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Abstract

Multiply sectioned Bayesian networks for single-agent systems are extended into
a framework for cooperative multi-agent distributed interpretation systems. Each
agent is represented as a Bayesian subnet. We show that the semantics of the joint
probability distribution of such a system is well defined under reasonable conditions.

Unlike in single-agent systems where evidence is entered one subnet at a time,
multiple agents may acquire evidence asynchronously in parallel. New communi-
cation operations are thus proposed to maintain global consistency. It may not be
practical to maintain such consistency constantly due to the inter-agent ‘distance’.
We show that, if the new operations are followed, between two successive commu-
nications, answers to queries from an agent are consistent with all local evidence,
and are consistent with all global evidence gathered up to the last communication.

During a communication operation, each agent is not available to process evi-
dence for a period of time (called off-line time). Two criteria for the minimization
of the off-line time, which may commonly be used, are considered. We derive, under
each criterion, the optimal schedules when the communication is initiated from an
arbitrarily selected agent.

1 Introduction

Probabilistic reasoning in Bayesian networks (BNs), as commonly applied, assumes a
single-agent paradigm. That is, a single processor accesses a single global network repre-
sentation, updates the joint probability distribution over the network variables as evidence
becomes available and answers queries. Concurrency, as applied to BNs, primarily aims at
performance and decentralization of control [15, 9], but not at modeling inference among
multiple agents with multiple perspectives. The resultant individual concurrent element is
thus ‘fine-grained’, e.g., a node in a BN [15] or a clique in the junction tree representation
of a BN [9].

The single-agent paradigm is inadequate when uncertain reasoning is performed by
elements of a system between which there is some ‘distance’, which may be spatial, tempo-
ral or semantic (elements are specialized differently) [1]. Such systems pose special issues
that need to be addressed. A multi-agent view is thus required where each agent is an
autonomous intelligent subsystem. Each agent holds its own partial domain knowledge,
accesses some external information source and consumes some computational resource.
Each agent communicates with other agents to achieve the system’s goal cooperatively.

Distributed artificial intelligence (DAI) addresses the problems of designing and an-
alyzing such ‘large-grained’ coordinating multi-agent systems [2, 6]. Main stream ap-
proaches in DAI, e.g., blackboard systems [5], contract nets [3] and open systems [8]
are essentially logic-based. To our best knowledge, little has been reported to explore
probabilistic approach in DAI.
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This paper reports our pilot study on applying the probabilistic approach to coop-
erative multi-agent reasoning. We address the problem of distributed interpretation, a
subclass of problems in DAI. As defined originally by Lesser and Erman [12], an in-
terpretation system accepts evidence from some environment and produces higher level
descriptions of objects and events in the environment. A distributed interpretation system
is needed when sensors for collecting evidence are distributed, and communication of all
evidence to a centralized site is undesirable. Examples of such systems include sensor
networks, medical diagnosis by multiple specialists, trouble-shotting of complex artifacts
and distributed image interpretation. Multi-agent systems may consist of cooperative or
self-interested agents. We consider only cooperative agents in this paper.

Our representation is based on multiply sectioned Bayesian networks (MSBNs)[19],
which were developed for single-agent-oriented and modular knowledge representation,
and more efficient inference[18]. We demonstrate that the modularity of MSBNs allows
a natural extension into a multi-agent reasoning framework. In particular, we show that
the semantics of the joint probability distribution of a cooperative multi-agent system
is well defined under reasonable conditions. We propose new communication operations
that are used to maintain inter-agent consistency. We derive communication schedules
that optimize the time efficiency of the communication.

Section 2 briefly introduces BNs and single-agent MSBNs. Section 3 presents the
semantic extension of single-agent MSBNs to multi-agent MSBNs. Each cooperative agent
is represented as a Bayesian subnet that consumes its own computational resource, gathers
its own evidence and can answer queries. When agents are cooperative, are conditionally
independent given the intersections of their subdomains and have a common initial belief
on their intersections, then it is shown that a joint probability distribution of the multi-
agent system is uniquely defined and is consistent with the belief of every agent in the
system.

Unlike single-agent systems where evidence is entered one subnet at a time, multiple
agents may acquire evidence asynchronously in parallel. Section 4 discusses consistency-
related issues that arise from the extension. Section 5 adds new belief propagation op-
erations to the set of single-agent MSBN operations for inter-agent communication. We
show that agents in the system will be globally consistent after the proposed operations
are performed. Inter-agent ‘distance’ and the associated communication cost may pre-
vent constant maintenance of inter-agent consistency. We prove that when the proposed
operations are used, between two successive communications, the answers to queries from
an agent are consistent with all local evidence gathered so far and are consistent with
all global evidence gathered up to the last communication. Section 6 presents an exper-
imental demonstration how a multi-agent MSBN may be used to perform a distributed
interpretation task.

During a communication operation, each agent is not available to process new evidence
for a period of time (called off-line time). Such non-availability imposes restriction on
time-critical applications. Therefore, the length of the off-line time should be minimized.

3



Section 7 defines two criteria for the minimization of the off-line time which may commonly
be used. One is based on the total length of the off-line time for the entire multi-agent
system. The other is based on the average length of the off-line time across all agents in
the system. To facilitate the study of the optimal communication schedules, we abstract
the activities during the communication into a graphical model, and identify the factors
that can be manipulated in optimizing these schedules.

Section 8 reduces the communication scheduling into two independent subproblems
and establishes the duality of the two subproblems. This result allows the optimal com-
munication schedules be derived by solving only one of the subproblms. Section 9 derives,
for each minimization criterion, the communication schedules that yield the minimum
off-line time when the communication is initiated from an arbitrarily selected agent.

Section 10 discusses some general issues related to this work. Our presentation assumes
a general terminology of graph theory.

2 Multiply Sectioned Bayesian Networks

2.1 Bayesian networks

A BN [15, 13, 11, 9] is a triplet (N,E,P ). N is a set of nodes. Each node is labeled with
a variable associated with a space. We shall use ‘node’ and ‘variable’ interchangeably.
Therefore, N represents a problem domain. E is a set of arcs such that D = (N,E)
is a directed acyclic graph (DAG). We refer to D as the structure of the BN. The arcs
signify directed dependencies between the linked variables. For each node Ai ∈ N , the
strengths of the dependencies from its parent nodes πi are quantified by a conditional
probability distribution p(Ai|πi) of Ai conditioned on the values of Ai’s parents. For any
three sets X, Y and Z of variables, X and Y are said to be conditionally independent
given Z under probability distribution P if P (X|Y Z) = P (X|Z) whenever P (Y Z) > 0.
The basic dependency assumption embedded in BNs is that a variable is conditionally
independent of its non-descendants given its parents. This assumption allows P , the joint
probability distribution (jpd), to be specified by the product P =

∏
i p(Ai|πi).

2.2 Single agent oriented MSBNs

To make the paper self-contained, we briefly introduce the single-agent oriented MSBNs
[19, 18].

A MSBN M consists of a set of interrelated Bayesian subnets. Each subnet represents
dependencies of a subdomain in a large problem domain or total universe. Each subnet
shares a non-empty set of variables with at least one other subnet. The intersection
between each pair of subnets satisfies the d-sepset condition.
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Definition 1 (d-sepset) Let Di = (N i, Ei) (i = 1, 2) be two DAGs such that D =
(N1 ∪N2, E1 ∪ E2) is a DAG. The intersection I = N1 ∩ N2 is a d-sepset between D1

and D2 if, for every Ai ∈ I with its parents πi in D, either πi ⊆ N1 or πi ⊆ N2.

It can be shown that, when a pair of subnets are isolated from M , their d-sepset
renders them conditionally independent. Figure 1 (left) shows the structure of a MSBN
for diagnosis of Median nerve lesion (Medn), Carpal tunnel syndrome (Cts) and Plexus
upper trunk lesion (Pxut).1 It consists of three subnets Di (i = 1, 2, 3) for clinical,
electromyography and nerve conduction subdomains, respectively. The d-sepset between
each pair of subnets is {Medn,Cts, Pxut}. In general, d-sepsets between different pairs
of subnets of M may be different.

Subnets of M are organized into a hypertree structure. Each hypernode is a subnet
of M . Each hyperlink is a d-sepset between a pair of subnets. A hypertree structured
M ensures that each hyperlink render the two parts of M that it connects conditionally
independent. The subnets in Figure 1 (left) can be organized into the hypertree in Figure 1
(middle). Figure 1 (right) depicts a general hypertree structured MSBN.
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Figure 1: Left: An example MSBN for neural muscular diagnosis. Middle: The hypertree
organization of the MSBN in the left. Right: A general hypertree structured MSBN.

Each subnet in M may be multiply connected (more than one path between a pair
of nodes), e.g., D1. In order to perform inference more efficiently in each subnet, the
hypertree structured M is converted into a linked junction forest (LJF) F of the identical
structure as its run time representation. Each hypernode in the hypertree is a junction
tree (JT) (clique tree) converted from the corresponding subnet through moralization and
triangulation [11, 9]. Each hyperlink in the hypertree is a set of linkages which covers the
d-sepset between the two corresponding subnets.

The need for linkages can be understood as follows: When evidence is obtained in one
subnet/JT, it can be propagated to an adjacent JT by passing the probability distribution
over the d-sepset I. This may not be efficient if the cardinality of I is large. The efficiency
can be improved by exploiting the conditional independence within I. Linkages form a

1The example is taken from a fraction of PAINULIM [18] with modification.
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decomposition of I based on conditional independence. Once linkages are defined, the
probability distribution over I can be passed by passing distributions over linkages, which
is more efficient. We will illustrate this later in this subsection. Linkages are obtained as
follows:

Definition 2 (linkage) Let I be the d-sepset between JTs T a and T b in a LJF.
First remove recursively every leaf clique C of T a that satisfies one of the following

conditions. (1) C ∩ I = φ. (2) C ∩ I is a subset of another clique. Denote the resultant
graph by T ′.

Then remove recursively either a node from a clique of T ′ or a clique from T ′ as
follows. (a) If a node x 6∈ I is contained in a single clique C, remove x from C. (b) If a
clique C becomes a subset of an adjacent clique D after (a), union C into D.

The resultant is a linkage tree Y a→b of T a relative to T b. Each clique l of Y a→b is
a linkage from T a to T b. The clique of T a that contains a linkage l is the linkage host

of l.

It can be shown that a linkage tree is a JT. It can also be shown that belief propagation
between JTs through linkages can be performed correctly if and only if Y a→b and Y b→a

are identical.

Cts pnhd Medn Cts ocup Medn ocup acci Pxut Medn wkar Pxut pnsd

Medn Cts apb Medn Pxut prt Pxut bcps

Medn Cts mcmp Pxut Medn mf2aMednmmcb
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Medn
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{Cts, Medn}

{Pxut, Medn}

{Pxut, Medn}
C1 C2 C3 C4

C5
C6 C7

C8
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Figure 2: A linked junction forest of the MSBN in Figure 1.

The MSBN in Figure 1 (left and middle) can be converted into the LJF in Figure 2.
The three subnets Di (i = 1, 2, 3) are converted into three JTs T i (i = 1, 2, 3). Then
linkages (shown as heavy links) between pairs of JTs are defined. The linkage tree of T 2

relative to T 1 is obtained by first removing the clique C8, and then removing the variable
apb from the clique C6 and removing prt from C7. We then obtained the linkage tree
with two cliques {Cts,Medn} and {Pxut,Medn} each of which is a linkage between T 1

and T 2. Their linkage hosts in T 2 are C6 and C7, and their hosts in T 1 are C2 and C4.
Parallel to the structure conversion, the conditional probability tables stored at nodes

of M are converted to belief tables (unnormalized probability distributions) of cliques in
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JTs of F such that a joint system belief of F , assembled from the belief tables, is equivalent
to the jpd of M . The belief table of a JT T is

BT (N) =

∏
iBCi(Ci)∏
j BSj (Sj)

, (1)

where N is the set of domain variables of T , BCi(Ci) is the belief table of clique Ci

and BSj(Sj) is the belief table of clique separator Sj. Subscripts are used to denote the
object that a belief table is associated with. Let BI(I) be the belief table of a d-sepset
I assembled from belief tables of linkages in the corresponding linkage tree in the similar
fashion as Equation 1 (recall that a linkage tree is a JT). The joint system belief of F
takes the form

BF (U) =

∏
iBT i(N i)

∏
j BIj(Ij)

, (2)

where U = ∪iN
i is the total universe. Since belief tables are unnormalized probability

distributions, BF (U) is proportional to the jpd of F

PF (U) =

∏
i PT i(N i)

∏
j PIj(Ij)

(3)

where P denotes a probability distribution.
To answer queries by efficient local computation in F , it must be consistent. F is locally

consistent if all JTs are internally consistent, i.e., when marginalized onto the same set
of variables, different belief tables in a JT yield the identical marginal distribution. F
is boundary consistent if each pair of adjacent JTs are consistent with respect to their
d-sepset. F is globally consistent if it is both locally consistent and boundary consistent.

A set of operations are developed to achieve consistency during evidential reasoning:
We assume that F is initially globally consistent. Details on initialization can be found
in the above reference.

After evidence is entered into a JT, the JT is no longer internally consistent and F
is no longer globally consistent. UnifyBelief brings a JT internally consistent. It is
defined in terms of DistributeEvidence (an outward belief propagation within a JT)
and CollectEvidence (an inward belief propagation) proposed by Jensen et al [9].

Operation 3 (UnifyBelief) Let T be a JT in a LJF. When UnifyBelief is initiated in
T , the following are performed: (1) A clique C is arbitrarily selected. (2) CollectEvidence
is called in C. (3) When C has finished CollectEvidence, DistributeEvidence is called
in C.

For example, suppose UnifyBelief is performed in T 3 of Figure 2 and the clique C9
is selected. During CollectEvidence, first belief propagates from C11 to C10 and from
C12 to C10, and then belief propagates from C10 to C9. During DistributeEvidence,
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first belief propagates from C9 to C10, and then from C10 to C11 and C12. This brings
T 3 internally consistent.

When evidence is available relative to variables in a JT, it is entered by EnterEvidence.
EnterEvidence enters evidence by multiplying the belief tables of relevant cliques with
the evidence function and then brings the JT internally consistent again by calling
UnifyBelief.

For example, suppose Median motor conduction block (mmcb = true) is observed
in the nerve conduction study of a patient. In Figure 2, the clique C9 contains the
variable mmcb. During EnterEvidence, the belief table of C9 will be modified such that
all configurations of {Medn,mmcb} incompatible with the observation will be set to 0.
Then UnifyBelief is called in C9.

Belief propagation between adjacent JTs in F are performed with UpdateBelief. It
updates the belief of a JT T relative to an adjacent JT, and brings T internally consistent.
It is defined in terms of a lower level operation AbsorbThroughLinkage. Given a linkage
and its two hosts (one at each JT involved), AbsorbThroughLinkage updates the belief
table of one host by the marginalization of the belief table of the other host over the
linkage.

Operation 4 (UpdateBelief) Let L = {L1, . . . , Lk} be the set of linkages between JTs
T a and T b. Let Ca

i and Cb
i be the linkage hosts of Li in T a and T b, respectively. When

UpdateBelief is called in T a to update its belief relative to T b, the following are performed:
AbsorbThroughLinkage is called in each Ca

i to absorb from Cb
i through Li. After each

AbsorbThroughLinkage, DistributeEvidence is called in Ca
i .

In Figure 2, suppose UpdateBelief is called in T 2 to update its belief relative to
T 1. First, belief propagates from C2 to C6 through the linkage {Cts,Medn} followed by
DistributeEvidence in C6. Then belief propagates from C4 to C7 through the linkage
{Pxut,Medn} followed by DistributeEvidence in C7. Note that if all variables in the d-
sepset {Medn,Cts, Pxut} has three possible values, then the probability distribution over
the d-sepset has 27-1=26 independent values. By exploring the conditional independence
within the d-sepset, we only pass the distributions over the two linkages with 8+8=16
values.

DistributeBelief initiated at a JT T causes an outward belief propagation in F . If
F was globally consistent before evidence is entered to T , then after EnterEvidence in
T followed by DistributeBelief in T , F is again globally consistent.

Operation 5 (DistributeBelief) Let T i and T j be two adjacent JTs in a LJF. When
DistributeBelief is called in T i by T j, the following are performed: (1) T i updates its
belief relative to T j by UpdateBelief. (2) T i calls DistributeBelief in all adjacent JTs
except T j.
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In Figure 2, suppose T 1 has acquired new clinical evidence. When DistributeBelief

is called in T 1 (the caller is the system and only the step (2) is performed), it calls T 2

and T 3 to DistributeBelief. The two JTs will then update their belief relative to T 1.
In single agent MSBNs, DistributeBelief is only needed for initialization. Global

consistency during evidential reasoning is maintained by a more efficient operation
ShiftAttention. After the user has entered multiple pieces of evidence into a JT,
ShiftAttention allows the user to shift attention to another target JT. It maintains
consistency along the hyperpath in the hypertree from the current JT to the target JT.

Operation 6 (ShiftAttention) Let T 0, T 1, . . . , T j be a subset of JTs in a LJF that form
a simple path in the hypertree from T 0 to T j. When ShiftAttention is called to shift
attention from T 0 to T j, for i = 1 to j, UpdateBelief is called in T i to update its belief
relative to T i−1.

In Figure 1 (right), suppose the user currently focuses his attention on D1/T 1.2 If he
wants to shift attention to D3, ShiftAttention will propagate belief from D1 to D2 and
then to D3. Note that subnets D4, . . . ,D7 are not computed during this ShiftAttention,
hence the efficiency over DistributeBelief.

A user may start with a particular JT, enter some evidence, query the subnet, shift
attention to another JT, and repeat these actions for a number of times. Note that, in
such a single agent context, evidence is always entered into the current JT. It can be
shown that, after ShiftAttention, the target JT is aways consistent at the global level in
the sense that answers to queries provided by the JT is consistent with all the evidence
entered so far in the entire LJF. We will come back to this point in Section 4.

3 Representing Multiple Agents in MSBNs

In this section, we extend the single agent MSBNs to cooperative and homogeneous multi-
agent systems for distributed interpretation and consider the semantics of such a system.

3.1 The semantics of joint system belief

As described in Section 2, a MSBN represents a large problem domain by representing
each subdomain with a subnet. From the viewpoint of reasoning agents, a MSBN repre-
sents the coherent multiple perspectives of a single agent. For example, PAINULIM [18]
consists of three subnets which represents a neurologist’s three different perspectives of
the neuromuscular diagnostic domain: clinical, EMG and nerve conduction perspectives.
The jpd of the MSBN represents the subjective belief of the single agent.

2The diagram in fact shows the MSBN M , not the LJF F . We abuse the illustration a bit since M
and F share the same hypertree structure.
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In a multi-agent system, each agent can be considered as holding its own perspective
of the domain. This partial perspective may be over a specialty, over a period of time,
or over a spatial area. The modular representation of MSBN allows a natural extension
to multi-agent systems, with a modification of the semantics: Instead of representing one
agent’s multiple perspectives of a domain, a multi-agent MSBN represents multiple agents
in a domain each of which holds one distinct perspective of the domain. Each subnet
corresponds to one such perspective.

A natural question arises: What is the interpretation of the jpd of such a system?
Whose belief does it represent? We will first discuss this issue intuitively and then justify
our interpretation formally.

Consider a computer system. It processes information coherently as a whole, even
though its components are commonly supplied by different vendors. This coherence is
achieved since each vendor follows a set of protocols in designing the functional interface
of a component. As long as the interface follows a common protocol, a vendor has the
freedom to determine the internal structure of a component and the entire system will
function as if it follows a single will. How much knowledge is necessary to the designer
of the system? He only needs to know the functional interfaces of components and not
their internal structures. In a sense, the system is built by a group of designers including
all vendors who supply components as well as the system designer. Building complex
systems in such a way has become a common practice. Procedural abstraction and data
abstraction are commonly applied to develop complex software systems by team work [7].
Layered approach is commonly used in operating systems [17] and computer networks
[16].

Next consider a human ‘system’ consisting of a patient and a family doctor. Suppose
that the patient has no medical knowledge of his problem and he trusts the doctor’s
expertise completely. Suppose that the doctor is also giving the best diagnosis and treat-
ment he can. When they meet, the patient will tell all that the doctor needs to know
for diagnosis. After the doctor reaches a diagnosis, he will prescribe a therapy which the
patient will follow. Even though the doctor does not experience the symptom himself
and the patient does not understand how the diagnosis is reached, the system as a whole
demonstrates a coherent belief on symptoms (the doctor uses to reach the diagnosis) and
the diagnosis (the patient follows the therapy). Situations like this are not uncommon
when a user is seeking advice from a specialist. Who is the designer of this system? It’s
the demand and supply (of medical expertise).

The above two scenarios illustrate that, under certain conditions, a system consisting
of different agents may demonstrate a coherent joint belief or will consistent with that of
each individual agent. Clearly one of the conditions is that agents are cooperative. An
agent must trust the information supplied by others and must also supply others with
what he really believes. This is possible if all agents in the system are working towards a
common goal (vs self-interested).

Another condition is conditional independence. It is not necessary for each agent to
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supply others with all that he believes. A component in a complex system only needs to
pass to other components the information specified in the protocol, and it can and should
hide other details regarding how the supplied information is obtained. In structured
programming, a procedure header only specifies the input and output parameters. How
the mapping from input to output is performed needs not be concerned by the caller of the
procedure. A doctor only needs to inform the patient of the diagnosis and the therapy.
He does not need to explain how the diagnosis is reached. In general, to a particular
agent engaged in a particular task, there is usually a certain amount of information from
other agents, once exchanged, that is sufficient to help the agent to perform its own task.
Beyond that amount, the information about how other agents think is irrelevant, namely,
the agent is conditionally independent of other agents conditioned on that certain amount
of information.

Let us formalize the above idea by first introducing a third condition.

Definition 7 Let N = A ∪B be a problem domain such that A ∩ B 6= φ. Let Q(A) and
R(B) be probability distributions over A and B. Q(A) and R(B) are said to be consistent
if

∑
A\B Q(A) =

∑
B\AR(B), where the summation represents marginalization.

In other words, Q(A) and R(B) are consistent if they yield the same distribution when
marginalized to A ∩B.

The following lemma is due to Dawid and Lauritzen. We reformulated in our notation.

Lemma 8 [4] Let N = A∪B be a set of variables. Let Q(A) and R(B) be probability dis-
tributions over A and B and let them be consistent. Then there exists a unique probability
distribution

P (N) = Q(A)R(B|A ∩B) whenever R(A ∩B) > 0

such that (1)
∑

N\A P (N) = Q(A), (2)
∑

N\B P (N) = R(B) and (3) A is conditionally
independent of B given A ∩B under P .

Now let α and β be two cooperative agents. Suppose α can only perceive the sub-
domain A and β can only perceive the subdomain B. Let the subjective belief of α be
represented by Q(A) and that of β be represented by R(B). Suppose knowing the other
agent’s belief on the intersection A ∩ B is sufficient to coordinate the tasks of α and
β. Suppose Q(A) and R(B) are consistent, i.e., the two agents share the same belief
Q(A ∩ B) = R(A ∩ B) on the intersection A ∩ B. Then, according to Lemma 8, there
exists a unique probability distribution P (N) that is consistent with both Q(A) and R(B)
and that it satisfies the conditional independence of A and B conditioned on A ∩B.

Coming back to our extension of MSBNs to multi-agent systems, suppose we form a
MSBN M with the two agents α and β. Suppose M consists of two subnets Sα and Sβ

over the subdomains A and B such that their d-sepset is A ∩ B. Now the distribution
of Sα corresponds to α’s belief and the distribution of Sβ corresponds to β’s belief. The
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boundary consistency ofM corresponds to the consistency of the two agents’ belief. When
M is globally consistent, the jpd defined by Equation 3 is identical to P (N) in Lemma 8.

Dawid and Lauritzen have generalized Lemma 8 to the case of more than two distri-
butions. We reformulated in our notation as follows:

Theorem 9 [4] Let N be a set of variables. Let T be a junction tree and Ci be a clique of
T such that ∪iCi = N . Let QCi(Ci) be the probability distribution over the clique Ci such
that distributions for each pair of adjacent cliques in T are consistent. Let Sj be a clique
separator in T and QSj(Sj) be the distribution over Sj computed from the distribution of
any one of its adjacent cliques. Then there exists a unique probability distribution

PT (N) =

∏
iQCi(Ci)∏
j QSj (Sj)

such that (1) for each clique Ci,
∑

N\Ci
PT (N) = QCi(Ci) and (2) for each pair of adjacent

cliques Ci and Cj with their separator Sk, Ci is conditionally independent of Cj given Sk

under PT .

According to Theorem 9, if we organize a set of cooperative agents into a MSBN such
that adjacent agents in the hypertree are conditionally independent and consistent, then
the jpd of the MSBN defines a coherent joint belief among all agents. This implies that a
multi-agent MSBN can be constructed by multiple developers. Each developer builds one
computational agent based on its own expertise in a subdomain. The theory of MSBNs
provides the guidance as how the agents should be connected, i.e., the intersection between
subdomains should be conditionally independent, the interface of subnets should be a d-
sepset, the overall organization should be a hypertree, etc., and how belief propagation
should be performed.

3.2 MSBNs ensure disciplined communication

One might still wonder what difference a multi-agent MSBN makes compared to a same
set of agents without organized into a MSBN. Can each agent cooperate with others by
sending messages and treating messages received as evidence?

It should be clear that the belief propagation in MSBNs performed by UpdateBelief

is in fact message passing. The messages are the probability distributions over linkages.
However, message passing in a MSBN is disciplined.

First, the distribution on the entire d-sepset between a pair of subnets, in the form of
belief tables over all linkages, must be passed each time. Passing less information is not
allowed since it would not be sufficient to inform the other agent such that a coherent
joint system belief can be warranted. Passing more information is also not allowed since
it is useless.

More importantly, messages in a MSBN must flow along the hypertree in a regulated
fashion as in DistributeBelief and ShiftAttention. Otherwise, the following sequence
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of events is possible. Initially an agent α may send a message to an agent β based on
a piece of evidence. After updating its belief, β may send a message to an agent γ.
After updating its belief, γ may send a message to α. Not knowing the message from
γ is based on the same evidence originated from α, α will update its belief and count
the same evidence twice. Such circular evidence propagation causes no problem if all
agents are deterministic or logical. However, it will create false belief with no evidential
support if agents’ knowledge is uncertain or probabilistic. The problem of circular evidence
propagation in probabilistic reasoning is discussed in [15]. The hypertree structure of
MSBNs and the way DistributeBelief and ShiftAttention operate ensures that no
circular evidence propagation occur among agents.

3.3 Illustration of multi-agent MSBNs

We use two examples to illustrate the above general discussion.
First, let us consider monitoring or troubleshooting a complex artifact system as shown

in Figure 3. The system is made of five subsystems U0 through U4. The external input
variables of the system are a, b, c, h, m, r and w, and the external output variables are
u, v, y and z, as shown in the figure. Suppose subsystems are manufactured by different
vendors. Each vendor may build a computational agent that encodes the knowledge of the
functional and the faulty behavior of parts and of the internal structure of the subsystem.
Each agent is capable of monitoring or troubleshooting the corresponding subsystem. To
monitor the entire artifact system, we can form a multi-agent system and let these agents
cooperate.

y

U0
U1

U2

U3

U4
a

b
c

m

h

w

r v

u

z

Figure 3: An artifact consisting of five subsystems.

Suppose external inputs are independent of each other. Then each computational
agent is independent of other agents given the variables that connect the agent to others
(not labeled in Figure 3). Finally, agents must agree on a prior distribution over their
interfacing variables. We assume there is no feedback between subsystems as is the case
in this example. Since U1 receives input from U0, the agent for U1 simply accepts the
prior distribution of the input variables set by the agent for U0. Since U2 receives input
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from both U0 and U1, the agent for U2 simply accepts the prior distribution of the
input variables set by the other two agents. Now all the semantic conditions required
(cooperative, conditional independent and consistent) are met and we can organize the
agents into a MSBN.

The above illustration is independent of the particular application domain of an ar-
tifact system. To make the example more concrete, we fill each box of Figure 3 with a
digital circuit as in Figure 4. Digital circuits are used simply because the reader’s knowl-
edge to understand the example can be safely assumed. Note that, in integrating the
MSBN, only the knowledge of the interface of each circuit as shown in Figure 3 is needed
and the knowledge of the internal structure of each circuit is not necessary. Furthermore,
although the function of each gate is commonly defined, its faulty behavior may vary
from vendor to vendor. For example, U1 and U2 may be supplied by different vendors.
An AND gate in U1 may have the stuck-at-0 faulty behavior, but an AND gate in U2
may output correctly 40% of time when it is faulty. The vendor of each circuit, not the
designer of the artifact system, is in the best position to encode such knowledge. If a
circuit from a vendor is replaced by another with the same functional interface but from
a different vendor, we simply replace the corresponding agent without disturbing the rest
of the MSBN. The new MSBN will still perform inference coherently. Figure 5 (left)
shows the five computational agents in the form of Bayesian subnets for the five circuits
in Figure 4. Figure 5 (right) shows the hypertree organization of the MSBN. Who is the
designer of the MSBN? There is a group of them including those who build agents and
the one who integrates agents. Such a multi-agent system may be used by multiple users
each interacting with one computational agent. The interaction consists of local evidence
entering and queries.

Our second example extends that by Lauritzen and Spiegelhalter [11] for a single agent
system:

Example 10 Dyspnoea (δ) may be due to tuberculosis (τ ), lung cancer (ι) or bronchitis
(β). A recent visit to Asia (ν) increases the chances of τ , while smoking (ζ) is a known
risk factor for both τ and ι. After an initial diagnosis based on the above information, to
further discriminate between τ and ι, a clinician may request lab tests from a radiology
lab and a biology lab. Radiology lab has two relevant tests for τ and ι: X-ray (χ) and
laminagraphy (α). Biology lab has two relevant tests as well: sputum test (ρ) and biopsy
(o).

This fictitious example involves three medical subdomains: clinical, radiological and
biological. In order to diagnose a patient with dyspnoea, expertise from all three subdo-
mains may be needed (cooperative). A human decision maker often needs assistants to
help gather relevant information from other decision makers and to help make decisions.
Each medical practitioner in a subdomain (either a doctor or a radiologist or a biologist)
may be assisted by a computational agent (a BN) specialized on the subdomain helping
him or her diagnose and communicate with other practitioners during diagnosis. As we
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argued in Section 3.2, these agents should be organized as a MSBN to ensure the coherent
communication. Each individual agent may be developed by an independent developer.
The MSBN may be integrated before any diagnosis is to be performed. This is similar to
the digital system example. It is also possible that an agent may demand assistance from
a pool of potentially cooperative agents such that a MSBN is formed on the fly. This is the
approach taken in the contract net [3]. However, as is proposed and commonly applied,
the contract net does not have a mechanism to perform probable reasoning coherently.
Multi-agent MSBNs will provide such a mechanism, although the dynamic formulation of
a MSBN is beyond the scope of this paper.

Figure 6 shows an example MSBN for the three medical subdomains mentioned above.
In constructing the example, we have assumed that only other agents’ belief on the two
diseases matters to an agent in interpretating its own evidence (conditional independence).
We also assume that, prior to observation of a patient, all three agents share the same
belief on the likelihood of tuberculosis and lung cancer. That is, the three subnets have
the same prior probability distribution over the two diseases (consistent). Therefore, the
d-sepset between pairs of subnets is {τ, ι}. Each subnet encodes the knowledge how ev-
idence in the corresponding subdomain should be used in diagnosing tuberculosis and
lung cancer. Note that the evidence from different subdomains may be conflicting. For
example, the result of X-ray may be positive, suggesting lung cancer to the radiologist,
but the result of biopsy my be negative, suggesting the opposite to the biologist. Each
subnet will interpret its own evidence according to its encoded knowledge. By communi-
cating with other subnets using the belief propagation operations of MSBNs (some new
operations are needed and will be introduced in Section 5), the three subnets will come
to a coherent diagnosis.

ρ
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ι
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δ

ι

τ

τ
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ο

χ
3

2

1D

D
D

α

Figure 6: A multi-agent MSBN representing three medical specialists diagnosing a patient
with dyspnoea. D1: clinical subnet, D2: radiological subnet, D3: biological subnet.

The LJF for the MSBN is shown in Figure 7. Note that, for this example, only a
single linkage is created between a pair of JTs, which is not the general case (compare
with Figure 2). Note also that, the three agents are not only semantically different, but
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Figure 7: The LJF for the multi-agent MSBN in Figure 6. Separators between cliques
are shown in solid lines. Linkages between JTs are shown in dotted bands.

may also be remotely located and must communicate through a computer network.

4 Consistency Issues in Multi-agent MSBNs

The semantic extension of MSBNs to multi-agent systems implies that all the technical
constraints applicable to the construction of single-agent MSBNs must be followed in
the construction of multi-agent MSBNs. In addition, evidential reasoning in multi-agent
systems raises new issues regarding consistency, which must be addressed. To appreciate
these issues, we use Figure 1 (right) to review how consistency is maintained in single-
agent MSBNs.

For a single-agent MSBN, evidence always comes towards the subdomain that the
single user is currently focusing on. The corresponding subdomain or subnet is called
active. Suppose the user of the MSBN in Figure 1 (right) focuses attention on the subnet
D1, then D3, and then D5. The user enters some evidence into each of the subnets as it
is active. Consistency of the MSBN can be maintained using either DistributeBelief
or ShiftAttention (Section 2.2).

Suppose DistributeBelief (Operation 5) is used. As soon as the user has entered
evidence to D1 and wants to activate D3, DistributeBelief can be called in D1. It
propagates new evidence to the entire MSBN. When D3 is made active afterwards, it is
up-to-date. Similarly, after the user has entered evidence to D3 and before he activates
D5, DistributeBelief can be called in D3. It brings all subnets up-to-date including
D5.

DistributeBelief always brings the entire MSBN globally consistent before a new
subnet is made active, which may not be necessary. Alternatively, ShiftAttention only
ensures the subnet that the user shifts attention to be up-to-date, since no evidence will
be entered elsewhere and no query will be issued in any other subnet. This is achieved by
propagating evidence only along the hyperpath in the hypertree MSBN from the currently
active subnet to the next active subnet. For the above example, during the attention shift
from D1 to D3, belief propagates from D1 to D2 and then to D3. During the attention
shift from D3 to D5, belief propagates from D3 to D2 to D4 and then to D5. It can be
shown [19] that, as far as the target subnet (first D3 and then D5) is concerned, its belief
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state after ShiftAttention is identical to that after DistributeBelief. The answers to
queries at the target subnet is consistent with the evidence acquired in the entire MSBN,
namely, the target subnet is consistent at global level even though the entire MSBN is
not globally consistent. Since ShiftAttention only maintains hyperpath consistency and
hence requires less computation than DistributeBelief, it is alway preferred in single-
agent MSBNs.

4.1 How to regain global consistency?

The fact that ShiftAttention as well as DistributeBelief are sufficient to maintain
consistency depends directly on the fact that evidence is always entered at the current
subnet and nowhere else. This can be understood by noting that both operations prop-
agate evidence from the current subnet (the source of new information) outward. In
a multi-agent system, multiple agents may acquire evidence asynchronously in parallel.
Since source of new information are now scattered throughout the hypertree, none of the
two operations can be used to ensure global consistency any more. Belief propagation
must follow a different process which we shall refer to as communication. We propose the
corresponding operations and prove their properties in Section 5.

4.2 What is the consistency level between communications?

In a single-agent MSBN, after ShiftAttention the newly active subnet is consistent at a
global level. If EnterEvidence (Section 2.2) is performed subsequently to enter evidence
to the subnet and to bring it internally consistent, then the subnet is still consistent at a
global level, i.e., answers to queries is consistent to evidence acquired in the entire MSBN.

In a multi-agent MSBN, the situation is quire different. After evidence is entered into
two different subnets, neither has the knowledge of the evidence entered into the other
subnet. Due to the inter-agent ‘distance’ and the associated communication cost, we may
not be able to perform communication frequently enough to maintain global consistency
constantly. A question that must be answered is, between two successive communications
which regain global consistency, what is the consistency level of each agent after additional
evidence is acquired? We prove a theorem to answer this in Section 5.

5 Maintaining Consistency through Communication

5.1 Added Operations for Regaining Global Consistency

As discussed in Section 4, parallel evidence acquisition at multiple agents renders invalid
the single-agent MSBN operations for maintenance of global consistency. To regain consis-
tency in a multi-agent MSBN, we extend the inward-outward belief propagation method
in a single JT [9, 10] to the LJF of a MSBN. Jensen et al’s method propagates belief
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through a single information path (a unique path exists between any two cliques in a JT).
Belief propagation in a LJF must be performed over multiple linkages. Fortunately, the
latter problem has been solved in single-agent MSBNs with the operation UpdateBelief

(Section 2).
Following this idea, we add two new operations CollectNewBelief3 and

CommunicateBelief4. CollectNewBelief causes an inward belief propagation in a LJF.
CommunicateBelief calls CollectNewBelief and DistributeBelief to propagate evi-
dence obtained from multiple agents (JTs) inward first and then outward to the entire
LJF.

Operation 11 (CollectNewBelief) Let T be a JT in a LJF. Let caller be either the
LJF or an adjacent JT in the hypertree. When CollectNewBelief is called in T , the
following are performed:

1. T calls CollectNewBelief in all adjacent JTs except caller if caller is a JT.

2. After each JT being called has finished CollectNewBelief, T updates its belief with
respect to the JT by UpdateBelief.

CollectNewBelief is associated with JTs.

Operation 12 (CommunicateBelief) When CommunicateBelief is initiated at a LJF
F , the following are performed:

1. A JT T in F is arbitrarily selected.

2. CollectNewBelief is called in T .

3. When T has finished CollectNewBelief, DistributeBelief is called in T .

CommunicateBelief is associated with the LJF.

Example 13 Figure 8 shows how belief propagates through a LJF during CommunicateBelief.
Each node corresponds to an agent in the system. The link between two adjacent agents
corresponds to the set of linkages between them. Suppose the operation is initiated at an
arbitrarily selected agent T 1. CollectNewBelief proceeds by first propagating control
from T 1 towards terminal agents along solid arrows, and then propagating belief from
terminal agents back to T 1 along dotted arrows. Then DistributeBelief proceeds by
propagating belief from T 1 towards terminal agents along solid arrows. The time required
for control propagation can usually be ignored compared with that for belief propagation.

3The operation CollectBelief [19] is similar in form to CollectNewBelief. But CollectBelief
deals with a simpler consistency problem and can only be used for initialization. It is thus computationally
less expensive than CollectNewBelief.

4The operation BeliefInitialization [19] is similar in form to CommunicateBelief. But the former
deals with a simpler consistency problem (initialization). It is thus computationally less expensive than
CommunicateBelief.
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Figure 8: Belief propagation during CommunicateBelief in a LJF. Each node repre-
sents a JT. Each link between two nodes represents the set of linkages between the
JTs. The operation is initiated from T 1. Dotted arrows illustrate belief propaga-
tion during CollectNewBelief, and solid arrows illustrate belief propagation during
DistributeBelief.

Note that CommunicateBelief is operationally ‘semi-parallel’. It is ‘parallel’ in that
T 4 and T 5 may perform UpdateBelief relative to their terminal neighbors in parallel
during CollectNewBelief. It is ‘semi’-parallel in that T 4 must perform UpdateBelief

relative to its terminal neighbors in sequence during CollectNewBelief. The same can
be said on DistributeBelief as well.

5.2 Consistency After and Between Communications

We answer the two questions raised in Section 4. First, we show that after CommunicateBelief
is performed, the multi-agent MSBN is globally consistent.

Theorem 14 (Multi-agent consistency) Let F be a globally consistent LJF 5 con-
verted from a MSBN of a hypertree structure. Let Z be a subset of JTs of F . After the
following operations, F is globally consistent.

1. For each JT in Z, use EnterEvidence to enter finite pieces of evidence into the JT.

2. Use CommunicateBelief to communicate belief among JTs in F .

5To be more precise, F should also be supportive and separable [19]. We will not go into that level of
technical detail here.
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Proof:
By assumption F is globally consistent before any EnterEvidence. We convert F

conceptually into a JT Υ and prove the theorem using Υ. For each JT T i of F with the
domain N i, union all its cliques into one huge clique denoted by W i. Note that W i = N i.
Let the nodes of Υ be those huge cliques. For each pair of adjacent JTs T i and T j of F
in the hypertree, connect W i and W j in Υ and denote their separator by Sij. Note that
Sij = I ij where I ij is the intersection of T i and T j in F . The resultant graph Υ is a JT
since F has a hypertree structure.

Assign to each clique W i in Υ a belief table BW i(N i) = BT i(N i). Assign to each
separator Sij a belief table BSij (I ij) = BIij(I ij). The resultant Υ is a consistent JT
whose joint system belief is proportional to the joint system belief of F .

EnterEvidence in T i of F corresponds to multiplying BW i(N i) in Υ by the evidence
function. It updates the joint system belief and causes inconsistency. CommunicateBelief
consists of the selection of a JT T 0 and a CollectNewBelief followed by a DistributeBelief.
The CollectNewBelief in F corresponds to a CollectEvidence in Υ called in W 0. The
DistributeBelief in F corresponds to a DistributeEvidence in Υ. The resultant Υ is
again consistent.

After each EnterEvidence, the JT of F involved is internally consistent. Both
CollectNewBelief and DistributeBelief call UpdateBelief which maintains the in-
ternal consistency of the JT involved. Therefore, after CommunicateBelief, F is locally
consistent. The consistency of Υ implies boundary consistency of F . Hence F is globally
consistent. 2

CommunicateBelief involves both local computation at each agent and information
exchange among multiple agents over ‘distance’. Due to the cost involved CommunicateBelief
may not be performed frequently. Therefore, each agent may acquire multiple pieces of
evidence between two successive CommunicateBelief operations and may have to answer
queries before the next CommunicateBelief can be performed. The second question we
address is: what is the consistency level of these answers to queries. Theorem 15 shows
that, between two successive communications, a JT is consistent with all local evidence
acquired so far and is consistent with all global evidence acquired up to the last commu-
nication. This is the best that one can expect.

Theorem 15 (Semi-up-to-date) Let F be a LJF converted from a MSBN of hypertree
structure. Let Z be a subset of JTs of F .

After a CommunicateBelief in F followed by a finite number of EnterEvidence

to each JT in Z, the marginal distributions obtained in a JT T ∈ Z are identical as
would be obtained if only the EnterEvidence operations in T were performed after the
CommunicateBelief.

Proof:
We shall refer to the CommunicateBelief mentioned in the theorem as the first

CommunicateBelief. After the operation, F is globally consistent by Theorem 14. Among

21



all the EnterEvidence operations performed in Z, only those performed in T change the
BTs in T , and none of the other operations has any effect on T . Suppose none of the
EnterEvidence operations performed outside T was ever performed. We show that if a
second CommunicateBelief is called in F with T as the initiating JT, the BTs of T will
not change at all:

CollectNewBelief called in T does not change BTs in T since F is boundary-
consistent after the first CommunicateBelief. That DistributeBelief does not change
BTs in T is trivially true. 2

6 An Experimental Demonstration

We demonstrate how communication works in a multi-agent distributed interpretation
system with the digital system example in Figure 4. Recall that each agent (a subnet in
Figure 5) may be built by a different vendor who encodes the knowledge about a subsystem
(one circuit) into the agent. The designer of the MSBN only need the knowledge as
depicted in Figure 3.

In simulating the cooperation in the five agent MSBN, we use the following arbitrarily
chosen numeric parameters: For each external input (a, b, c, h,m, r, w), the prior probabil-
ity is 0.5. For each gate, the prior probability that it is faulty is 0.01. For each AND gate,
it produces the correct output 20% of time when it is faulty. For each OR gate and each
NOT gate, the corresponding percentages are 70% and 50%, respectively. This uniform
assignment of numeric parameters is not necessary but used simply for convenience.

For all simulations, we assume the following external input: a = 0, b = 1, c = 0, h =
1,m = 1, r = 0 and w = 0. We assume that the gates G9 in U1 and G7 in U2 are faulty
and produce incorrect output, and every other gate is normal. This allows us to generate
a complete description about the state of the system.

We assume that each agent only has a limited access to this true state of the world.
First, each agent can only access the values (0 or 1) of input/output variables of gates
within its subdomain with an exception that the value of variable k is not accessible to
any agent. The values (normal or faulty) of gate variables are not accessible to any
agent. For example, the agent U2 can only access the values of g,m, n, o, p and q but not
values of G5, G6, G7 and G8. This assumption simulates the fact that an interpretation
system cannot directly observe everything in the world but has to infer from the available
evidence.

Second, the values of i/o variables are revealed to an agent sequentially in a random
order. The agent has no control over this order. For instance, in one simulation, the
agent U2 may receive the evidence in the order o = 1, g = 1, p = 1,m = 1, . . .. In another
simulation, it may receive the evidence in the order p = 1, o = 1, q = 0,m = 1, . . ..

Three sets of simulations were run using the probabilistic reasoning environment
WEBWEAVR-II, an extended version of WEBWEAVR [18]. The first set had no commu-
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nication between agents. The second set had constant communication and the third set
had infrequent communication between agents. We will compare the results from the first
two sets to demonstrate the effect of cooperation among agents through the operations
defined in Section 5. We will compare the results from the last two sets to demonstrate
the effect of infrequent communication analyzed in Theorem 15.

6.1 No communication

In the first set of ten simulations, each agent ‘observed’ its subdomain and inferred the
values of gates. No communication with other agents was performed. The goal of agents
was to identify the faulty gates correctly as soon as possible. Since only U1 and U2
contained the faulty gates, we focused on these two agents.

For each agent, we first determined the belief state that it may reach when it had
received all the information available from its subdomain. This state represents the best
interpretation the agent can come up with given that it only works alone. When the
complete set of observations was entered to the agent U1, it had the posterior probabilities
p1(G9 = faulty|evi) = 1, p1(G10 = normal|evi) = 0.993, p1(G11 = normal|evi) =
0.99 and p1(G12 = normal|evi) = 0.995. Subscripts are used to identify the agent
whose belief are expressed by the probability values. Call this belief state the ideal
state of the agent. When the complete set of observations was entered to the agent
U2, the ideal state consisted of p2(G7 = faulty|evi) = 0.6, p2(G6 = faulty|evi) = 0.4,
p2(G8 = faulty|evi) = 0.002 and p2(G5 = faulty|evi) = 0.005. The agent detected that
observations did not confirm to the normal function of the circuit, but it was uncertain
as to whether G6 or G7 was faulty since a key variable k was not observable.

We then randomly generated ten sequences of observations for each of the two relevant
agents and performed ten simulations. In each simulation, one sequence for an agent was
used. For each sequence, we entered observations one by one using EnterEvidence. As
soon as the agent reached the ideal belief state within a range of 10% of fluctuation, we
stopped and recorded the number of observations that had been entered. The results are
listed in columns 2 and 3 of Table 1. For the ten simulations, the average number of
observations needed for the agent U1 to reach a belief state close to the ideal is 5.4 obser-
vations. The corresponding number for U2 is 4.0 observations. Since each observation is
processed with some cost, i.e., time or other resources, the average number of observations
gives an indication of the efficiency when the agent has to perform the interpretation task
alone.

6.2 Constant communication

In the second set of ten simulations, we generated randomly ten sequences of observa-
tions for each of the five agents. In each simulation, one sequence for an agent was
used. We entered observations from U0 to U4, one observation for each agent. Then
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CommunicateBeliefwas performed. We then entered the next observation for each agent
and repeated this process. An observation for a variable shared by two or more agents
was entered only once. After each CommunicateBelief, we check the belief state of U1
and U2. We recorded the number of observations each agent had made when either U1
or U2 reached a belief state close to the ideal.

The ideal state for U1 was the same as before, but the ideal state for U2 was changed
to p2(G7 = faulty|evi) = 0.999 and p2(G6 = faulty|evi) = 0.007. This much sharpened
belief was obtained by agents’ pooling together evidence about k, which was not possible
when U2 was working alone.

The results of the simulations are listed in columns 4 and 5 of Table 1. For the ten
simulations, the average number of observations per agent needed for U1 to reach a belief
state close to the ideal is 4.26 observations. The corresponding number for U2 is 2.84
observations. The average number decreased by 21% and 29% for U1 and U2 due to
cooperation.

6.3 Infrequent communication

In the last set of ten simulations, exactly the same observation sequences in the sec-
ond set of simulations were used. The same experimental method was used except that
CommunicateBelief was performed after each agent had made two observations instead
of one.

Each agent still reached the ideal belief state after enough observations had been
made. The results of the simulations are listed in columns 6 and 7 of Table 1. For the
ten simulations, the average number of observations per agent needed for U1 to reach a
belief state close to the ideal is 4.5 observations. The corresponding number for U2 is 3.2
observations. The average number decreased by 16% and 20% for U1 and U2 compared
to the no cooperation case, which shows that infrequent communication is still better
than no communication. More observations per agent were made compared to the case
of constant communication, since evidence obtained locally was not exchanged in time.

It should be indicated that delays of information exchange due to infrequent commu-
nication may cause agents to believe quite differently. For example, suppose the following
observations are entered into the agents:

U0 : d = 1 c = 0 U2 : q = 0 o = 1 U4 : w = 0 x = 0
U1 : h = 1 g = 1 U3 : l = 1 u = 1

After CommunicateBelief, U1 and U2 have p1(k = 0|evi) = p2(k = 0|evi) = 0.976.
Given that g = 1, U2 reasons from both input of the OR gate G6 being 0 and concludes
that G6 is faulty (p2(G6 = faulty|evi) = 0.97) producing o = 1 and that G7 is normal
(p2(G7 = faulty|evi) = 0.035). Suppose U1 subsequently observes i = 0, which makes
U1 change its belief on k to p1(k = 0|evi) = 0.013. At this moment, U1 and U2 believe
totally opposite things regarding the value of k. If communication is performed at this
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Simulation Set 1 Simulation Set 2 Simulation Set 3
Obs (G9) Obs (G7) Obs (G9) Obs (G7) Obs (G9) Obs (G7)

Simu0 5 6 4 2 4 2
Simu1 6 3 4.8 2 5 2
Simu2 6 6 5 3 5 4
Simu3 6 6 5 4.8 5 5
Simu4 6 3 5 1 5 2
Simu5 6 6 4 4.6 4 5
Simu6 4 3 3 4 4 4
Simu7 4 2 4 2 4 2
Simu8 6 3 4.8 2 5 2
Simu9 5 2 3 3 4 4
Aver 5.4 4 4.26 2.84 4.5 3.2

Table 1: Summary of the simulation results

moment, U2 will change its belief sharply to p2(G6 = faulty|evi) = 0.02 and p2(G7 =
faulty|evi) = 0.987. However, without communication, U2 will continue its old belief
which is out-of-date relative to the knowledge of the entire system.

Such situation is very natural in probabilistic (vs logic) reasoning since as long as an
agent’s belief on a proposition x is not certain, a new observation may change its belief
on x to either extreme (0 or 1).

In addition to perform CommunicateBelief as frequently as possible, the above sit-
uation may be avoided by letting each agent perform a sensitivity analysis locally. For
the above example, a sensitivity analysis at U2 will reveal that U2’s belief on the value
of G6 and G7 is very sensitive to the value of k. Therefore, if U2 is also responsible to
take some action, e.g., to replace a gate that is believed faulty, it may defer the action
and wait for the next communication. Alternatively, U2 may perform a belief exchange
with U1, which will bring U2 up-to-date and avoid the premature replacement of G6.
Note that such exchange does not bring either U1 or U2 globally consistent. Neither has
the knowledge of what is happening in other agents of the system. However, it may be
sufficient for U2 to interpret its subdomain correctly. In general, a given agent’s belief
on its subdomain is more sensitive to the probabilistic information contained in agents
close to it in the hypertree than that contained in agents far away from it. Therefore,
it makes sense for an agent to exchange its belief with adjacent agents prior to a critical
and sensitive decision in order to benefit from the knowledge of others. Such exchange
does not require a full scale of CommunicateBelief and thus is less expensive. We leave
the exploration of this opportunity to future work.
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7 Off-line Time During Communication

7.1 Off-line time of each agent

During CommunicateBelief, the BT of a JT T with domain N may be changed through
CollectNewBelief and DistributeBelief in the following ways:

1. (Through CollectNewBelief) When each adjacent JT of T (except the caller of
CollectNewBelief) has completed its CollectNewBelief, the operation UpdateBelief

that T performs relative to the JT may change BT (N).

2. (Through DistributeBelief) When DistributeBelief is called in T , the opera-
tion UpdateBelief that T performs relative to the caller may change BT (N).

It follows from the proof of Theorem 14 that BT (N) should not be modified by new
external evidence between the first UpdateBelief (during CollectNewBelief) and the
last UpdateBelief (during DistributeBelief) in the process of CommunicateBelief.
That is, EnterEvidence should not be performed in T between the two UpdateBelief

operations. Otherwise, CommunicateBelief will not regain the global consistency.
Since not being able to process evidence within a time interval imposes restriction on

time-critical applications, the length of the interval should be minimized. We define such
interval of time as follows:

Definition 16 (Junction Tree Off-line Time) Let T be a JT in a LJF F . Dur-
ing a CommunicateBelief operation in F , let t be the instant of time when the first
UpdateBelief involved by T is started. Let τ be the instant of time when the last
UpdateBelief involved by T is completed. The off-line time of T during commu-
nication is ∆(T ) = τ − t.

7.2 Factors affecting off-line time

Different JTs in a LJF may have different off-line time during communication depending
on several factors:

A CommunicateBelief operation is started in a LJF at an arbitrarily selected JT,
which we refer to as the communication root. The choice of root is one factor that affects
the off-line time of each agent in the system.

Example 17 We consider the effect of the root on T 4’s off-line time in Figure 8. Since
T 1 is selected as the root as shown in the Figure, during CollectNewBelief, T 4 must
perform UpdateBelief relative to T 6, T 7 and T 8 (sequentially) first, and then allow T 2

to perform UpdateBelief relative to T 4. Afterwards, T 4 must wait for the completion of
CollectNewBelief in the rest of the system and wait for its turn in DistributeBelief.
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During DistributeBelief, T 4 must perform UpdateBelief relative to T 2 first and then
allow T 6, T 7 and T 8 to perform UpdateBelief relative to T 4 (sequentially).

The above order of operations dictates that T 4 becomes off-line as soon as belief prop-
agation from T 6, T 7 and T 8 to T 4 starts. T 4 remains off-line when belief further propa-
gates to T 1 through T 2 and then back to T 4 from T 1. T 4 becomes available after belief
propagates back to T 6, T 7, and T 8 through T 4. The total process involves 13 sequential
UpdateBelief operations in the best case, where T 1 performs DistributeBelief relative
to T 2 first among its four neighbors (16 in the worst case).

If T 6 instead T 1 is selected as the root, then T 4 will be off-line for only a period of
time needed to perform 8 sequential UpdateBeliefs.

Another factor is the order in which CollectNewBelief is performed by each agent
relative to its neighbors.

Example 18 Consider T 7 in Figure 8 where the root is T 1. During CollectNewBelief,
T 4 must perform UpdateBelief relative to T 6, T 7 and T 8 sequentially. If T 7 is first
selected, T 7 must become off-line before T 6 and T 8, and its off-line time will be prolonged
accordingly.

We refer to the order in which multiple neighbors are selected by an agent to perform
UpdateBelief against, during CollectNewBelief, as the collection order of the agent.

Similarly, we refer to the order in which multiple neighbors are selected by an agent to
perform UpdateBelief, during DistributeBelief, as the distribution order of the agent,
which is a third factor affecting each agent’s off-line time.

Example 19 Consider T 7 in Figure 8 where the root is T 1. During DistributeBelief,
T 6, T 7 and T 8 must perform UpdateBelief relative to T 4 sequentially. If T 7 is first
selected, T 7 can become available before T 6 and T 8, and its off-line time will be shortened
accordingly.

The last factor is the time complexity of UpdateBelief by a JT T i relative to a
neighbor JT T k. This time complexity is fixed once the LJF is constructed. Note that
the time complexity of UpdateBelief by T i relative to T k may not be the same as the
time complexity of UpdateBelief by T k relative to T i. This is because UpdateBelief

performed by T i relative to T k involves multiple (the number of linkages between T i and
T k) performance of UnifyBelief in T i[19]. The time required by UnifyBelief in T i is
generally different than that in T k.

7.3 Off-line time of a multi-agent system

The difference of off-line time across agents calls for a measurement of off-line time of the
entire system. We consider two alternatives which may commonly be used:
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Definition 20 (Absolute Off-line Time) Let F be a LJF. Let t be the instant of time
when the first JT in F becomes off-line during a CommunicateBelief operation. Let τ be
the instant of time when the last JT becomes available again. The absolute off-line

time of F is ∆abs = τ − t.

The absolute off-line time indicates the non-availability of the system as a whole even
though some agents are available earlier than others.

Definition 21 (Average Off-line Time) Let F be a LJF. Let ∆(T i) be the off-line
time of a JT T i (i = 1, . . . , n) in F during a CommunicateBelief operation. The average
off-line time of F is ∆ave = (

∑n
i=1 ∆(T i))/n.

The average off-line time indicates the average non-availability of multiple agents.
Both definitions can be modified over a subset of JTs if availability is concerned with

only the subset.

7.4 A graphical model for off-line time study

Based on the above analysis, given a LJF and a chosen off-line time measurement, we may
manipulate the communication root, collection order and distribution order such that the
off-line time is minimized. To avoid distraction by unnecessary details of communication,
e.g., the number of linkages and the numerical belief computation, so that we can con-
centrate on the four factors that determine the off-line time, we abstract communication
in a LJF into the following graphical model.

Model 22 (Graphical communication model)
Given an undirected and weighted tree, and an arbitrary node A as the root, the tree

is converted to a rooted tree R.
For each node X of R, if X 6= A, place an in-agent at X. For each node Y of R, if Y

has k children, place k out-agents at Y .
The agents traverse R according to the following rules:

1. To start with, each parent node Y with leaf children selects one child X, according
to some order Oin(Y ). Once selected, X sends its in-agent to move from X to Y ,
which takes time win(X) that is the weight associated with the link (X,Y ) in the
inward direction (from leaf to root).

After one child’s in-agent arrives at Y , the next child, selected according to Oin(Y ),
sends its in-agent to Y .

After a parent Y has received all the in-agents from its children, Y is ready for
selection by its own parent Z. Once selected by Z, Y sends its in-agent to Z. The
inward movement of in-agents continues in this fashion.
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2. After the root A receives all in-agents from its children, the inward movement is
completed and an outward movement starts.

A selects one child X, according to some order Oout(A). A then sends one out-agent
to move from A to X, which takes time wout(X) that is the weight associated with
the link (A,X) in the outward direction.

After an out-agent of A reaches the destination, A selects another child according
to Oout(A) and sends another out-agent to the child. The process continues until
all out-agents of A reach their destination.

After an out-agent from A reaches a child X, X selects its own children, according
to Oout(X), and sends its out-agents to child nodes in sequence.

The process continues in this fashion until the last out-agent in R reaches its leaf
destination, and the outward movement halts.

The above model characterizes the CommunicateBelief operation correctly as far as
the off-line time is concerned:

1. The original undirected tree corresponds to the LJF. Each node corresponds to a
JT of the LJF.

2. The root A corresponds to the communication root.

3. The inward movement of in-agents corresponds to the belief propagation during
CollectNewBelief, and the outward movement of out-agents corresponds to the
belief propagation during DistributeBelief.

4. Given a parent node Y and a child node X, win(X) corresponds to the time required
for Y to perform UpdateBelief relative to X, and wout(X) corresponds to the time
required for X to perform UpdateBelief relative to Y .

5. Oin(X) corresponds to the collection order (Section 7.2) of X, and Oout(Y ) corre-
sponds to the distribution order of Y .

6. The time instant, when the first in-agent from a child of a node X moves towards X,
corresponds to the time instant when the corresponding JT becomes off-line. The
time instant when the last out-agent from X arrives at a child of X corresponds to
the time instant when the corresponding JT becomes available for entering evidence.
The interval between the two instants thus corresponds to the off-line time of the
JT represented by X.

Note that the graphical model reflects the semi-parallel pattern of communication that
is discussed in Example 13. It will be seen that the key aspect of minimization of off-line
time is to increase the degree of parallelism by manipulating the relevant factors.
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We will use the following notations: We shall say that a non-leaf node X is off at the
time instant when the in-agent from the first child selected by X starts moving to X. We
use toff(X) to denote the instant. If X is a leaf node in the rooted tree, then X is off as
soon as its in-agent leaves X.

We shall say that a non-leaf node X is on at the time instant when its last out-agent
arrives at a child of X. We use ton(X) to denote the instant. If X is a leaf, then X is on
when it receives the out-agent from its parent. We shall say that the off-line time of the
node X is ∆(X) = ton(X) − toff(X).

We shall call the inward movement of in-agents collection and the outward movement
of out-agents distribution. For collection, we use trdy(Y ) to denote the time instant when
a non-leaf node Y receives the last in-agent from its children and is ready for its parent
to select. For a leaf node Y , we assign trdy(Y ) to be the instant when collection starts.
We use twat(Y ) to denote the time instant when the in-agent of Y arrives at its parent
and Y starts to wait for an out-agent to come from its parent. For the root A, we assign
twat(A) = trdy(A).

For distribution, we use tsel(X) to denote the time instant when a node X is selected by
its parent Y such that Y is about to send an out-agent to X. For the root A, we assign
tsel(A) to be the instant when distribution starts. We use tcpt(X) to denote the time
instant when X receives the out-agent from Y (distribution relative to Y is completed).
For the root A, we assign tcpt(A) = tsel(A).

Example 23 Figure 9 illustrates the graphical communication model for a seven-agent
system. The figure in the left shows the rooted tree R with the root A, and leaves D, E,
F and G. It also shows the in-agent and out-agents of each node, and the in-weight and
the out-weight of each link.

Figure 9 (middle) shows collection in the rooted tree R. The collection order used is
from left to right for each parent node. At time instant t = 0, E is off. Its in-agent arrives
at B at t = 5. Thus E starts to wait for distribution at t = 5, and B is ready for selection
by A at the same point in time.

Parallel to the above activity, at t = 0, F (the leftmost child) is selected by C to send
its in-agent which arrives at C at t = 1. Then C selects the next child G, and the in-agent
of G arrives at C at t = 4. Thus, F is waiting at t = 1, G is waiting at t = 4, and C is
ready at t = 4.

According to the left-to-right order, A selects B at t = 5. The in-agent of B arrives
at A at t = 9. Then C is selected, whose in-agent arrives at A at t = 11. Then D is
selected, whose in-agent arrives at t = 19, and collection is completed.

Figure 9 (right) shows distribution which follows collection immediately. The distri-
bution order used is right-to-left. At t = 19, A sends an out-agent to D, which arrives at
t = 26. D is on at this moment since it has no child.

C is then selected and another out-agent of A arrives at C at t = 29.
The last out-agent of A arrives at B at t = 35, and A is on at this moment. Parallel

to the movement of the last out-agent of A, at t = 29, C sends its first out-agent to G
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which arrives at t = 31, and then G is on. C then sends another out-agent to F which
arrives at t = 35. At this moment, both C and F are on.

At t = 35, B sends its out-agent to E, which arrives at t = 40. At this moment, both
B and E are on. Distribution, as well as the entire communication, is then completed.

All activities during the communication are fully specified by the tuples used to label
nodes of the two figures. The off-line time of each node and the entire system can thus
be calculated. For instance, ∆(C) = 35 − 0 = 35 and ∆(D) = 26 − 11 = 15. The
absolute off-line time of the system is ∆abs = 40 − 0 = 40. The average off-line time is
∆ave = (30 + 40 + 35 + 15 + 40 + 35 + 30)/7 = 32.1.
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Figure 9: A graphical model for communication in a seven-agent system. The in-weight
of a link is indicated by an upward arrow and the associated label, and the out-weight of
a link is indicated by a downward arrow and the associated label. Left: The weighted tree
R rooted at A. The in-agent and out-agents of each node, as well as the in-weight and
the out-weight of each link are shown. Middle: Collection in R with only the in-weight of
each link shown. Each node X is labeled will a triple (toff(X), trdy(X), twat(X)). Right:
Distribution in R with only the out-weight of each link shown. Each node X is labeled
will a triple (tsel(X), tcpt(X), ton(X)).

We will refer to a specification of the timing of every node’s activity during collection,
such as the labeling of Figure 9 (middle), as a collection schedule. A distribution schedule
is similarly defined. Our goal is to find schedules with the minimum off-line time. In
both schedules of Example 23, we assumed that a node engages in its activity as soon
as the activity is possible without any delay. Since unnecessary idling can not contribute
positively to our goal, we will exclude from our consideration those schedules in which
some nodes delay their activities unnecessarily. On the other hand, if there is any practical
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reason to delay the belief propagation, e.g., the computer network delay, we assume that
the delay has been modeled in the link weights.

The schedule in Example 23 is not optimal. We illustrate this using the absolute off-
line time: During collection, A follows the left-to-right order, and thus waits until t = 5
when B is ready. However, another child D of A is ready at t = 0, but is selected only
at t = 11. If D is selected first, both A and D can be engaged in their activity earlier,
and A will complete collection and start distribution earlier. The consequence is a shorter
absolute off-line time. The difference made by switching the first child to D is that the
resultant schedule has a higher degree of parallelism: The parallel activities E to B, and
F , G to C in the previous schedule are now also paralleled by the activity D to A.

In the remaining part of this paper, we use the graphical model to study the mini-
mization of the off-line time with an arbitrarily given communication root. Limited by
the space, the optimization of the root is beyond the scope of this paper.

8 Reduction of Communication Scheduling

In this section, we reduce the communication scheduling problem into two subproblems:
the collection scheduling and the distribution scheduling. We then show that the two are
dual problems in the sense that the solution to one of them can be extended directly into
the solution of the other.

8.1 Problem reduction

Let us first consider the minimization of the absolute off-line time. Let collection start at
the time instant t = t0 and terminate at t = t1. Let distribution start at the time instant
t = t1 and terminate at t = t2. Denote the time interval between t0 and t1 by ∆0−1, and
denote the time interval between t1 and t2 by ∆1−2. We have ∆abs = ∆0−1 + ∆1−2. Since
∆0−1 is independent of ∆1−2,

min(∆abs) = min(∆0−1) +min(∆1−2),

where the minimization in the left-hand side of the equation is over all collection and
distribution schedules, the first minimization in the right-hand side is over all collection
schedules, and the second in the right-hand side is over all possible distribution sched-
ules. We can thus study the optimal communication schedules by studying the optimal
collection schedules and the optimal distribution schedules independently.

Next, let us consider the minimization of the average off-line time. For each node X,
the off-line time is ∆(X) = ton(X) − toff(X) = (ton(X) − t1) + (t1 − toff(X)). Note that
t1 − toff(X) is the off-line time of X during collection, and ton(X)− t1 is the off-line time
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of X during distribution. We therefore obtain

min
Sc ,Sd

(∆ave) = min
Sc ,Sd

(
1

N

N∑

i=1

∆(Xi)) =
1

N
min
Sc ,Sd

(
N∑

i=1

(t1 − toff(Xi)) +
N∑

i=1

(ton(Xi) − t1)))

=
1

N
(min
Sc ,Sd

(
N∑

i=1

(t1 − toff(Xi))) + min
Sc,Sd

(
N∑

i=1

(ton(Xi) − t1))),

where the minimization is over all possible collection schedules Sc and distribution sched-
ules Sd. Since the minimization over Sd has no effect on the first summation, we have

min
Sc,Sd

(∆ave) =
1

N
(min

Sc

(
N∑

i=1

(t1 − toff(Xi))) + min
Sc,Sd

(
N∑

i=1

(ton(Xi) − t1))).

Although the minimization over Sc affects the value of t1, it has no effect on the length
of interval ton(Xi)− t1. Thus the second summation is only affected by the minimization
over Sd. We therefore obtain

min
Sc,Sd

(∆ave) =
1

N
(min

Sc

(
N∑

i=1

(t1 − toff(Xi))) + min
Sd

(
N∑

i=1

(ton(Xi) − t1))).

This again implies that the optimal communication schedules can be studies by studying
the optimal collection schedules and the optimal distribution schedules independently.

8.2 Duality of Collection and Distribution

A comparison of collection and distribution shows the great similarity between the two
activities. Both proceed through the tree structure in a semi-parallel pattern. Inward
movement of in-agents from the children of a node must proceed sequentially. So must
outward movement of out-agents of a node to its children. Two nodes of a common
ancestor may be engaged in collection relative to their children in parallel. So may they
be engaged in distribution relative to their children in parallel.

We establish the duality of the two activities with respect to the off-line time in
Theorem 24. The proof is in Appendix.

Theorem 24 (Duality)
Let R be a weighted tree rooted at A with the in-weight and out-weight of each link

identical.
Let Sd be a distribution schedule which starts from A at td and terminates at τd. Let

the distribution order of a parent node Y be denoted as Od(Y ) in this schedule.
A schedule Sc for collection, that starts at tc and terminates at A at τc, can be obtained

by requiring each parent node Y to follow a collection order that is opposite to Od(Y ) such
that the followings hold:
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1. τc − tc = τd − td, and

2. for every node X, τc − toff(X) in Sc is identical to ton(X) − td in Sd.

The converse (obtaining Sd from Sc) is also true.

Given a rooted treeR, Theorem 24 implies that, to find the optimal collection schedule
in R, we can treat win for each link as wout for the link, and find the optimal distribution
schedule in the modified tree. Once the optimal distribution schedule is found, we can
reverse the distribution order and the resultant is the optimal collection schedule. The
converse is also correct. We therefore only need to find the optimal schedule for one of
the two activities for any given off-line time criterion.

Example 25 Figure 10 (left) is a rooted tree R for distribution with a distribution sched-
ule specified. The distribution order for each parent is right-to-left.

Figure 10 (right) shows a rooted tree R′ identical to R except the wout of each link in
R becomes the win of the same link. A collection schedule for R′ is specified in the figure
that satisfies the two conditions of Theorem 24. The collection order for each parent is
left-to-right.

Note that we have τd − td = 14 − 0 in R, and τc − tc = 14 − 0 in R′. Comparing the
four-tuples that label corresponding nodes in R and R′, we see that the last attributes
(ton(X) − td in R and τc − toff(X) in R′) have identical values.
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Figure 10: Left: A rooted tree R for distribution. The distribution schedule is shown by
labeling each node X with (tsel(X), tcpt(X), ton(X), ton(X) − td) where td = 0. Right: R′

is obtained from R by treating win as wout. A collection schedule with tc = 0 is obtained
from the schedule in R as described by Theorem 24. The schedule is shown by labeling
each node X with (toff(X), trdy(X), twat(X), τc − toff(X)).
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9 Optimal Communication Schedules

In this section, we derive distribution schedules with the minimum absolute off-line time
and distribution schedules with the minimum average off-line time, given a rooted tree.
These results can then be used to obtain the optimal collection schedules through duality.

9.1 Distribution Schedules with Minimum Absolute Off-line Time

Distribution starts from the root. Consider first a rooted tree with depth 2 and with
branching factor 2 as shown in Figure 11. Distribution in the root A can be performed
with two possible orders: O

(1)
out(A) = (B,C) and O

(2)
out(A) = (C,B).

Using O
(1)
out(A), we obtain

∆
(1)
1−2 = max(wout(B) + wout(C) + wout(F ) + wout(G), wout(B) + wout(D) + wout(E)).

Since distribution from a parent of leaves to the leaf children is sequential, all leaf children
of the same parent can be treated equivalently as a single leaf with its wout being the sum
of wouts of the original leaves involved. We can therefore write

∆
(1)
1−2 = max(wout(B) + wout(C) + wout(FG), wout(B) + wout(DE)),

where wout(FG) = wout(F ) + wout(G) and FG denotes the equivalent single leaf.

A 

GFED

CB

Figure 11: A rooted tree of depth 2 for distribution.

Similarly, using O
(2)
out(A), we obtain

∆
(2)
1−2 = max(wout(C) + wout(B) + wout(DE), wout(C) + wout(FG)).

The optimal order is the one with a smaller ∆1−2.
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We claim that if wout(DE) ≤ wout(FG), then O
(2)
out(A) is the optimal order: Under the

condition, ∆
(1)
1−2 can be simplified into ∆

(1)
1−2 = wout(B) + wout(C) + wout(FG) which is

larger than or equal to both entries of ∆
(2)
1−2, namely, wout(C) + wout(B) + wout(DE) and

wout(C) + wout(FG).
The above result suggests that the out-weights at the top level (i.e., wout(B) and

wout(C)) are not critical, but the sums of out-weights at the bottom level (i.e., wout(DE)
and wout(FG)) are. This result in fact is general as is shown in Proposition 26. The proof
is in Appendix.

Proposition 26 (Optimal distribution schedule in trees of depth 2)
Let R be a tree rooted at A for distribution. Let the depth of R be 2. Let the children

of root be X1, . . . ,Xn. Let the sum of out-weights of children of Xi be vi such that v1 ≤
v2 ≤ . . . ≤ vn.

The absolute distribution off-line time ∆1−2 in R is minimized if the distribution order
of A is Oout(A) = (Xn, . . . ,X1).

Example 27 According to Proposition 26, ∆1−2 for R in Figure 9 will be minimized if
Oout(A) = (C,B,D). The minimum ∆1−2 is ∆1−2 = max(3+(4+2), 3+6+5, 3+6+7+0) =
16 which is a 24% improvement over ∆1−2 = 21 in Example 23. A corresponding optimal
schedule is shown in Figure 12. The distribution order used is left-to-right.
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Figure 12: R: A rooted tree for distribution. R’: R with the left-right order of nodes B,
C, D rearranged according to Oout(A) = (C,B,D) determined by Proposition 26. The
distribution schedule is shown by the label (tsel(X), tcpt(X), ton(X), ton(X) − td) at each
node X. The distribution starts at td = 0.
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Algorithm 28 (Order arrangement for distribution)

Input: A rooted tree of depth M with the out-weight of each link defined.
Output: The rooted tree with the left-right order of children of each parent re-arranged.
begin

D := M-1
for each leaf Z of depth D, do

v(Z) := 0
for each node Y of depth D with child nodes X1, . . . ,Xn, do

v(Y ) :=
∑n

i=1wout(Xi)
D := D-1
while D ≥ 0, do

for each node Y of depth D with n child nodes, do
arrange children of Y and index them from left to right as X1, . . . ,Xn

such that v(X1) ≤ . . . ≤ v(Xn)
v(Y ) := max(en, . . . , e1) where ei = (

∑n
k=i wout(Xk)) + v(Xi)

for each leaf Z of depth D, do
v(Z) := 0

D := D-1
end

Algorithm 28 and Theorem 30 generalize Proposition 26 to an arbitrary rooted tree for
distribution. Algorithm 28 rearranges the left-right order of children for each node such
that the optimal distribution order becomes topologically explicit. Theorem 30 establishes
the optimal schedule.

Example 29 Figure 13 illustrates Algorithm 28. After the first two for loops, we have
v(E) = 8, v(F ) = 14, v(G) = 0, v(H) = 15, v(I) = 0, and v(J) = 18. After the first pass
of the while loop, children of B are arranged from left to right in the order G, E, F based
on their v values. Children of D are arranged from left to right in the order I, H, J . The
v values for nodes B, C, D are assigned as v(B) = 19, v(C) = 0, v(D) = 27.

After the second pass of the while loop, children of root A are arranged from left to
right in the order C, B, D, and v(A) is assigned the value v(A) = 36.

Theorem 30 (Optimal distribution schedule)
Let R be a rooted tree for distribution with root A. The absolute off-line time ∆1−2 is

minimized if R is arranged according to Algorithm 28 and the distribution order for each
node is right-to-left.

The minimum ∆1−2 is given by v(A) as computed by Algorithm 28.

Proof:
We prove by induction. Let the depth of R be M . The statement is true if M = 2

according to Proposition 26.
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Figure 13: R: A rooted tree for distribution operation. R’: R after being processed accord-
ing to Algorithm 28. Each node X is labeled with (v(X)) as computed by Algorithm 28.

Assume that the statement is true for M = K (K ≥ 2). Consider M = K+1. Assume
that R is arranged according to Algorithm 28, and the root A of R has n (n ≥ 1) children
Y1, . . . , Yn. Each child is the root of a subtree.

By the inductive assumption, the distribution time for the subtree rooted at Yi (i ∈
{1, . . . , n}) is minimized if the right-to-left order is followed. The minimum time is v(Yi).

For i = 1, . . . , n, replace the subtree rooted at Yi by a single link (Yi,Xi) with
wout(Xi) = v(Yi). The resultant is a tree of depth 2 rooted at A that satisfies the condition
of Proposition 26. Therefore distribution using the right-to-left order at A will optimize
the distribution time. Since distribution time for each subtree rooted at Yi is minimized
by induction assumption, and the distribution at root A is also optimized, ∆1−2 is minimal
for M = k + 1 and the minimum value is given as v(A). 2

Example 31 The absolute distribution off-line time for R in Figure 13 is minimized by
arranging R as R′ and following the right-to-left distribution order. The minimum ∆1−2

is v(A) = 36.

9.2 Distribution Schedules with Minimum Average Off-line Time

Let R be a tree rooted at A for distribution (Figure 14). Let the distribution operation
start at the time instant t1. We denote

∑
(ton(Y ) − t1) by σR(A) where the summation

is over every node Y of R rooted at A. The optimal distribution schedule is one that
minimizes σR(A).
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We first consider the contribution to σR(A) made by the nodes in a subtree rooted at
a parent node, say, V of m leaf children (see Figure 14). We have

σR(V ) = (ton(V ) − t1) +
m∑

k=1

(ton(Zk) − t1).

If we substitute ton(V ) = tcpt(V ) +
∑m

k=1wout(Zk), we can rewrite

σR(V ) =
m∑

k=1

wout(Zk) + (m+ 1)(tcpt(V ) − t1) +
m∑

k=1

(ton(Zk) − tcpt(V )) (4)

The first entry (summation) is independent of the distribution order. The second entry
(product) is independent of the distribution order of V . It is dependent of the distribution
orders of nodes outside the subtree rooted at V , and is dependent of the number m + 1
of nodes in the subtree rooted at V . Only the last entry

∑m
k=1(ton(Zk) − tcpt(V )), which

we denote by σ(V ), is dependent of the distribution order of V . Note that we have used
σ(V ) instead of σR(V ) to denote the sum, to signify the fact that its minimization can be
studied by isolating the subtree rooted at V from the rest of R.

Next, we consider the contribution to σR(A) made by the nodes in a subtree rooted
at an arbitrary non-leaf node Y . (Figure 14). We obtain

σR(Y ) = (ton(Y ) − t1) +
∑

k

σR(Xk)

=
∑

k

wout(Xk) + (tcpt(Y ) − t1) +
∑

k

σR(Xk).

Denote the number of descendants of Xk by nk, we obtain

σR(Xk) = σ(Xk) + (nk + 1)(tcpt(Xk) − t1)

= σ(Xk) + (nk + 1)(tcpt(Xk) − tcpt(Y )) + (nk + 1)(tcpt(Y ) − t1).

39



If we substitute the above expression into σR(Y ) and denote the number of descendants
of Y by η, we obtain

σR(Y ) =
∑

k

wout(Xk) + (η + 1)(tcpt(Y ) − t1)

+
∑

k

σ(Xk) +
∑

k

(nk + 1)(tcpt(Xk) − tcpt(Y )). (5)

The first entry (summation) is independent of the distribution order. The second entry
(product) is dependent of the distribution orders of nodes outside the subtree rooted at
Y , and is dependent of the number η + 1 of nodes in the subtree rooted at Y . The third
entry (summation) is dependent of the distribution orders of nodes in the subtree rooted
at each child of Y . Only the last entry (summation) is dependent of the distribution order
of Y .

Note that equation 4 is a special case of equation 5 if we let Y = V , Xk = Zk, nk = 0,
σ(Xk) = 0 and tcpt(Xk) = ton(Zk).

Another special case of equation 5 is σR(A). If we let Y = A, tcpt(Y ) = t1, we obtain

σR(A) =
∑

k

wout(Xk) +
∑

k

σ(Xk) +
∑

k

(nk + 1)(tcpt(Xk) − t1). (6)

The above analysis implies that, in order to find the optimal distribution schedule for
R, we need only to search locally, i.e., to find the optimal distribution order of each node
Y , taking into account the number of descendants of Y . The following Lemma prepares
for Theorem 33. Its proof is in Appendix.

Lemma 32 Let Y be a non-leaf node in a rooted tree. Let the child nodes of Y be
X1, . . . ,Xm (m > 0) where Xk has nk descendants.

The summation ψ =
∑m

k=1(nk + 1)(tcpt(Xk) − tcpt(Y )) is minimized if

wout(X1)/(n1 + 1) ≤ wout(X2)/(n2 + 1) ≤ . . . ≤ wout(Xm)/(nm + 1)

and the distribution order of Y is Oout(Y ) = (X1, . . . ,Xm).

Theorem 33 (Optimal distribution schedule)
Let R be a weighted tree rooted at A. For each non-leaf node Y of R, let the m > 0 child

nodes of Y be indexed from left to right as X1, . . . ,Xm, and let the number of descendants
of Xi be ni such that

wout(X1)/(n1 + 1) ≤ wout(X2)/(n2 + 1) ≤ . . . ≤ wout(Xm)/(nm + 1).

The average distribution off-line time σR(A) is minimized if the distribution order of
Y is left-to-right for every Y .
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Proof:
First, consider the case where the depth of R is D = 1. Let the child nodes of root A

be X1,X2, . . ..
According to Equation 6, when D = 1, we obtain

σR(A) =
∑

k

wout(Xk) +
∑

k

(tcpt(Xk) − t1).

To minimize σR(A), we only need to minimize the second sum. According to Lemma 32,
ψ =

∑
k(tcpt(Yk)−t1) can be minimized if the left-to-right order is followed. The statement

is thus true when D = 1.
Assume that the statement is true when the depth of R is D = d ≥ 1. That is,

σR(A) is minimized when the left-right order of child nodes is arranged as specified and
the left-to-right distribution order is followed.

We consider

σR(A) =
∑

k

wout(Xk) +
∑

k

σ(Xk) +
∑

k

(nk + 1)(tcpt(Xk) − t1)

when D = d + 1. Based on the analysis made with Equation 5, minimization of each
σ(Xk) and minimization of ψ =

∑
k(nk + 1)(tcpt(Xk)− t1) are independent, and can thus

be performed separately. According to Lemma 32, ψ is minimized if the left-to-right order
is followed. Each σ(Xk) can be minimized by following the left-to-right order according
to the inductive assumption. The statement is proven. 2

Example 34 Figure 15 shows an optimal distribution schedule obtained according to
Theorem 33. We can compare this schedule with the distribution schedule in Example 27.
There, no preferred distribution order for node C and Oout(C) = (F,G) is arbitrarily
chosen. The consequence is σR′(A) = 16 + 9 + 14 + 16 + 7 + 9 + 14 = 85. Here,
the preferred distribution order for node C is Oout(C) = (G,F ). The consequence is
σR′(A) = 16 + 9 + 14 + 16 + 5 + 9 + 14 = 83.

This comparison shows that an optimal schedule under the absolute off-line time cri-
terion may not be optimal under the average off-line time criterion. However, for the
absolute off-line time, both examples happen to have the identical value 16.

Example 35 Figure 16 shows two distribution schedules in an identical rooted tree (sub-
ject to a difference in left-right order of child nodes). The schedule shown in R is optimal
under the absolute off-line time criterion, obtained according to Theorem 30. The distri-
bution order is right-to-left. It has ∆1−2 = 14−0 and σR(A) = 9+14+12+14+12+8 = 69.
The schedule shown in R′ is optimal under the average off-line time criterion, obtained
according to Theorem 33. The distribution order is left-to-right. It has ∆1−2 = 15 − 0
and σR(A) = 9 + 8 + 15 + 8 + 11 + 15 = 56.
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D rearranged according to Theorem 33. The distribution schedule is shown by the label
(tsel(X), tcpt(X), ton(X), ton(X) − td) at each node X. The distribution starts at td = 0.
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Example 35 shows that, given a rooted tree, an optimal schedule under the absolute
off-line time criterion may not be the optimal under the average off-line time criterion
and vice versa. Though the example involves distribution only, the conclusion is general
due to the duality of distribution and collection.

10 Discussion

10.1 DAI, tree structure and conditional independence

In a MSBN, the intersection between each pair of subnets must satisfy the d-sepset con-
dition such that the pair is conditionally independent given the d-sepset. It can be seen
from Section 3, the semantics of joint probability distribution of a cooperative multi-agent
system is undefined without this condition. With this condition, in order to bring two
adjacent subnets up-to-date, it is sufficient to pass the new probability distribution on
the d-sepset between them and nothing else.

One of the major concerns in DAI is how to balance the need to maintain as much
as possible global consistency and the need to reduce the traffic of communication. As
argued by Pearl [15], a tree structure makes use of conditional independence and allows
coherent and the most efficient information passage among a group of elements. Our
study on MSBNs highlights the MSBNs that are organized into a hypertree structure.
This structural preference is a more general case of the exploration of the conditional
independence in singly connected BNs [14] and in the JT representation of multiply con-
nected BNs [9]. If we call an element which can render a pair of elements conditionally
independent a ‘dependency mediator’, we see an increase of complexity of the internal
structures of dependency mediators in the three cases. In singly connected BNs, a depen-
dency mediator is an internal node in the network. In the JT representation of multiply
connected BNs, a dependency mediator is an internal clique (a group of variables). In
MSBNs/LJFs of a hypertree structure, a dependency mediator is a subnet/JT. As argued
by Pearl [15], conditional independence should not be viewed as a restrictive assumption
for mathematical convenience, nor as an occasional grace of nature for which we must
passively wait, but rather as a mental construct that we should actively create. The
progression of probabilistic reasoning techniques from singly connected BNs, to the JT
representation of multiply connected BNs, and to MSBNs/LJFs is just one example of
such endeavor.

10.2 Communication in MSBNs and belief propagation in a JT

Our CommunicateBelief operation in a multi-agent MSBN is a direct extension of
CollectEvidence and DistributeEvidence in a single JT by Jensen et al.[9, 10] and
the multi-linkage belief propagation in a single-agent MSBN by Xiang et al.[19].
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If we concentrate on the overall pattern of information flow, we see that communication
in a MSBN works in the same way (a semi-parallel inward movement followed by a semi-
parallel outward movement in a tree structure) as belief propagation in a JT. As commonly
applied, BNs are single-agent-oriented. Therefore, it is taken as granted that all nodes
of a JT are centralized. The special pattern of information flow is used to support the
object-oriented implementation as indicated in Jensen et al.[10]. However, concurrent
processing is reasonably considered uninteresting.

In a multi-agent MSBN, the agents are very likely to be spatially distributed, the
efficiency of communication becomes a necessary concern. Part of the effort in this work
has thus been devoted to this issue.

Once the issue in concurrency control is resolved, however, the result can be applied
to the belief propagation in a JT, if parallel processing of a JT is desired, i.e., when the
JT is large and the computation is time-critical, and the hardware is available.

10.3 Future Research

In this pilot study, we proposed a probabilistic framework for cooperative multi-agent
distributed interpretation systems. We showed that if agents are cooperative, condition-
ally independent and (initially) consistent, then they can be organized into a MSBN and
the semantics of the joint probability distribution of the MSBN is well defined. Such an
organization ensures the coherent probabilistic inference among multiple agents. We pro-
posed new communication operations in addition to the belief propagation operations in
single-agent-oriented MSBNs. We showed that these operations can maintain consistency
among agents after evidence has been gathered by agents asynchronously in parallel. We
proposed scheduling algorithms that optimize the communication operations and mini-
mize the unavailability of agents for evidence processing.

There are many directions for future research. These include dynamic construction
of a MSBN from a pool of potentially cooperative agents in a demand-driven fashion
as mentioned in Section 3.3, formal justification of localized communication as outlined
in Section 6.3, refinement of belief propagation operations and their implementation,
application to specific problem structures, integration of interpretation and action and
optimization of the communication root as indicated in Section 7.4.

Appendix

Theorem 24 (Duality)

Let R be a weighted tree rooted at A with the in-weight and out-weight
of each link identical. Let Sd be a distribution schedule which starts from A
at td and terminates at τd. Let the distribution order of a parent node Y be
denoted as Od(Y ) in this schedule. A schedule Sc for collection, that starts at
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tc and terminates at A at τc, can be obtained by requiring each parent node Y
to follow a collection order that is opposite to Od(Y ) such that the followings
hold:

1. τc − tc = τd − td, and

2. for every node X, τc − toff(X) in Sc is identical to ton(X) − td in Sd.

The converse (obtaining Sd from Sc) is also true.

Proof:
We start with a Sd and construct a Sc such that the above two conditions are satisfied.

Once the mapping is created, the converse of the theorem is trivially true.
We assume that for each parent node Y with m child nodes, the child nodes are

arbitrarily indexed as X1, . . . ,Xm. Without losing generality, we denote the distribution
order of Y in Sd by Od(Y ) = (X1, . . . ,Xm). Using the notation defined in Section 7.4, we
can then characterize Sd as follows:





tcpt(Y ) = td if Y is the root
tcpt(Y ) = tsel(Y ) + w(Y ) if Y is not the root
ton(Y ) = tcpt(Y ) +

∑m
k=1w(Xk) if Y is not a leaf

tsel(Xi) = tcpt(Y ) +
∑i−1

k=1w(Xk) if Xi is not the root
ton(X) = tcpt(X) if X is a leaf
τd = max(ton(Z)) max() over every node Z

(7)

We construct a collection schedule Sc from Sd by requiring each parent node Y to follow
the collection order Oc(Y ) = (Xm, . . . ,X1) which is opposite to Od(Y ). The resultant
schedule Sc can be characterized as follows:





toff(X) = τd − ton(X) + tc if X is a leaf
toff(Y ) = toff(Xm) if Y is not a leaf
trdy(X) = tc if X is a leaf
trdy(Y ) = toff(Y ) +

∑m
k=1 w(Xk) if Y is not a leaf

twat(Y ) = trdy(Y ) + w(Y ) if Y is neither the root, nor a leaf
twat(X) = toff(X) + w(X) if X is a leaf
twat(Y ) = trdy(Y ) if Y is the root
τc = trdy(Y ) if Y is the root

(8)

We show inductively that Sc and Sd satisfy the two conditions stated in the theorem.
Consider a R with depth D = 1. That is, R has a root node A with leaf children

X1, . . . ,Xm. For Sd, using Equation 7, we obtain tcpt(A) = td and ton(A) = td+
∑m

i=1w(Xi)
which implies

ton(A) − td =
m∑

i=1

w(Xi). (9)
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For child nodes, we obtain ton(Xi) = tcpt(Xi) = td +
∑i

k=1 w(Xk) which implies

ton(Xi) − td =
i∑

k=1

w(Xk). (10)

Maximization over tons results in τd = td +
∑m

i=1w(Xi) and

τd − td =
m∑

i=1

w(Xi). (11)

From Equation 8 and Sd specified by Equation 9, 10, and 11, we derive Sc as follows:
For each leaf, we have toff(Xi) = τd − ton(Xi) + tc = tc +

∑m
k=i+1 w(Xk). For the

root, we obtain toff(A) = toff(Xm) = tc and τc = trdy(A) = toff(Xm) +
∑m

k=1 w(Xk) =
tc +

∑m
k=1 w(Xk). The above implies

τc − tc =
m∑

i=1

w(Xi) = τd − td

τc − toff(A) =
m∑

i=1

w(Xk) = ton(A) − td

τc − toff(Xi) =
i∑

k=1

w(Xk) = ton(Xi) − td.

Therefore, the statement is true when D = 1.
Assume that the two conditions in the theorem hold for any R of depth D = d ≥ 1.
Suppose we add some child nodes to the leaves of R at depth d to form a new tree R′.

The depth of R′ is D = d + 1. We show that the two conditions hold for R′ as well. We
will add a prime mark (’) to a quantity (e.g., td, τc, and toff) or an object (e.g., Sd and
Sc) associated with R′ to distinguish it from that associated with R.

Let the starting time t′d of S ′
d be the same as td of Sd, i.e., t′d = td. Then, for each node

Y of depth ≤ d − 1 and each leaf Y of depth d, we have t′on(Y ) = ton(Y ) which implies

t′on(Y ) − t′d = ton(Y ) − td. (12)

Let X be a node of depth d in R′ with m leaf children: Z1, . . . , Zm. Based on Equa-
tion 7, we have t′on(X) = ton(X) +

∑m
j=1w(Zj) which implies

t′on(X) − t′d = ton(X) − td +
m∑

j=1

w(Zj). (13)

For each leaf Zj of depth d+1 with parent X, we obtain t′on(Zj) = ton(X)+
∑j

i=1 w(Zi)
which implies
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t′on(Zj) − t′d = ton(X) − td +
j∑

i=1

w(Zi) (14)

The termination time is τ ′d = max(t′on(X)) ≥ τd where maximization is over all nodes of
R′. The above completely specifies S ′

d.
We construct S ′

c from S ′
d based on Equation 8. Let us assign

t′c = tc − (τ ′d − τd) (15)

which means that S ′
c starts earlier than Sc by an amount of time by which S ′

d is longer
than Sd.

For each leaf Zj of depth d + 1 with parent X, we obtain

t′off(Zj) = τ ′d − t′on(Zj) + t′c = tc + τd − ton(X) −
j∑

i=1

w(Zi), (16)

where the first equality is due to Equation 8 and the second equality is due to Equations 15
and 14. We also obtain

t′rdy(X) = t′off(Zm) +
m∑

i=1

w(Zi) = tc + τd − ton(X), (17)

where the first equality is due to Equation 8 and the second equality is due to Equation 16.
Equations 17 and 8 imply t′rdy(X) = toff(X) for each X that is a leaf in R but a parent
in R′.

For each leaf at depth ≤ d,

t′off(X) = τ ′d − t′on(X) + t′c = tc + τd − t′on(X) = tc + τd − ton(X) = toff(X), (18)

where the second equality is due to Equation 15 and the third equality is due to Equa-
tion 12.

Note that t′rdy(X) of nodes of depth d and t′off(X) of leaves of depth ≤ d form a
boundary condition for the timing of activities of all nodes above them. Therefore, Equa-
tions 17 and 18 together with the inductive assumption imply that, for each node of depth
≤ d, the timing of its activity in S ′

c (excluding the inward movement of in-agents from
children of a node at depth d) is exactly the same as in Sc. We thus obtain τ ′c = τc which
implies the first condition in the theorem:

τ ′c − t′c = τc − tc + τ ′d − τd = τd − td + τ ′d − τd = τ ′d − td = τ ′d − t′d, (19)

where the first equality is due to Equation 15 and the second equality is derived by the
inductive assumption.
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Finally, we consider τ ′c − t′off() in terms of four exclusive and exhaustive cases of the
node involved:

For each leaf Zj of depth d + 1 with parent X, we have

τ ′c − t′off(Zj) = (t′c + τ ′d − td) − (tc + τd − ton(X) −
j∑

i=1

w(Zi))

= −td + ton(X) +
j∑

i=1

w(Zi) = t′on(Zj) − t′d, (20)

where the first equality is due to Equations 19 and 16, the second equality is due to
Equation 15 and the third equality is due to Equation 14.

For each leaf X of depth ≤ d, we obtain

τ ′c − t′off(X) = τ ′c − (τ ′d − t′on(X) + t′c) = τ ′d − t′d − (τ ′d − t′on(X)) = t′on(X) − t′d, (21)

where the second equality is obtained using Equation 19.
For each non-leaf node X of depth d, we derive

τ ′c − t′off(X) = τc − t′off(Zm) = τc − (tc + τd − ton(X) −
m∑

i=1

w(Zi)) = t′on(X) − t′d, (22)

where the second equality is due to Equation 16 and the third equality is due to Equa-
tion 13.

For each non-leaf node X of depth < d, since τ ′c = τc, t
′
off(X) = toff(X), t′on(X) =

ton(X) and t′d = td, we have

τ ′c − t′off(X) = t′on(X) − t′d. (23)

The second condition of the theorem is proven. 2

Proposition 26 (Optimal distribution schedule in trees of depth 2)

Let R be a tree rooted at A for distribution. Let the depth of R be 2.
Let the children of root be X1, . . . ,Xn. Let the sum of out-weights of children
of Xi be vi such that v1 ≤ v2 ≤ . . . ≤ vn. The absolute distribution off-
line time ∆1−2 in R is minimized if the distribution order of A is Oout(A) =
(Xn, . . . ,X1).

Proof:
According to the order O

(1)
out(A) = (Xn, . . . ,X1), the distribution time is

∆
(1)
1−2 = max( w(Xn) + vn,

w(Xn) + w(Xn−1) + vn−1,
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. . . ,

w(Xn) + . . .+ w(Xi) + vi,

. . . ,

w(Xn) + . . .+ w(X1) + v1)

where we have written w(Xi) instead of wout(Xi) for simplicity. Note we have listed the

entries in max() in the order consistent with the order in which Xi appears in O
(1)
out(A).

In this order, if w(Xi) appears in an entry, it appears in every entry to its right. Note
also that each entry has exactly one v among its addends.

Let O
(2)
out(A) = (X ′

n, . . . ,X
′
1) be any order distinct from O

(1)
out(A) where X ′

i is some Xk

(k ∈ {1 . . . n}) and X ′
i 6= X ′

j for i 6= j. We denote the weight associated withX ′
i by w(X ′

i),

and the sum of weights of children of X ′
i by v′i. The distribution time under O

(2)
out(A) is

∆
(2)
1−2 = max(e′n, e

′
n−1, . . . , e

′
1) where e′i = (

n∑

k=i

w(X ′
k)) + v′i.

First we simplify ∆
(2)
1−2 by removing superfluous entries. Suppose vn is an addend

of e′d and d < n, or equivalently, Xn is not the first in O
(2)
out(A). Then e′n, . . . , e

′
d+1 can

be eliminated from max() without altering the value of ∆
(2)
1−2, since vn = maxn

i=1(vi) and

therefore e′i < e′d when i > d. After the elimination, we have ∆
(2)
1−2 = max(e′d, e

′
d−1, . . . , e

′
1).

Suppose now vm (m ∈ {1 . . . n−1}) is an addend of e′c, and m is the highest index value
among vs contained in e′d−1 through e′1. With the same argument as above, e′d−1, . . . , e

′
c+1

can all be eliminated from max().

Repeating this process, we end up with ∆
(2)
1−2 = max(e′d, e

′
c, . . . , e

′
a) where vn is an

addend of e′d, vm is an addend of e′c, . . . , vl is an addend of e′a, such that n > m > . . . > l.

We will refer to the expression of ∆
(2)
1−2 before simplification as the expanded form, and

refer to the expression after simplification as the simplified form.

(Example) suppose O
(2)
out(A) = (X4,X5,X2,X3,X1). The expanded form

of ∆
(2)
1−2 is

∆
(2)
1−2 = max(w(X4) + v4, w(X4) + w(X5) + v5, w(X4) + w(X5) + w(X2) + v2,

w(X4) + w(X5) + w(X2) + w(X3) + v3,

w(X4) + w(X5) + w(X2) + w(X3) + w(X1) + v1).

After removing superfluous entries, the simplified form is

∆
(2)
1−2 = max(w(X4) + w(X5) + v5, w(X4) + w(X5) + w(X2) + w(X3) + v3,

w(X4) + w(X5) + w(X2) + w(X3) + w(X1) + v1).
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Next, we prove a lemma which states the following:

(Lemma) After ∆
(2)
1−2 is simplified into ∆

(2)
1−2 = max(e′d, . . . , e

′
c, . . . , e

′
a), if

e′c = (
∑
w(Xi)) + w(Xm) + vm, then all of w(Xn), . . . , w(Xm+1) are addends

in
∑
w(Xi).

It suffices to show that e′c has all of w(Xn), . . . , w(Xm+1) as its addends.

Consider vi (n ≥ i ≥ m+ 1). In the expanded form of ∆
(2)
1−2, vi appears as an addend

in an entry that is either before (to the left of) e′c or after e′c. In the following, we simply
say that vi appears before (after) e′c.

If vi appears before e′c, then e′c must contain the addend w(Xi). It can not appear

after e′c, since entries in the simplified ∆
(2)
1−2 has a decreasing order for the index of addend

v. If vi had appeared after e′c in the expanded form of ∆
(2)
1−2, then e′c would have been

eliminated in the simplification process. The lemma is then proven.
Finally, we show that ∆

(1)
1−2 ≤ ∆

(2)
1−2 by identifying one entry e′c in the simplified ∆

(2)
1−2

such that ∆
(1)
1−2 ≤ e′c.

Suppose ∆
(1)
1−2 = (

∑n
i=k w(Xi)) + vk (k ∈ {1, . . . , n}). We search for an entry e′c in

the simplified ∆
(2)
1−2 such that e′c has vk as an addend. We consider the following three

exclusive and exhaustive cases:
(Case 1) If such an e′c is found, by the above lemma, we have ∆

(1)
1−2 ≤ e′c.

If an entry with the addend vk is not found, we search for an entry e′c with an entry e′b
next to its right such that e′c has an addend vl (l > k) and e′b has an addend vj (k > j).

(Case 2) If such e′c and e′b are found, we show that e′c has all of w(Xn), . . . , w(Xk) as
its addends.

By the lemma above, e′c has all of w(Xn), . . . , w(Xl) as its addends. We need to show
that e′c also has all of w(Xl−1), . . . , w(Xk) as its addends.

By the lemma, e′b must have all of w(Xl−1), . . . , w(Xk) as its addends. Therefore, in

the expanded form of ∆
(2)
1−2, all of vl−1, . . . , vk must have appeared as addends in entries

to the left of e′b. The question is whether they appear before e′c or after e′c.
If any vi (i ∈ {l − 1, . . . , k}) had appeared in an entry after e′c in the expanded form

of ∆
(2)
1−2, since i > j, at least one such entry appeared would have been included in the

simplified ∆
(2)
1−2. Therefore, each vi (i ∈ {l−1, . . . , k}) must have appeared before e′c, and

e′c has w(Xi) for i = l − 1, . . . , k as addends.
(Case 3) If the above specified e′c is found but there exists no e′b as specified above,

i.e., e′c is the right-most entry in the simplified form of ∆
(2)
1−2, we show that e′c contains

addends w(Xn), . . . , w(Xk).

Consider the left-most entry e′1 in the expanded form of ∆
(2)
1−2. This entry contains all

of w(Xn), . . . , w(X1). The simplification process does not eliminate the right-most entry

of the expanded ∆
(2)
1−2. Therefore, the simplified form has the identical right-most entry

as the expanded form: e′c = e′1 which contains addends w(Xn), . . . , w(Xk).
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We have shown that ∆
(1)
1−2 ≤ ∆

(2)
1−2 holds for an arbitrary order O

(2)
out(A). Therefore,

O
(1)
out(A) minimizes ∆1−2. 2

Lemma 32

Let Y be a non-leaf node in a rooted tree. Let the child nodes of Y be
X1, . . . ,Xm (m > 0) where Xk has nk descendants. The summation ψ =∑m

k=1(nk + 1)(tcpt(Xk) − tcpt(Y )) is minimized if

wout(X1)/(n1 + 1) ≤ wout(X2)/(n2 + 1) ≤ . . . ≤ wout(Xm)/(nm + 1)

and distribution order of Y is Oout(Y ) = (X1, . . . ,Xm).

Proof:
When Oout(Y ) is followed, we have tcpt(Xk) − tcpt(Y ) =

∑k
i=1w(Xi), and therefore

ψ =
m∑

k=1

(nk + 1)
k∑

i=1

w(Xi)

=
1∑

i=1

(n1 + 1)w(Xi) +
2∑

i=1

(n2 + 1)w(Xi) + . . .+
m∑

i=1

(nm + 1)w(Xi)

= w(X1)
m∑

i=1

(ni + 1) + w(X2)
m∑

i=2

(ni + 1) + . . .+ w(Xm)
m∑

i=m

(ni + 1)

where we have written w(Xi) instead of wout(Xi) for simplicity.
Assume that the following condition holds:

w(X1)/(n1 + 1) ≤ w(X2)/(n2 + 1) ≤ . . . ≤ w(Xm)/(nm + 1)

When m = 2, ψ = w(X1)(n1 + 1 + n2 + 1) + w(X2)(n2 + 1) if Oout(Y ) is followed.
If instead the other possible order O′

out(Y ) = (X2,X1) is followed, using the similar
derivation, we have ψ′ = w(X2)(n1 +1+n2 +1)+w(X1)(n1 +1). The difference ψ′−ψ =
w(X2)(n1+1)−w(X1)(n2 +1) ≥ 0 since w(X1)/(n1 +1) ≤ w(X2)/(n2 +1) by assumption.

In general, for each Xk, ψ contains exactly m Xk-related addends, we denote their
sum by P :

P = (nk + 1)w(X1) + . . .+ (nk + 1)w(Xk−1) + (nk + 1)w(Xk)

+ (nk+1 + 1)w(Xk) + . . .+ (nm + 1)w(Xk)

Note that each addend in P (in the form (ni + 1)w(Xj)) is unique.
Given an arbitrary distribution order O′

out(Y ) = (X1′ , . . . ,Xm′) where i′ ∈ {1, . . . ,m}
and where l′ = k, i.e., Xk appears at lth location in O′

out(Y ), we also have exactly m
Xk-related addends in ψ′. we denote their sum by P ′:

P ′ = (nk + 1)w(X1′) + . . .+ (nk + 1)w(Xl−1′ ) + (nk + 1)w(Xk)

+ (nl+1′ + 1)w(Xk) + . . .+ (nm′ + 1)w(Xk)
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Note that each addend in P ′ is also unique.
We show the P ′ − P ≥ 0 for every Xk. To show that, it is sufficient to create an

one-to-one correspondence f from the set of addends of P ′ to the set of addends of P such
that p′ − p ≥ 0 where p′ is an addend of P ′ and p = f(p′).

A typical addend of P ′ is either in the form (nk+1)w(Xi′) or in the form (ni′+1)w(Xk).
Suppose p′ = (nk + 1)w(Xi′). If i′ < k, there exists a unique p = (nk + 1)w(Xi′ ) in P

and p′ − p = 0. If i′ ≥ k, there exists a unique p = (ni′ + 1)w(Xk) in P and p′ − p ≥ 0
since w(Xi′)/(ni′ + 1) ≥ w(Xk)/(nk + 1) by assumption.

Suppose p′ = (ni′ + 1)w(Xk). If i′ < k, there exists a unique p = (nk + 1)w(Xi′ ) in P
and p′ − p ≥ 0 since w(Xi′)/(ni′ + 1) ≤ w(Xk)/(nk + 1) by assumption. If i′ ≥ k, there
exists a unique p = (ni′ + 1)w(Xk) in P and p′ − p = 0.

Therefore, P ′ − P ≥ 0 for every Xk, and the order Oout(Y ) minimize ψ. 2
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