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Abstract
Multiply sectioned Bayesian networks (MSBNs) are an
extension of Bayesian networks for flexible modeling
and cooperative multiagent probabilistic inference. A
large and complex equipment is modeled by a set of
Bayesian subnets in a MSBN each of which corresponds
to a natural component of the equipment. Each sub-
net forms the core knowledge of an autonomous M&D
agent. Inference is performed in a distributed fashion
while answers to queries are coherent with respect to
probability theory. Recent advance in the MSBN the-
ory shows that the coherence is not compromised even
when internal knowledge of each agent is kept private
from on another. Hence M&D systems can be inte-
grated for very large equipments from agents built by
different vendors.

We overview the MSBN framework and its features rel-
evant to M&D tasks. We illustrate applications of MS-
BNs to M&D using constructed examples. We discuss
several ongoing research issues regarding internet based
MSBNs for M&D, agent upgrading through learning
and handling of dynamic systems.

Introduction
Multiply sectioned Bayesian networks (MSBNs) are an
extension of Bayesian networks for flexible modeling
and cooperative multiagent probabilistic inference. A
large and complex equipment is modeled by a set of
Bayesian subnets in a MSBN each of which corresponds
to a natural component of the equipment. Each sub-
net forms the core knowledge of an autonomous agent
in monitoring and diagnosis (M&D) system. Inference
is performed in a distributed fashion while answers to
queries are coherent with respect to probability the-
ory. Recent advance in the MSBN theory shows that
the coherence is not compromised even when internal
knowledge of each agent is kept private from others.
Hence M&D systems can be integrated for very large
equipments from agents built by different vendors with
vendors’ know-how protected. We have implemented
most features of the framework in a JAVA based re-
search toolkit, WEBWEAVR-III.

The focus of this paper is to overview the MSBN
framework and present its features relevant to M&D
tasks. We illustrate applications of MSBNs to M&D
using constructed examples executed in WEBWEAVR-
III. The paper is organized as follows: In the next sec-
tion, we demonstrate how to model an equipment as a

MSBN based multiagent system. We then present the
issues of verification of the modeling and protection of
privacy. The compilation of the model into its runtime
representation is presented afterwards. The M&D ca-
pability of the multiagent system is then demonstrated
with a case of trouble-shooting multiple faults. We dis-
cuss at the end several ongoing research issues regard-
ing internet based MSBNs for M&D, agent upgrading
through learning and handling of dynamic systems.

Modeling Equipment as MSBN

Bayesian networks (BNs) (Pea88; Jen96) provides a co-
herent and effective formalism for representation of un-
certain knowledge for equipment monitoring and diag-
nosis (HBR95). The knowledge encoded in a BN in-
cludes the causal dependency of components (in terms
of variables corresponding to devices and their in-
put/output organized as a DAG structure), and the
normal and faulty behavior of each device (in terms
of the possible normal/faulty values of the correspond-
ing variables and probability tables defined over these
variables).

Such knowledge allows equipment monitoring to be
performed since when an equipment functions normally,
the observations will confirm the normal behavior, and
the posterior probability (computed from the BN) of
each device being normal will be high. Such knowledge
allows diagnosis to be conducted as when observations
differ from the normal behavior, those devices whose
faulty behavior can best explain the observations will
have high posterior probabilities of being faulty.

BNs, however, are limited by its centralized rep-
resentation and inference. As the number of de-
vice/components of an equipment becomes larger, the
components becomes more physically distributed, the
vendors of components becomes more diverse, it be-
comes more difficult and inefficient to use centralized
BNs for M&D.

The MSBN framework (XPB93; Xia96) provides an
alternative to meet such needs. The key features of the
framework are distribution of knowledge, distribution
of inference, protection of knowledge ownership, and
coherence of inference.

We shall use the digital circuit in Figure 1 to illus-
trate the application of MSBNs to M&D tasks. The
principles are applicable to other types of equipments.
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Figure 1: A digital circuit.
We assume that each equipment has a set of external

inputs and a set of external outputs. In Figure 1, each
input to a gate that is not the output of some gate is
considered an external input, e.g., y1. Similarly, each
output of a gate that is not the input of some gate is
considered an external output, e.g., c0. If a signal is
neither an external input nor an external output, then
it is an internal signal, e.g., x3.

We assume that a complex equipment is structured
into multiple components and each component consists
of multiple devices. Each device is physically contained
in a unique component.

The components of an equipment may be supplied
by multiple vendors. A component vendor may not be
willing to disclose the internal structure of the com-
ponent. However, to allow the component to interface
with other components, the vendor must disclose the
information about the interface. Given the basic func-
tion of each component and its interface with others, an
equipment vendor will be able to integrate components.

To monitor and diagnose an equipment, the equip-
ment vender can use the framework of MSBNs to built
a multiagent M&D system. Each agent is responsible
for one component. It is supplied by the component
vendor who encodes the internal of the component into
the agent. An agent must also contain the informa-
tion about the interface of the component with oth-
ers. This information includes the input/output be-
tween the component and others. It may in general in-
clude the structure of some interfacing devices that do
not physically belong to the component for which the
agent is responsible. Hence a device may be represented
in more than one agent.

We assume that the circuit is composed of five com-

ponents U0, ..., U4 each of which is monitored by an
agent Ai (i = 0, ..., 4). In Figure 1, all devices enclosed
in the box labeled U0 are physically contained in the
component. This means that the devices contained in
both box U0 and box U1 are not physically contained
in the component U1, e.g., the gate g1. However, we
assume that these devices are represented in both A0

and A1. In general, a device enclosed in two boxs is
physically contained in the component signified by the
box of the higher priority (see the priority levels box in
the figure).

Figure 2: The subnet of agent A1

The core knowledge representation in each agent Ai

is a Bayesian subnet. The subnet of A1 is shown in
Figure 2 and that of A2 is shown in Figure 3.



Figure 3: The subnet of agent A2

Note that gates g7, g8, g9 and t2 are represented in
both subnets.

We assume that each gate has a 0.01 probability of
being faulty. A faulty AND gate can output correctly
20% of the time. A faulty OR gate, on the other hand,
outputs correctly 70% of the time. A faulty NOT gate
outputs correctly 50% of the time. These information
are coded into the subnets.

Verification of Equipment Model

To ensure coherent distributed inference, the subnets
that form a MSBN must satisfy a number of techni-
cal constraints. The formal presentation of these con-
straints can be found in (Xia96). Our discussion here
will focus on their verification.

First, the subnets/agents must be organized into a
(hyper)tree defined as follows:

Definition 1 Let Gi = (Ni, Ei) (i = 0, ..., n− 1) be n
graphs. The graph G = (∪iNi,∪iEi) is the union of
Gis, denoted by G = tiGi.

If for each i and j, Iij = Ni ∩ Nj spans identical
subgraphs in Gi and Gj, then G is sectioned into Gis.
Iij is the separator between Gi and Gj .

Definition 2 (XJ99) Let G = (N, E) be a connected
graph sectioned into {Gi = (Ni, Ei)}. Let the Gis be
organized as a connected tree H where each node is la-
beled by a Gi and each link is labeled by a separator
such that for each i and j, Ni ∩Nj is contained in each
subgraph on the path between Gi and Gj in H.

Then H is a hypertree over G. Each Gi is a
hypernode and each separator is a hyperlink.

Each Gi corresponds to the structure of a subnet.
The constraint ensures that no circular information
passing is possible during multiagent inference. It can
be verified using the local covering condition:

Definition 3 Start with an empty graph (no node).
Recursively add a DAG Gk to the existing union⊔k−1

i=0 Gi such that the following holds:
There exists Gi (i < k) such that, for each Gj (j <

k; j 6= i), we have Ijk ⊆ Ni.

It appears that the verification of this condition re-
quires the knowledge of the internal structure of each
subnet. Research has shown that this is not true: The
hypertree is assembled by the equipment vendor who
has the knowledge of the interface of each component
but not its internal structure. We shall call variables
representing the interface of a component public, and
call all other variables private. Since the private vari-
ables of each component are unique to the component,
it is sufficient to use only the public variables in the ver-
ification of local covering. That is, the Ni in the above
definition can be replaced by N ′

i which stands for the
union of all public variables/nodes in Gi. The verifi-
cation can then be performed by cooperation among
agents who propagate in the hypertree the relevant in-
formation on public nodes only according to Def.3.

Figure 4 shows a hypertree of the example system.
Each hyperlink is labeled by the d-sepset. Only the
public variables are shown in each oval representing an
agent/subnet. Local covering is satisfied.
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Figure 4: The hypertree of the circuit MSBN

Secondly, the structure of each subnet (called a sub-
DAG) must be acyclic. This is the same structural con-
straint for conventional Bayesian networks. It is a local
test and can be performed by individual agents. The
subnet in each of Figures 2 and 3 is acyclic.

Third, the set of variables shared by each pair of sub-
nets must form a d-sepset defined as follows.

Definition 4 (XPB93) Let Gi = (Ni, Ei) (i = 0, 1)
be two DAGs such that G = G0 t G1 is a DAG. The
intersection I = N0 ∩N1 is a d-sepset for G0 and G1

if for every x ∈ I with its parents π(x) in G, either
π(x) ⊆ N0 or π(x) ⊆ N1. Each x ∈ I is called a
d-sepnode.

This constraint ensures that the interface of neighbor-
ing subnets allows sufficient information to be passed



between them during inference. It must be verified
through cooperation of neighboring agents. The two
agents must ensure that for each shared node x, it is
not the case that each subnet has a parent of x not
shared by the other subnet. Hence, the verification re-
quires each agent reveals the parent set of each shared
node, but no more information regarding the internal
structure.

For example, the set of shared nodes between
agents A1 and A2 is {g7, g8, g9, i0, k0, n0, o0, p0, q0,
r0, t2, y2, z4}. Through cooperation of A1 and A2, it
can be verified to be a d-sepset.

Finally, when all subnets are unioned (counting the
shared nodes and links only once), the union graph must
be acyclic. This is a direct extension of the structural
constraint for conventional Bayesian networks. It can
neither be verified locally by individual agents nor by
pairwise testing between neighboring agents. An effi-
cient algorithm has been developed (Xia98b), which re-
quires cooperation of all agents through propagation of
messages along the hypertree. The message from each
agent must reveal whether a particular d-sepnode has
any parent or child in the subnet. No more information
about the internal structure of a subnet is needed.

Model Compilation
Once a MSBN based M&D system is verified, it will
be compiled into a runtime representation where M&D
inference can be performed more effectively. Each sub-
net is first moralized by connecting each pair of par-
ents of each node and dropping directions. Messages
on the moral links between d-sepnodes are propagated
to neighbors to ensure consistent connections. No more
information on the internal structure of each subnet
needs to be revealed. Figure 5 shows the moral graph
at agent A1. The moral links are shows as grey and
other links are black.

Figure 5: The moral graph at agent A1

Then the graph union of the system is triangulated
by local triangulation at each agent and propagation of

added links (called fill-ins between d-sepnodes (Xia99)).
No more information on the internal structure of each
subnet needs to be revealed. Figure 6 shows the trian-
gulated graph at agent A1. Compare with Figure 5 to
see added fill-ins.

Figure 6: The triangulated graph at agent A1

Each resultant local structure Gi is then converted to
a junction tree Ti. Each node in Ti is labeled by a subset
of nodes in Gi and is called a cluster. The clusters are so
connected that the intersection of any two clusters are
contained in each cluster on the unique path between
them. The junction tree provides a tree structure that
allows inference to be performed effectively using mes-
sage passing among clusters (Jen96). Figure 7 shows
the junction tree at agent A1, where each cluster is la-
beled using the indexes of variables contained.

Figure 7: The junction tree at agent A1

Finally, the d-sepset between each pair of agents is
converted to a junction tree called a linkage tree. The
linkage tree allows the belief on d-sepset to be decom-



posed into more compact representations and hence
more efficient communication among agents. Figure 8
shows the linkage tree between agent A1 and A2.

Figure 8: The linkage tree between agents A1 and A2.

The resultant representation of the MSBN is called a
linked junction forest.

Monitoring and Diagnosis

M&D computation takes place in the linked junction
forest, where each agent uses a junction tree as its inter-
nal representation and uses a linkage tree as the commu-
nication channel with a corresponding neighbor agent
in the hypertree.

We assume the circuit in Figure 1 has two faulty gates
d1 and t5 that produce incorrect outputs. The external
inputs of the circuit are shown in the figure, and so
are the outputs of all gates. Due to the faulty outputs
of the two gates, outputs of some other gates are also
affected. We have underlined each output that differs
from the expected output value. Hence, Figure 1 defines
a complete state of the circuit.

However, the state of the circuit is not entirely ob-
servable to the agents. We assume that the state of
each gate is not observable. The external inputs and
outputs of the circuit can be observed with low cost.
Most internal outputs can be observed with high cost
but some of them are also unobservable.

Autonomous inference without cooperation
First, we demonstrate the limitation of autonomous in-
ference by individual agents without cooperation.

Consider agent A4. Suppose that the output x4 of
gate t4 is not observable. The belief of A4 after all
variables have been observed, except x4 and states of
gates, is shown in Figure 9. The height of each his-
togram ranges from 0 to 1. The labels 0 and 1 represent
logical values of inputs/outputs of gates. The labels b
and g stand for states “bad” and “good” of gates.

Figure 9: A4 cannot decide if t4 or t5 is abnormal.

Since x4 is unobservable, although agent A4 suspects
that t4 or t5 might be faulty, it is quite uncertain (with
belief 0.28 and 0.73 for each). Hence, A4 is unable
to decide replacement action with high certainty. We
shall see in the following that by cooperating with other
agents, A4 can do much better.

Monitor and diagnose through cooperation
We assume that x4 and w0 are unobservable. Initially,
each agent observes some local external inputs/outputs.
A0 observes a0, b0 and s1. A1 observes i0, k0 and
z3. A2 observes i2, s0 and b2. A3 observes o1 and
l1. A4 observes i2, e2, o2 and n2. Due to limited
observation, most agents do not detect any abnormality
yet. Figure 10 shows the belief of A2.

Figure 10: A2 sees nothing wrong before communica-
tion.

Only A4 detects that something is wrong (the prob-
abilities of gates t4, t5, d0 and g6 being faulty are 0.10,



0.25, 0.19 and 0.49, respectively). It then initiates a
communication.

During a communication, agents propagates their be-
lief on d-sepsets along the hypertree by responding
to requests from neighbors. After a communication,
agents’ belief will be consistent with all evidence accu-
mulated in the system. The formal details can be found
in (Xia96).

Figure 11: A2 suspects gates d1, t8, g7, t4 and t5 after
communication.

Figure 12: Agent A1 makes an additional observation
on q0.

After this communication, the deviation of circuit
outputs from its expected values is detected by all
agents. A0’s belief of gates g1 and g4 being faulty are
0.09 and 0.15. A1’s belief of gates g0, g7 and g1 being
faulty are 0.15, 0.09 and 0.23. A2 suspects abnormality
in gates d1, t8, g7, and also gates t4 and t5 that physi-
cally belong to the subdomain of A4 (Figure 11). A3’s
belief of gate d1 being faulty is 0.23. A4’s belief of gates

t4, t5, g6 and d0 being faulty are 0.10, 0.24, 0.49 and
0.19. It appears many gates are suspected but none is
conclusive.

To further reduce the uncertainty, suppose that each
agent makes one more observation. A1 observes q0 and
its belief is shown in Figure 12. It has now ruled out
gates g1, g0 and g9, but still suspects g7.

Figure 13: A3 makes an additional observation on q1.

Figure 14: Agent A4 knows that t5 is faulty after the
second communication.

Figure 13 shows that A3 is quite confident that d1 is
faulty (belief 0.98).

After observing c0, A0’s belief on gates g1 and g4
does not change much. After observing f1, A2 ruled out
t4 with its belief on t5 being faulty increased to 0.27.
Its uncertainty on gates d1, t8 and g7 are unchanged.
A4 observes q2 and rules out gates d0 and g6. It still
suspect t4 (0.27) and t5 (0.72).

The unresolved uncertainty demands another com-
munication. After that, agents A0, A1 and A3 are cer-



tain that all gates in their physical domains are nor-
mal. A2 is confident that only d1 is abnormal. A4 is
sure that gate t5 is faulty and everything else is normal
(Figure 14).

The cooperation allows agents to converge their belief
to high certainty even though some outputs of the gates
are unobservable.

Research Issues

Internet based diagnosis
The agents in a M&D system do not have to run phys-
ically on site. That is, each M&D agent does not have
to be located physically near the component that the
agent is assigned to monitor. Instead, the agent may be
running in a server at any convenient location distant
from the component. Observations from the compo-
nent can be transmitted to the agent through Internet
or through a radio link if the component or the entire
system is mobil.

The physical separation of a component and its mon-
itoring agent allows the exploration of several possibil-
ities. For example, the equipment owner does not have
to own the M&D agent for each component. Instead,
the component vendor owns the agent and uses it to
provide the on-line M&D service.

A component vendor typically supplies for multi-
ple equipments each owned by a difference owner, and
hence will deploy one agent for each component object.
All such agents, however, can be physically co-located
in one or more servers at the location convenient to
the component vendor. This allows the agents to be
maintained and upgraded conveniently by the vendor.
The cost of such a configuration is the transmission of
observations from the components to the agent servers.

Utility and action
A common extension of BNs to include utility and ac-
tions is influence diagrams (Sha88). Influence diagrams
assume predetermined possible sequences of observa-
tions/actions. Since agents are autonomous, it seems
unreasonable to assume predetermined sequence of ob-
servations by multiple agents.

A straightforward extension of MSBNs to include
utility and actions is the following: Each agent is given
the utility of replacing each potentially faulty device
(correctly or incorrectly). The action to take next is
determined (myopically) by comparing the utility of re-
placing each device and following the principle of the
maximum expected utility.

For information collecting actions (observations and
communications), the utility may be determined
through the cost and the value of information. An exact
evaluation of the value of information for a particular
action may be too expensive. An approximate evalu-
ation can be performed relative to a single device cur-
rently suspected to be faulty by the local agent. The
expected utility of the best action without the obser-
vation is computed, and so is the expected utility for

actions with the observation taking into account all pos-
sible outcomes of the observation.

More accurate approximate evaluations may be per-
formed relative to a group of local devices. It may also
be desirable to take into account the values in other
agents as some actions not valuable locally may be very
valuable to other agents.

After a device believed to be faulty is replaced, all
observations that depend on the state of the device are
invalidated. The simplest way to reflect this is to let the
agent request a rebooting of all agents. However, this
may lose some observations on some agents which are
not dependent on the newly replaced device. It would
be desirable to develop less drastic updating that uses
only local repairing instead of global rebooting.

Upgrading through learning
Effective M&D depends partially on the accuracy of nu-
merical parameters embedded in each agent. Although
a component’s normal behavior should be well under-
stood by the component vendor, its faulty behaviors
and their relative frequencies may be unclear, especially
when the component is new. The parameters embedded
in the agent will likely be inaccurate.

As a component is deployed and monitored, obser-
vations on its behavior may be accumulated. These
data may be used to improve the original parameters
(LDLL90). Such data should be collected ideally from
a large number of individuals of the device. This may
be most conveniently performed if all the M&D agents
for the device are controlled by the component vendor
as we outlined above.

Extending to dynamic systems
Many equipments’ states change over time. The current
theory of MSBNs does not handle time explicitly. We
consider the limit of the current theory in monitoring
such dynamic systems.

Many faults of such systems can be identified with-
out referring to its history. It is sufficient to identify
these faults by using only a single snap shot of the sys-
tem state at the right time. A MSBN based MAS can
be used to diagnose such faults. Agents make obser-
vations and communications regarding only the system
state at a particular instant. They repeatedly perform
such activities for each instant independently of other
instants.

Other faults can only be identified by looking into the
history of the system states. Depending on the memory
length k (how far into the past the current state depends
on) of the system, we classify them into those of short
memory length and those of long memory length.

When the equipment has a short memory length (k
is small), it may still be feasible to model the equip-
ment as a MSBN. For each dynamic variable, up to
k instances can be created each representing the value
of the variable at a particular instant. Agents reason
treating k successive instants as a unit. The units may
or may not overlap. In either case, agents repeatedly



perform their activities for each unit independently of
other units.

As k increases, the representation and computation
will become too complex to be feasible. Hence for equip-
ments of long memory length, the current theory of
MSBNs must be extended in order to be applicable.
Under the single agent paradigm, the counterpart of a
static BN is the dynamic Bayesian networks (DBNs).
Although inference in MSBNs are exact, there are evi-
dence (Xia98a) that approximation is unavoidable when
extending MSBN in a similar fashion.

Conclusion

We presented the MSBN framework in the context of
equipment monitoring and diagnosis. We demonstrated
that modeling, verification, compilation and M&D in-
ference can all be performed distributed in a multia-
gent setting. The belief of agents through such infer-
ence is coherent with respect to the probability theory.
The disclosure of the internal structure of each agent’s
knowledge base is minimum. Hence, the framework
provides a powerful formalism for integrating multiple
agents from difference vendors into a coherent M&D
system, while protecting the know-hows of component
vendors.

We have implemented most of the features demon-
strated in a JAVA based toolkit WEBWEAVR-III
(freely available from the first author’s homepage).
Promising directions are currently being explored to ex-
tend the framework to include utility and actions, and
to handle dynamic systems. We are also actively seek-
ing industrial partners in applying the framework to
equipment M&D.
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