

The need for linkages can be understood as follows: When evidence is ob-
tained in one subnet/JT, it can be propagated to an adjacent JT by passing
the probability distribution over the d-sepset I. This may not be efficient if the
cardinality of I is large. The efficiency can be improved by exploiting the con-
ditional independence within I. Linkages form a decomposition of I based on
conditional independence. Once linkages are defined, the probability distribu-
tion over I can be passed by passing distributions over linkages, which is more
efficient [17]. Linkages are obtained as follows:

Definition 2 (linkage) Let I be the d-sepset between JTs T a and T b in a LJF.
First remove recursively every leaf clique C of T a that satisfies one of the

following conditions. (1) C ∩ I = φ. (2) C ∩ I is a subset of another clique.
Denote the resultant graph by T ′.

2 In general, d-sepsets between different pairs of subnets of M may be different.



Then remove recursively either a member variable from a clique of T ′ or a
clique from T ′ as follows. (a) If a variable x 6∈ I is contained in a single clique
C, remove x from C. (b) If a clique C becomes a subset of an adjacent clique D
after (a), union C into D.

The resultant is a linkage tree Y a→b of T a relative to T b. Each clique l of
Y a→b is a linkage from T a to T b.

It can be shown that a linkage tree is a JT. It can also be shown that belief
propagation between JTs through linkages can be performed coherently if and
only if Y a→b and Y b→a are identical.

The MSBN in Figure 2 (left and middle) can be converted into the LJF in
Figure 3. The three subnets Di (i = 1, 2, 3) are converted into three JTs T i

(i = 1, 2, 3). Then linkages (shown as heavy links) between pairs of JTs are
defined. The linkage tree of T 2 relative to T 1 is obtained by first removing the
clique C8, and then removing the variable apb from the clique C6 and removing
prt from C7. We then obtained the linkage tree with two cliques {Cts, Medn}
and {Pxut, Medn} each of which is a linkage between T 1 and T 2.
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Fig. 3. A linked junction forest of the MSBN in Figure 2.

Parallel to the structural conversion, the conditional probability tables stored
at nodes of M are converted to belief tables (unnormalized probability distribu-
tions) of cliques in JTs of F such that a joint system belief of F , assembled from
the belief tables, is equivalent to the jpd of M . The belief table of a JT T is

BT (N ) =
∏

i

BCi(Ci)/
∏

j

BSj (Sj), (1)

where N is the set of domain variables of T , BCi(Ci) is the belief table of clique
Ci and BSj (Sj) is the belief table of clique separator Sj . Subscripts are used to
denote the object that a belief table is associated with. Let BI(I) be the belief
table of a d-sepset I assembled from belief tables of linkages in the corresponding
linkage tree in the similar fashion as Equation 1 (recall that a linkage tree is a
JT). The joint system belief of F takes the form

BF (U ) =
∏

i

BT i (N i)/
∏

j

BIj (Ij), (2)



where U = ∪iN
i is the total universe. Since belief tables are unnormalized

probability distributions, BF (U ) is proportional to the jpd of F

PF (U ) =
∏

i

PT i(N i)/
∏

j

PIj (Ij), (3)

where P denotes a probability distribution.
To answer queries by local computation in F , it must be consistent. F is

locally consistent if all JTs are internally consistent, i.e., when marginalized
onto the same set of variables, different belief tables in a JT yield the identical
marginal distribution. F is boundary consistent if each pair of adjacent JTs are
consistent with respect to their d-sepset. F is globally consistent if it is both
locally consistent and boundary consistent. A set of operations are defined to
achieve consistency during evidential reasoning.

Suppose F is initially globally consistent. Details on initialization can be
found in the above reference. After evidence is entered into a JT, the JT is no
longer internally consistent and F is no longer globally consistent. Evidence is
entered by the operation EnterEvidence. EnterEvidence multiplies the belief
tables of relevant cliques with the evidence function and then brings the JT
internally consistent by an outward belief propagation and then an inward belief
propagation within the JT [6].

For example, suppose Median motor conduction block (mmcb = true) and
Median to Ulnar palmar latency difference (mupl > 0.7ms) are observed in
the nerve conduction study of a patient. In Figure 3, the clique C9 contains
the variable mmcb and the clique C12 contains the variable mupl. During
EnterEvidence, first the belief tables of C9 and C12 will be modified such
that belief of all configurations incompatible with the observation will be set to
0. Then a clique is arbitrarily selected, say, C9. Afterwards, belief propagates
inwards from C11 to C10 and from C12 to C10, and then belief propagates from
C10 to C9. After the inward propagation, belief propagates outwards from C9 to
C10, and then from C10 to C11 and C12. This brings T 3 internally consistent.

For belief propagation operations to maintain global consistency in single-
agent MSBNs, readers are referred to the above reference. We review the commu-
nication operations for maintaining global consistency in a MSBN-based MAS
in Section 5.

3 The Interpretation of Jpd in a MSBN-based MAS

As described in Section 2, a MSBN represents a large problem domain by rep-
resenting each subdomain with a subnet. From the viewpoint of a reasoning
agent, a MSBN represents the coherent multiple perspectives of a single agent.
For example, PAINULIM [19] consists of three subnets which represents a neu-
rologist’s three different perspectives of the neuromuscular diagnostic domain:
clinical, EMG and nerve conduction perspectives. The jpd of the MSBN repre-
sents the subjective belief of a single expert.



In a MSBN-based MAS, each agent can be considered as holding its partial
perspective of the domain. The modularity of MSBN allows its natural extension
to a MAS: Instead of representing one agent’s multiple perspectives of a domain,
a MSBN-based MAS represents multiple agents in a domain each of which holds
one distinct perspective of the domain. Each subnet corresponds to one such
perspective. A natural question then arises: What is the interpretation of the
jpd of such a system? Whose belief does it represent? We will first discuss this
issue intuitively and then justify our interpretation formally.

Consider a computer system. It processes information coherently as a whole,
even though its components are commonly supplied by different developers. This
coherence is achieved since each developer follows a set of protocols in designing
the functional interface of a component. As long as the interface follows a com-
mon protocol, a developer has the freedom to determine the internal structure
of a component and the entire system will function as if it follows a single mind.
How much knowledge is necessary to the integrator of the system? He only needs
to know the functional interfaces of components and not their internal structures.
In a sense, the system is built by a group of designers including all developers
who supply components as well as the system integrator. Building complex sys-
tems in such a way has become a common practice. Procedural abstraction and
data abstraction are commonly applied to develop complex software systems by
team work [5]. Layered approach is commonly used in operating systems [13]
and computer networks [12].

Next consider a human ‘system’ consisting of a patient and a family doctor.
Suppose that the patient has no medical knowledge of her problem and she
trusts the doctor’s expertise completely. Suppose that the doctor is also giving
the best diagnosis and treatment he can. When they meet, the patient tells all
that the doctor needs to know for diagnosis. After the doctor reaches a diagnosis,
he prescribes a therapy which the patient follows. Even though the doctor does
not experience the symptom himself and the patient does not understand how
the diagnosis is reached, the system as a whole demonstrates a coherent belief
on symptoms (the doctor uses to reach the diagnosis) and the diagnosis (the
patient follows the therapy). Situations like this are not uncommon when a user
is seeking advice from a specialist. Who is the integrator of this system? It’s the
demand and supply (of medical expertise).

The two scenarios illustrate that, under certain conditions, a system consist-
ing of different agents may demonstrate a joint belief coherent with that of each
individual agent. Clearly one of the conditions is that agents are cooperative,
also termed benevolence [14]. An agent must trust the information supplied by
others and must also supply others with what he really believes, which is termed
veracity [14]. This is possible if all agents in the system are working towards a
common goal (vs self-interested).

Another condition is conditional independence. It is not necessary for each
agent to supply others with all that he believes. A component in a complex
system only needs to pass to other components the information specified in the
protocol, and it can and should hide other details regarding how the supplied



information is obtained. In structured programming, a procedure header only
specifies the input and output parameters. How the mapping from input to
output is performed needs not be concerned by the caller of the procedure. A
doctor only needs to inform the patient of the diagnosis and the therapy. He does
not need to explain how the diagnosis is reached. In general, to a particular agent
engaged in a particular task, there is usually a certain amount of information
from other agents, once exchanged, that is sufficient to help the agent to perform
its own task. Beyond that amount, the information about how other agents
think is irrelevant, namely, the agent is conditionally independent of other agents
conditioned on that certain amount of information.

We now formalize the above idea by applying a result from statistics [3] which
was not intended for MASs. We first introduce a third condition.

Definition 3 Let N be a set of variables in a problem domain. Let A and B
be two subsets of N such that A ∩ B 6= φ and A ∪ B = N . Let Q(A) and
R(B) be probability distributions over A and B. Q(A) and R(B) are said to
be consistent if

∑
A\B Q(A) =

∑
B\A R(B), where the summation represents

marginalization.

In other words, Q(A) and R(B) are consistent if they yield the same distri-
bution when marginalized to A ∩ B. The following lemma is due to Dawid and
Lauritzen and is reformulated in our notation.

Lemma 4 [3] Let N = A ∪ B be a set of variables. Let Q(A) and R(B) be
probability distributions over A and B and let them be consistent. Then there
exists a unique probability distribution

P (N ) = Q(A)R(B|A ∩ B) whenever R(A ∩ B) > 0

such that (1)
∑

N\A P (N ) = Q(A), (2)
∑

N\B P (N ) = R(B) and (3) A is
conditionally independent of B given A ∩ B under P .

Now let α and β be two cooperative agents. Suppose α can only perceive
the subdomain A and β can only perceive the subdomain B. Let the subjective
belief of α be represented by Q(A) and that of β be represented by R(B).
Suppose knowing the other agent’s belief on the intersection A ∩ B is sufficient
to coordinate the tasks of α and β and Q(A) and R(B) are consistent. Then,
according to Lemma 4, there exists a unique probability distribution P (N ) that
is identical to Q(A) when restricted to A and identical to R(B) when restricted
to B, and that it satisfies the conditional independence of A and B conditioned
on A ∩ B.

Relating the above discussion to MSBN-based MASs, we can represent agents
α and β by a MSBN M with two subnets Sα and Sβ over subdomains A and B
such that their d-sepset is A∩B. The distribution of Sα corresponds to α’s belief
and the distribution of Sβ corresponds to β’s belief. The boundary consistency of
F (the LJF of M ) corresponds to the consistency of the two agents’ belief. When
F is globally consistent, the jpd defined by Equation 3 is identical to P (N ) in
Lemma 4. The following theorem generalizes Lemma 4 to the case of more than
two distributions.



Theorem 5 [3] Let N be a set of variables. Let T be a junction tree and Ci be
a clique of T such that ∪iCi = N . Let QCi(Ci) be the probability distribution
over the clique Ci such that distributions for each pair of adjacent cliques in T
are consistent. Let Sj be a clique separator in T and QSj (Sj) be the distribution
over Sj computed from the distribution of any one of its adjacent cliques. Then
there exists a unique probability distribution

PT (N ) =
∏

i

QCi(Ci)/
∏

j

QSj (Sj)

such that (1) for each clique Ci,
∑

N\Ci
PT (N ) = QCi(Ci) and (2) for each

pair of adjacent cliques Ci and Cj with their separator Sk, Ci is conditionally
independent of Cj given Sk under PT .

According to Theorem 5, if we organize a set of cooperative agents into a
MSBN such that adjacent agents in the hypertree are conditionally independent
and consistent, then the jpd of the MSBN defines a coherent joint belief among
all agents. This joint belief is identical to the belief of each agent when restricted
to the corresponding subdomain and it supplements each agent’s limited knowl-
edge outside the agent’s subdomain by the knowledge of other agents. Since the
requirements conditional independence and consistency are only restrictions on
the interface (vs internal structure) of agents, a MSBN-based MAS can be con-
structed using agents built by multiple developers. Each developer builds one
computational agent (a subnet) based on its own expertise in a subdomain.

4 How to Make Adjacent Agents Consistent?

As shown in Section 3, adjacent subnets in the hypertree structure of a MSBN
should be consistent as defined in Definition 3. We address the technical issues
for ensuring this consistency.

When no confusion arises, we refer to the structure of a subnet as simply the
subnet. If a d-sepnode x has no parent in the entire MSBN, we call x a global
root. Clearly, a global root is a root in every subnet that contains it. For example,
Pxut in Figure 2 is a global root. According to Definition 1, if a d-sepnode x
is not a global root, then for each pair of parents y and z of x, whenever y is
contained in a subnet, z must be contained in that subnet as well. Hence for a
d-sepnode x that is not a global root and for each subnet D that contains x,
either x is a root in D or x and all its parents are contained in D. For example,
Cts in Figure 2 is a root in D2 but a non-root in D1.

By Definition 3, adjacent subnets in a MSBN are consistent if their distri-
bution on their d-sepset are identical. Since the distribution on a d-sepset is
determined by the distributions on d-sepnodes, in order to ensure consistency of
subnets, we must ensure distributions on d-sepnodes are identical across subnets.
When agents are built by a single developer, this imposes no problem. We discuss
how to ensure the consistency when agents are built by different developers.



For a d-sepnode x that is a global root, each subnet that contains x must as-
sociate x with a prior distribution, which may be assigned differently by different
developers. A brute force method would adopt the prior from one of the develop-
ers. A more natural method can be devised using the idea in [11] for combining
probabilities from multiple experts. We illustrate the method as follows: Suppose
x has k possible outcomes x ∈ {x1, x2, . . . , xk}. Instead of letting each developer
specify a prior distribution (p1, p2, . . . , pk) for x for the corresponding subnet,
k+1 non-negative integers (n1, n2, . . . , nk, m) are supplied by each developer such
that

∑k
i=1 ni = m and pi = ni/m (i = 1, . . . , k). The ratio ni/m is interpreted as

though the developer had observed xi for ni times out of m trials. Now the prior
for x in each subnet can be assigned as (

∑
j n1j/

∑
j mj , . . . ,

∑
j nkj/

∑
j mj),

where the index j is over each subnet containing x.
For a d-sepnode y that is not a global root, if y appears as a non-root in a

subnet D, a probability distribution of y conditioned on its parents is associated
with y in D. If y appears as a root in D′, a prior distribution is associated with x
in D′. Suppose y appears as a non-root in j subnets and as a root in k subnets.
The conditional distribution of y in the first j subnets can be determined in
the same way as we combine the prior distributions of a global root illustrated
above. Once this is determined, the prior distribution of y in the k subnets
where y appears as a root are constrained by the assignment of the conditional
distribution in the first j subnets as well as other relevant distributions in the
entire MSBN. The actual numerical parameters can be determined through belief
propagation during the initialization process mentioned in Section 3. Details on
initialization can be found in [20].

5 MSBNs Ensure Disciplined Communication

One might wonder what difference a MSBN-based MAS makes compared to the
same set of agents without being organized into a MSBN. Can each agent cooper-
ate with others by sending messages and treating messages received as evidence?
We first review briefly the operation CommunicateBelief for maintaining global
consistency in a MSBN-based MAS [15] and then answer this question.
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Fig. 4. Belief propagation during CommunicateBelief in a LJF. Each node represents
a JT. Multiple links between two nodes represents multiple linkages between the JTs.
The operation is initiated from T 1.

Without going into the formal details, Figure 4 shows how belief propagates
through a LJF during CommunicateBelief. Each node is a JT and corresponds
to an agent in the system. Multiple links between two adjacent JTs corresponds



to multiple linkages between them. Suppose the operation is initiated at an arbi-
trarily selected JT T 1. First control is propagated from T 1 towards terminal JTs
along solid arrows, and then the belief tables on d-sepsets are propagated from
terminal JTs back to T 1 along dotted arrows. Afterwards, belief is propagated
from T 1 towards terminal JTs along solid arrows. Note that since a LJF is not
equivalent to a JT due to the existence of multiple linkages, belief propagation
in a LJF is not the same as in a JT representing a single BN [6]. The issue not
dealt with by the algorithm for inference in a JT is that propagation must be
performed through multiple linkages coherently. See [20, 17] for details. It can be
shown that after CommunicateBelief, the LJF is globally consistent. That is,
the answers to queries from each agent are coherent with all evidence gathered
in the entire system [15].

It should now be clear that the belief propagation in MSBNs during
CommunicateBelief is in fact message passing. The messages are the belief
tables over linkages. However, message passing in a MSBN is disciplined.

First, messages in a MSBN must flow along the hypertree in a regulated
fashion as illustrated above. Now suppose a set of agents are not organized
as a MSBN (or some equivalent form). Then the following sequence of events
is possible. Initially an agent α may send a message to an agent β based on
a piece of evidence. After updating its belief based on the message and some
additional local evidence, β may send a message to an agent γ. After updating
its belief based on the message and some additional local evidence, γ may send a
message to α. Not knowing the message from γ is based partially on the evidence
originated from α, α will update its belief and count the same evidence twice.
Such circular evidence propagation causes no problem if the knowledge of all
agents is deterministic or logical. However, it will create false belief with no
evidential support if the knowledge of agents is uncertain or probabilistic [10].
The hypertree structure of MSBNs and the way CommunicateBelief operates
ensures that no circular evidence propagation occur among agents.

Furthermore, the hypertree structure of a MSBN is not just any tree struc-
ture, just as a clique tree of a BN cannot be just any tree but should be a JT.
Recall from Section 2, the hypertree is so organized such that each d-sepset ren-
ders the two parts of the hypertree that it connects conditionally independent.
A detailed description is beyond the scope of this paper and can be found in
[20]. The point is that a MSBN requires that the belief on the entire d-sepset
between a pair of subnets, in the form of belief tables over all linkages, be passed
each time. This information, passed in the hypertree with the above property
and in the way in which CommunicateBelief is defined, is sufficient to ensure
a coherent joint system belief. On the other hand, if agents are organized in
an arbitrary tree structure, even though circular evidence propagation can be
avoided, it still cannot ensure a coherent joint system belief.

6 Illustration of Multi-Agent MSBNsLet us consider monitoring or troubleshooting a complex artifact system as
shown in Figure 5. The system is made of five subsystems U0 through U4. The
set of external input variables of each subsystem is labeled by I, each set of data
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Fig. 5. An artifact consisting of five subsystems.

flowing from one subsystem to another is labeled by E, and each set of output
from a subsystem to the external world is labeled by O. Suppose subsystems
are manufactured by different developers. Each developer also builds an agent
(whose central component is a Bayesian subnet) that encodes the knowledge of
the functional and the faulty behavior of parts, and of the internal structure of
the subsystem. Each agent is capable of monitoring or troubleshooting the cor-
responding subsystem. To monitor the entire artifact system, we can construct
a MAS and let those agents cooperate.

We assume that external inputs are independent of each other and there is
no feedback between subsystems as is the case in this example. Then each agent
is independent of others given the variables that connect the agent to others.
The distributions for those variables can be set using the techniques discussed
in Section 4. Now all the semantic conditions required (cooperative, conditional
independent and consistent) are met and we can organize the agents into a
MSBN-based MAS.
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Fig. 6. A digital system consisting of five circuits.

The above illustration is independent of the particular application domain
of an artifact system. To make the example more concrete, we fill each box of
Figure 5 with a digital circuit as in Figure 6.

Note that, in integrating the MSBN, only the knowledge of the interface
of each circuit as shown in Figure 5 is needed. The knowledge of the internal
structure of each circuit is not necessary. Furthermore, although the function of
each gate is commonly defined, its faulty behavior may vary from subsystem to
subsystem. For example, U1 and U2 may be supplied by different developers.
An AND gate in U1 may have the stuck-at-0 faulty behavior, but an AND gate
in U2 may output correctly 40% of time when it is faulty. The developer of



each circuit, not the integrator of the entire system, is in the best position to
encode such knowledge, and such knowledge can be hidden (by not disclosing
the circuit configuration and the structure and the distributions of the subnet)
from the integrator if so desired. If a circuit from a developer is replaced by
another with the same functional interface but from a different developer, we
simply replace the corresponding subnet (effectively replacing the corresponding
agent) without disturbing the rest of the MSBN. The new MSBN-based MAS
will still perform coherently.

Figure 7 (left) shows the five Bayesian subnets for the five circuits in Figure 6.
Figure 7 (right) shows the hypertree organization of the MSBN. Such a MAS
may be used to aid a group of users each interacting with one computational
agent by entering local evidence and querying.
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Fig. 7. Left: The Bayesian subnets for the five circuits in Figure 6. Right: The hypertree
organization of the five subnets as a MSBN.

7 Remarks

In this paper, we have shown that for cooperative agents to perform probabilistic
inference coherently in a distributed interpretation task, they can be organized
into a MSBN-based MAS or some equivalent structure. We established that if
agents are cooperative, conditionally independent and consistent, then the jpd
of the MSBN is identical to each agent’s belief when restricted to the agent’s
subdomain, and is supplementary to the agent’s limited knowledge outside the
agent’s subdomain.

The latter two conditions (conditional independence and consistency) are
constraints to only interfaces between agents. Therefore, a coherent MSBN-based
MAS can be intergrated from agents built by different developers and it is not
necessary for developers to disclose the internal structures of their subnets.

We indicate that the development of MSBNs are motivated by coherent in-
ference with uncertain knowledge in large problem domains, and therefore all
example MSBNs given in the paper are trivial and are only used for the purpose
of illustration of the framework. To use either single-agent or multi-agent MSBNs
in practice, the problem domain should be decomposable into loosely coupled
subdomains. This requirement dictates the size of individual subdomains. Each



subdomain should not be too large since it defeats the purpose of using a MSBN.
Each subdomain should not be too small either since subdomains will then be
densely coupled and it again defeats the purpose of MSBNs.
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