
Building Intelligent Sensor Networks

With Multiagent Graphical Models

Yang Xiang

University of Guelph, Canada

1 Introduction

Modern society relies heavily on various equipment (food production pro-
cesses, assembly lines, transportation vehicles, airplanes, electricity grids, etc.)
Consider monitoring a piece of complex equipment. To ensure productive op-
eration, avoid downtime and reduce maintenance cost, engineers must con-
stantly determine whether the equipment is operating normally. If the equip-
ment is determined to be abnormal, the faulty devices must be replaced. Very
often, a detected abnormal behavior of the equipment may be caused by one
or more faulty devices from a large number of candidates. It is simply too
costly to replace them all. Hence, the next decision is to determine a small
number of devices that, if relaced, is highly probable to bring the equipment
back to normal. This is equivalent to answer the query: what is the small set
of devices that is highly likely the culprit of abnormality?

A sensor network is often deployed to gather and process the key informa-
tion in this decision process. Complex equipment consists of multiple compo-
nents, each of which is further composed of multiple devices. For some devices,
sensors can be deployed to observe their inputs and outputs, but sensor obser-
vations are noisy and unreliable. For other devices, no sensors can be deployed
to observe their inputs and outputs due to accessibility or cost. No sensor can
directly observe whether a device is normal and hence the state of the device
must be inferred. We refer to sensors deployed in the equipment and their
transmission media collectively as the sensor network. To infer the state of a
device from sensor observations, knowledge about intended and faulty behav-
ior of the device as well as knowledge about other devices it interfaces with
are necessary. Often, components are manufactured by different vendors, who
may be unwilling to disclose internals of their components. In such cases, no
single entity has all the knowledge needed: an issue that arises when the sensor
network crosses technical and economical boundaries.

Traditional approach for sensor network monitoring is centralized, where
all sensor observations are transmitted to a central location for processing.

2 Yang Xiang

Transmission introduces delay; centralized processing creates a bottleneck;
and the central unit must have access to all the knowledge needed.

As the cost of computing and networking continues to decrease, distributed
processing becomes a more promising alternative, where sensor observations
are processed locally and processing units exchange only partial information
through message passing. Each processing unit is abstracted as an intelli-
gent agent, embodying its subset of sensors, its computing resources, its local
knowledge, and its inference procedures. The collection of these agents as well
as the sensors that they manage forms an intelligent sensor network. The task
to process sensor obserations by these agents and to answer the query “what
is the small set of highly probable faulty devices” becomes a task of multiagent
inference.

Alternative approaches exist for multiagent inference. The early approach
is logic-based. Logic has intrinsic limitations in handling uncertainty. Effort
to overcome these limitations leads to default logic based approach. This ap-
proach relies on default and model minimization to handle uncertainty. There
are situations, however, where the minimal model is not the most probable.
More recent approach is based on Markov decision processes (MDPs) for its
strength in handling uncertainty. It suffers, however, from high computational
complexity.

In this chapter, we introduce the approach based on multiply sectioned
Bayesian networks (MSBNs). Built upon the success of Bayesian Networks
(BN) [1, 2, 3, 4, 5, 6], MSBNs [7] provide a probabilistic framework for rea-
soning about uncertain domains in cooperative multiagent systems (MAS).
Under the framework, a complex, uncertain problem domain is partitioned
into overlapping subdomains so that each can be managed by a single intel-
ligent agent. The agent holds a partial perspective of the domain in terms
of a Bayesian subnet over the subdomain. These agents reason autonomously
as well as through limited communication. The distributed inference opera-
tions defined under the MSBN framework ensure that their beliefs are exact
as governed by Bayesian probability theory. These beliefs form a distributed
assessment of the current state of the domain and answer the query “what
is the small set of highly probable faulty devices” in the context of sensor
network. When the subnet dependency structures are sparse, the inference
computation is efficient.

Several advances have been made in recent years on modeling, compilation
and inference under the MSBN framework, making it even closer to field appli-
cations. Before a general technological framework can be turned into deployed
applications, practitioners must understand sufficiently well how theoretical
intricacies are mapped into practical reality. The levels of such understanding
can be described as follows:

1. Mathematical and algorithmic level.
2. Application development level.
3. Operation level.

Building Intelligent Sensor Networks With Multiagent Graphical Models 3

This chapter is intended to facilitate understanding at the application devel-
opment level. It links together key technological steps involved in applying
the MSBN framework to intelligent sensor networks through a case study (in
a laboratory setting).

The problem domain of case study is a moderately sized sensor network
for monitoring a combinational digital system. The choice of a digital system
is due to the common knowledge (among readers) on digital circuits. Once
how to apply the MSBN framework to such a system is understood, its ap-
plications to monitoring other equipment (electrical, mechanical, chemical or
other nature) will be within one’s grasp. We demonstrate how such a prob-
lem domain can be modeled as an MSBN-based MAS, how the model can be
compiled into an efficient run-time representation, and how agents can coop-
erate to monitor the digital system and isolate faults. We explain intuitively
the rationals behind each operation. The operations are demonstrated using a
state of the art software toolkit, WebWeavr [8], developed by the author and
freely available to researchers and educators.

To serve its purpose, the chapter is kept as informal as possible, with
pointers to references containing mathematical and algorithmic details. In
short, the chapter addresses the following questions: What technical steps
are involved in building an MSBN-based intelligent sensor network? Why are
these steps necessary? How can these steps be performed using a software
toolkit, such as WebWeavr? How does the resultant intelligent sensor network
answer the query “what is the small set of highly probable faulty devices”?
What are the benefits of adopting this framework?

The remainder of the chapter is organized as follows: Section 2 surveys the
literature. Section 3 specifies the problem domain of the case study. Section 4
describes the knowledge representation and integration of the MSBN-based
MAS for the case study. Section 5 presents MAS system verification. En-
hancement of agent interface for improved inference efficiency is addressed in
Section 6. How to compile the MAS into an efficient run-time representation is
demonstrated in Section 7. The decision making computation, how multiagent
inference isolates faulty devices, is illustrated in Sections 8 and 9.

2 Related Work

Several alternative frameworks for generic multiagent inference exist. The ear-
liest one is the blackboard architecture [9], a distributed rule-based system. It
is essentially a logic-based approach.

The BDI architecture [10] has been very influential in building multiagent
systems. It primarily deals with representation of an agent’s mental state for
practical reasoning where an agent’s belief is represented as atoms of first-
order logic [11].

The main limitations of logic in handling uncertainty are summarized by
Russell and Norvig [12] as the following: (1) Logic relies on exhaustive disjunc-

4 Yang Xiang

tion to ensure exceptionless rules and such disjunction can become unbounded
in practical uncertain domains. (2) In practical uncertain domains, existing
knowledge is not deterministic as suitably represented by logic rules. (3) In
practical decision making, it is often too costly to gether all the facts needed
for firing the necessary logic rules.

The limitations of logic lead to several extensions known as default logic
[13], circumscription [14], nonmonotonic logic [15], and truth maintenance sys-
tems [16]. Distributed assumption-based truth maintenance system (DATMS)
[17] and distributed truth maintenance system(DTMS) [18] extend centralized
truth maintenance systems to distributed agents. The basic idea is to begin
the knowledge base with a set of default assumptions which are uncertain. In-
ference proceeds as if these assumptions were true until some are found to be
false due to new observations. The falsified assumptions as well as conclusions
drawn from them will be retracted from the knowledge base to regain consis-
tency. The computational complexity of these extensions is at least NP-hard
[12].

Some frameworks have been developed specially for data fusion in sensor
networks. Roos et al [19] propose a multiagent framework for sensor net-
work monitoring based on logical consistency. They showed that establishing
a global diagnosis under the framework is NP-Hard and therefore their pro-
tocol does not guarantee one.

Guestrin et al [20] propose distributed regression for efficient interpretation
of sensor data. Their method assumes that the data can be fit into a linear
function.

None of the above frameworks maintains agents’ beliefs in terms of
Bayesian probability. A recent trend has focused on modeling multiagent de-
cision making using Markov decision processes (MDP) [21, 22, 23]. However,
it has been shown [24] that the computation for solving general distributed
MDPs is intractable. The state of the art algorithms can handle only very
small problem domains currently (much smaller than the domain in the case
study to be presented here).

In the remainder of this chapter, we present a case study based on the
MSBN framework. The key advantages of the framework are the following:
It maintains agents’ beliefs in terms of exact Bayesian probability and is well
suited to modeling of uncertain domains. It works well with non-linear depen-
dence relations among sensor observations. It guarantees globally consistent
diagnosis. Due to its graphical modeling, the computation is efficient when
the graphical structure is sparse.

3 Sensor Network for Digital System Monitoring

Our case study involves monitoring a combinational digital system. It con-
sists of remotely located components U0, ..., U4 supplied by five independent

Building Intelligent Sensor Networks With Multiagent Graphical Models 5

venders and integrated by a sixth vendor. Each component is further com-
posed of a number of devices (logic gates) as shown in Figures 1 through 5.

7b

6b

5b

b 4

3b

2b

1b

0b

0U

va80

76vo

79vo

b

69v

0v 1v

6v

10b

9b

8

78

vd

45vd

39vd

48vr

68v

50vd

32vt

vn31

27vr

28va

vd29

vo26

30

59

vn

77vo

va75

vo74

va73

72vo

71vn

va70

vd41

66vd

63vd

67v

64v

61v
60v

v

12vd
51v

25v
24v

46v

43v
42v
37v

33v

34v

vt 53

vo55

vn

va49

va40

va65

va62

va58

23vr

vo47

va44

va38

vo35

56vr
57v

52

54

va
8vr

9v
vo7

3vd

va2

vn4

5vt

15v

36vr

11

v

vo22

19vv18

va20

vd21

16vo 17vr

14vt

13vn

10v

Fig. 1. Components U0.

Each component has some external inputs, such as signal v54 (see top of
Figure 1) in U0. It may accept signals from other components. For instance, U1

accepts signal b0 (see top left of Figure 2) from U0 (see top right of Figure 1).
It may output signals to others. For example, U1 outputs signal c0 (see bottom
left of Figure 2) to U2 (see top left of Figure 3).

Signals exchanged between components are labeled identically, e.g., c0, ..., c9

between U1 (see bottom of Figure 2) and U2 (see top of Figure 3). In the case
study, all signals are assumed binary (taking values of logic 0 or 1). In general,
each signal can take a finite number of discrete values, or even be continuous
(see, for instance, [25]).

Each device is in one of two states, normal or faulty, although more states
can also be represented (e.g., two normal states each at a different operating
mood). We assume that each device may be in the faulty state at any given
time with a probability of 0.01. A faulty NOT gate produces incorrect output
50% of time. The corresponding probabilities for AND and OR gates are as-
sumed to be 0.8 and 0.3, respectively. These parameters and Figures 1 through
5 completely specify the problem domain and allow replication/verification of
our case study. These details also give readers a feel of the complexity of the
problem domains that the MSBN framework is capable of handling. The digi-
tal system is used here as an example of any complex system made of multiple
components, each of which further decomposes into simpler units. Collectively,

6 Yang Xiang

wa141

wd140

wa130

wd131

w116w86

142

150

wd151

w149

wt148

wr146

w144

wt133

wt155

wn154

wn147

wr118

wd

w

167

c5 c6 c7 c8

wo

89

c9

wo163 wn164 wa165

wa

b8

b7

b6

b5

b4

b3

b2

b1

wr125

e11

e1
e2

w14

109

w99

wd101
wa100

b0

e0

c0 c1
c2 c3

U1

wd103

wd

e

97

wd96

wr138

w114w112

w160

wt159

wn158

wd157

w166

wo

3 e5 e6 e7 e8
e9 e10

wd82

b9

w107

b10

c4

168wa

111wo

98

wa7 wd8

w9

wn10

wt11

wa12
wd13

wo15

wr16

wo17

wr18

wa19

wd20

wa

6

e4

w0

w1

wo2

wr3

wn4

wt5 w

21

94

wa95

w104

wn105

wt106

wa108

wa110 wa113 wa115

wo117

w119

w120

w121
wa

wr

76

wr77

w78

wn79

wt80

wa81

wa84
wd85

wa87
wd88

wt91

wn90w92

wo93

122

w153

wa156

wa161

wd162

wr54
w83

w134

wa102

w

152

wd123

wo124

wa126
wd127

wn128

wt129

wn132

w135 w136

wo137 wa139

w143

wo145

w

wo

w37
wo38

wr39

w40

wa41
wd42

wo43
wr44

wn45

wt46

wo47

36

wd22wn23

wt24

w25

w26wo27wr28

wa29

wd30

wn31
wo33

wr34

wa35 wd

wr

62

wn63

wt64

w65

wa66
wd67

wo68

wr69

wo70

wd71

wn72

wt73

w74

w75

wd

48
wt32

wa49

wd50

wa51

wd52

wo53

wa55
wd56

w57

w58
wo59

wr60

wa61

Fig. 2. Component U1.

these components implement some useful functionalities that may be electri-
cal, mechanical, chemical, and so on.

There are two types of decisions to be made in monitoring such a system.
The first decision involves a normality query: Is the current system operating
normally? The answer to the query is binary. A positive answer (the system is
normal) requires no intervention. A negative answer (the system is abnormal)
requires intervention in order to bring the system back to normal.

In the case of a negative answer, the second decision must be made to de-
cide which faulty gates should be replaced. Very often, a faulty gate produces
incorrect output signal which propagates to other gates and causes their out-
put signals to be incorrect as well. It is simply too costly and unwise to replace
them all. It is desirable to replace only a small number of devices that are
highly probable to be the culprit of abnormality. Hence, the second decision
involves a culprit query: What is the small set of devices that is highly likely
the culprit of abnormality? The answer to this query has multiple potential
values.

To answer these queries, sensors can be deployed to collect necessary raw
information. We assume that in general each external input signal and the

Building Intelligent Sensor Networks With Multiagent Graphical Models 7

42xr xt44

xn43xo41

46xr

45xo

8c

40x
xd29

xa28

31xr

xo30

10xo

15xa

xd16

55xr

54xo

xt59

xa60

57xr
53x

xo56
xa51

xd24

xa23

xn

xd33xd18

17xa

xd22

xa21

26xr

xo25

61xd

58

37

xa36xo34

xr35

xa38

xd
20xr

xo19

4c

2U

xd39

xn47

xt48 xd52

50x
49x

3 27x

8x

9c5c 6c 7c
0c

1c
2c c

3x

xo4

5xr

xa6

7xd xa32

11xr 14xd

13xa

12x9x

xn1

0x

xt2

Fig. 3. Component U2.

output signal of each gate can be observed through a sensor, although in
practice no sensors are deployed to observe some signals due to cost involved
or other constraints. We assume that whether a logical gate is faulty can
never be observed directly and can only be inferred from other observations.
These assumptions are consistent with the partial observability of practical
systems. We refer to the collection of sensors and the signal transmission
media deployed to monitor a given system as a sensor network.

Although a sensor network provides the raw information about the behav-
ior of the monitored system, the information must be processed in order to
answer the normality query and culprit query. In theory, the processing can be
performed by an intelligent agent through reasoning based on its knowledge on
the monitored system as well as sensor observations. However, this paradigm
has a number of practical difficulties. First of all, transmitting sensor obser-
vations distributed over space to a central location requires high bandwidth
and introduces time delay. Second, the dependence on a single agent creates
a bottleneck and processing fails completely when the agent fails. Third, the
need to process all relevant knowledge and observations at the single agent
places heavy load of computation at the agent and introduces additional com-
putational delay. Fourth, it is difficult to develop a single agent capable of
monitoring a large and complex problem domain, due to the amount of do-
main knowledge to be gathered and encoded. Vert often, no single person or
single technical entity possesses all the knowledge needed. For example, we
have assumed that the digital system consists of five components supplied by
independent vendors. Although each vendor has detailed knowledge about the

8 Yang Xiang

yo
h4

h11

h8

h7

h1

h0

h3

h2

h5
41

30yo

29yd 28ya

yr44

43yo

yr42

yr38

yd36
35ya

37yo

h6

h9

h10

yr96

yn39

yr16

y
87

yo121

e0

52y

47

10

yd11

yo15

ya18

y23

y22

U3

yr25
yo24

yo26

ya
yt 8

yn7

y0

y1

y4

ya2
yd3

yo5

y12

yr6

32

yo33

yr34

yt 40

y45

46ya

49yo

y48

yd

y

27yr

yr31

yn20 yt 21yd19

ya13
yd14

17

10

123yn

122ya

ya119

yn120

ya118

yo

e

e1

e2

e3

e4

e5

e6

e7

e8

e9

e11

117

91

ya81

ya85

y
108

y
109

yt 101

y
110 yn100

99

yo

ya116

115yo

ya114

yn113

yd 86

y
107

yd 82

yr92

ya124

yd

55yd

57yd 56ya 53y

51y54ya

58yo

y

y9yr50

y71

yr59

65

y
64

yd63 ya62

y
61

y
104

103yr yo102

yd90
ya89

yt

yo

ya98

y
111

106yd
ya105

y
112

yd 68

ya67

yr66

80

97

y
60

y
69

yo95

ya93

y
70

yo77

ya72

y

yn79

yr76

y
84

y
83

yo75 y
74

yd73

yr78

y
88

yd94

Fig. 4. Component U3.

composition of the corresponding component, it may not want to disclose this
knowledge due to competition.

One alternative to the single-agent paradigm is the multiagent paradigm.
The large domain is partitioned into subdomains. In our case study, each
subdomain corresponds to one component. Sensor observations for each sub-
domain are collected and processed by a separate agent, and a set of agents
are responsible for the entire domain. The advantages can be understood as
follows: First, the agent responsible for a given component can be deployed at
the same location as the component, eliminating the need of high bandwidth
and time delay due to transmission of observations to a central location. Sec-
ond, even when a single agent fails, the other agents can still function. Hence,
the monitoring system fails gracefully instead completely. Third, each agent
needs to process mainly knowledge and observations on its subdomain (plus
some communication with other agents). Since different agents process their
local information in parallel, the overall computation is more efficient. Fourth,
each agent encodes only knowledge about its subdomain and the agent devel-
opment is easier. When the subdomains are partitioned naturally, a natural
technical entity exists to supply the relevant knowledge. For our case study,
the vendor who supplies the component becomes the natural agent developer.

Building Intelligent Sensor Networks With Multiagent Graphical Models 9

19zr

20zn
21zt

13za

12

67za

z48

71z

66z

62zn
63zt

65za

64z

69z
70zo

72zo

zd

z

5h

0h

1h

2h

3h

4h

6h

7h

h8

9h

11h

10h

68

73

zr

39zn

40z41zo42zr

43zn

44z45zo

4U

46zr

47zn

38

32z
33za34zd

35zn

36z37zo

15z

6zn

1z

7zt

8z

9z

10za

11zd
22zo

za

zr
74zn

75zn

51z
76zt

77z
78za

0z
2zo

3zr

4zn
5zt

17zd 16

23

z

59za

61zo

24z
25za26zd

27z28zo

30za

29zr

31zd

60

zr

14zd

18zo

49za

52zo

zd50

55z56za

58z
53z54za

zd57

Fig. 5. Component U4.

In this chapter, we adopt the multiagent paradigm for the case study. The
agent responsible for the component Ui (i = 0, ..., 4) is denoted by Ai. We refer
to the collection of the sensor network, the local signal transmission media,
and the agents as an intelligent sensor network.

4 Integration of MSBN-based Multiagent System

Given the knowledge on a problem domain and sensor observations, agents can
answer the normality and culprit queries based on their beliefs. For example,
if every agent believes that each gate in its subdomain is currently normal,
then agents collectively can answer the normality query positively. On the
other hand, if at least one agent believes that some gates in its subdomain is
currently abnormal, then agents collectively can answer the normality query
negatively. In that case, the set of gates, each of which is believed highly

10 Yang Xiang

probable to be faulty by at least one agent, constitutes the answer to the
culprit query.

How, then, should agents represent their beliefs? It has been shown [26]
that under some reasonable assumptions, the correct belief must be consistent
with Bayesian probability. Furthermore, if one’s belief deviates from Bayesian
probability, then actions consistent with that belief will lead to guaranteed
failure in an malicious uncertain environment [27]. Belief maintained by earlier
multiagent reasoning systems do not satisfy this criterion (see Section 2). The
MSBN framework is developed with the objective that agents’ beliefs are
exact according to Bayesian probability theory. To this end, the framework
employs two levels of knowledge representation: the individual agent level and
the agent society level.

At the individual agent level, the knowledge is represented as a BN as in the
single-agent paradigm. Under that paradigm, a BN is a concise encoding of the
single agent’s probabilistic knowledge of its domain through a graphical model.
Under the multiagent paradigm, since each agent only has the knowledge
about a subdomain and encodes that knowledge into a BN, the graphical
model is referred to as the subnet of the agent.

A subnet consists of three components: a set of variables, a graph, and a
set of conditional probability distributions. The set of variables corresponds
to the subdomain of the agent. The graph is a directed acyclic graph (DAG),
where each node corresponds to a subdomain variable (hence we refer to the
nodes and variables interchangeably) and each arc corresponds to a causal
dependence relation. The DAG encodes conditional independence relations
among the variables. If two sets X and Y of nodes are graphically separated
by a third set Z, then the dependency between X and Y is mediated by Z.
Once the value of Z is known, X is no longer dependent on Y , and X and
Y are said to be conditionally independent given Z. The set of probability
distributions consists of one conditional probability distribution (CPT) for
each node x in the form of P (x|π(x)), where π(x) is the parent nodes of x.
Due to the encoding of conditional independence in the DAG, a probability
distribution over all subdomain variables is well defined as the product of
all CPTs. For fundamentals on representation of conditional independence in
BNs, see [1, 2, 3, 4, 5, 6].

In general, the subdomain of an agent in our case study may contain
the following types of variables: gate, signal, sensor and sensor observation.
Figure 6 (a) illustrates a logic gate, its input and output signals, the sensor
that monitors the gate output, and the sensor observation. How to encode the
dependency among these variables in a subnet is shown in (b).

The illustration and the representation capture the unreliability of the
sensor: When the sensor is functioning normally, the sensor observation is
identical to the gate output (signal3). When the sensor fails, its output may
differ from that of the gate. From this, we see that sensors and logic gates that
they monitor are not much different. They are both devices that are subject
to failure and can be modeled in the same way.

Building Intelligent Sensor Networks With Multiagent Graphical Models 11

Fig. 6. (a) Illustration of a logic gate and a sensor. (b) Representation in a subnet.

One might point out their difference in observability: The output signal of
the gate cannot be directly perceived by the agent, but the sensor observation
can. However, although the sensor observations are directly perceivable, the
perception requires the sensor output to be transmitted to the agent, which
takes time and bandwidth. When a large number of sensors exist, the agent
must choose the sensors to perceive selectively. Those sensors not being chosen
at a given time are effectively not observable. We now see that sensors and
devices (logic gates) that they monitor are not any different at all, from the
modeling perspective. To simply our presentation, we assume the following in
the case study:

• All sensors are reliable.
Hence, sensor observations are always equal to the signals they monitor.
This makes representation of sensors and sensor observations redundant.
We therefore omit the sensor and sensor observation types of variables
from the subnet and regard the corresponding signal variables directly
observable subject to the following restriction.

• Some signals do not have associated sensors.
This assumption divides signal variables into those that are observable and
those that are not. Due to the omission of sensor variables, the difference
is not explicit in the subnet representation. We make observability as the
default and we indicate explicitly when a signal variable is not observable.

Figure 7 shows the subnet S0 (for agent A0) constructed by the vendor of
U0 using the tool Network Editor from the WebWeavr software toolkit [8]. It
shares common nodes b0 through b10 with subnet S1 (not shown) for agent
A1. Due to the above assumption, the subdomain V0 of S0 consists of only
gate and signal variables. A gate variable represents the state of a digital
gate: whether it is normal or faulty (simply denoted as good and bad). For
instance, vn4 (see middle left of Figure 1) represents a NOT gate. A signal

12 Yang Xiang

Fig. 7. Subnet S0 for component U0 and the CPT for node vt5.

variable represents the logic value of a signal if it is not observed by a sensor
or the correctly observed value of the signal by a sensor. In either case, its
value is either logic 0 or logic 1. For instance, vt5 represents the sensed output
signal of gate vn4. The knowledge encoded in S0 is private to its developer,
the vendor of U0. For simplicity, we say that S0 is private to agent A0 and
this privacy will be maintained through the lifetime of A0, as we will see. The
exception is the variables that A0 shares with other agents, e.g., b0 through
b10. Since these variables are known to another component and its vendor,
they are public anyway.

Figure 8 illustrates the CPT for variable vt5. The last two rows, where
vn4 = good, encode the knowledge on the normal behavior of NOT gate vn4.
The two rows where vn4 = bad state that, when the NOT gate is faulty, its
output is random.

Building Intelligent Sensor Networks With Multiagent Graphical Models 13

Fig. 8. CPT for node vt5 in subnet S0.

Next, we consider the knowledge representation at the agent society level.
The key issues addressed at this level are agent organization and agent in-
terface. Agent organization specifies, for each agent, which other agents it
can communicate directly. Agent interface specifies, for each pair of agents
who can communicate directly, what are the pubic variables between them as
these variable determine the content of messages they exchange. Agent orga-
nization is presented in the remainder of this section. Agent interface is partly
described here and is continued into the next two sections.

The chief concerns of agent organization are to support exact and efficient
probabilistic inference. Through formal analysis, it has been shown that the
organization must be a underdirected tree structure [28] (called a hypertree).
In the hypertree, each hypernode corresponds to an agent and each hyperlink
corresponds to a direct communication link between the agents connected
(through their interface). That is, according to the organization, each agent
can only communicate directly with agents adjacent on the hypertree.

Intuitively, in a hypertree organization, each hyperlink defines two separate
agent communities (one on each end) and potentially allows information to be
fully exchanged between the two communities through exactly two messages
over the hyperlink (one in each direction). For a society of n agents, this
amonts to exactly 2 (n−1) messages along the hypertree, which is efficient. If
the agent interfaces are adequately composed (as will be addressed in the next
section), such message passing can also ensure exact probabilistic inference.

Who is responsible to specify the agent organization? As we mentioned,
there exists a sixth independent vendor, referred to as Assembler, who assem-
bles the five components into the final digital system. Assembler is also the
natural candidate to assemble the five corresponding agents into an MAS. Op-
erationally, it uses the tool Integrator from the WebWeavr toolkit illustrated
in Figure 9 (through the function buttons ”Agt Org” and ”Name Agt” at the
top left of the figure). In the figure, the hypertree topology is shown where
each hypernode is labeled with the nickname of an agent (huge0 for A0, huge1
for A1, and so on).

14 Yang Xiang

Fig. 9. Integrating agents into an MAS. Middle: agent organization. Bottom: agent
public variables.

Next, we consider the agent interface. The chief concerns here are to sup-
port exact and efficient probabilistic inference, and to protect agent privacy.
The efficiency and privacy concerns demand that a minimum amount of in-
formation to be exchanged between agents. The exactness concern demands
that a sufficient amount of information to be exchanged over an interface.
Recall that an agent interface (corresponding to a hyperlink in the hyper-
tree) is the unique information channel between the two agent communities.
Mathematical analysis [28] shows that the agent interface should consist of
a set of variables that renders the two agent communities conditionally in-
dependent, and a message from an agent should be the agent’s subjective
probability distribution over the interface variables. This message contains all
relevant information to inform the other agent community. Anything less is
not sufficient in general.

The agent interfaces are specified through the tool Integrator by specify-
ing, for each agent, a set of public variables (using the “Pub Var” function
button at top of Figure 9). From the set of public variables in each agent, the
agent interfaces can be be derived as the intersection of these variables be-
tween adjacent agents. For instance, A0 has public variables b0, ..., b10: signals
exchanged between U0 and U1 (see the first line in the bottom of Figure 9).

From the general requirement of the agent interface, a number of implied
requirements can be derived and are enforced by the tool Integrator. Each
public variable in an agent must be associated with at least another adjacent
agent (otherwise, the variable is not really public). For each pair of adjacent
agents, the two corresponding sets of public variables must have a non-empty
intersection (otherwise, the content of message to be exchanged between them
is undefined). If non-adjacent agents Ai and Aj have a common public vari-
able, then it must be a public variable in each agent along the hypertree

Building Intelligent Sensor Networks With Multiagent Graphical Models 15

pathway between Ai and Aj . Otherwise, information from Ai on the variable
cannot be communicated to Aj. This is because any information to be deliv-
ered between them must be conveyed indirectly through the agents between
them on the hypertree, as dictated by the agent organization. The tool In-
tegrator automatically enforces the above requirements during specification
and gives feedbacks to Assembler until all conditions mentioned above are
satisfied.

The MAS is now logically specified. However, in order for agents to commu-
nicate according to the specified organization, the MAS has to be physically
set up. That is, for each agent to be able to communicate directly to its
hypertree neighbors, it must know their physical addresses in the computer
network. To do so, Assembler uses the tool Binder from WebWeavr:

Binder is a special agent and its physical address is known to all agents.
When it starts, it is given access to the organization specification of the MAS.
It then waits for each agent to register. An agent registers itself by sending its
physical address to Binder. For instance, agent A0 (nicknamed huge0) sends
its host computer IP address and port number to Binder. After all agents
have registered, Binder notifies each of them with the physical address of
each adjacent agent on the hypertree as well as the set of public variables
shared between them, the agent interface.

The successful termination of the binding and agent registration mark the
integration of the MSBN-based MAS. Each agent now knows to whom it can
communicate directly, how to reach them, and what message content should
be exchanged with them.

5 Model Verification

To ensure exact inference, the knowledge representation of the MAS must
satisfy two additional conditions. Both conditions are related to the directions
of arcs in agents’ subnets. One of them has a global scope and the other is
restricted to interface variables only.

First, we consider the global condition. When agents’ subnets are viewed
as a whole (by merging their public variables), it must be a DAG. This re-
quirement is implied by the causal interpretation of the graphical structure
of subnets. If we start from a variable in a subnet, traverse subnets through
a directed path, and finally return to the same variable, then the graphical
structure has violated the causal interpretation.

As we mentioned before, each subnet is a DAG, specified by the corre-
sponding agent developer. However, when multiple DAGs (one for each sub-
net) are merged together, it may be cyclic. This is illustrated in Figure 10.
When the three DAGs G1, G2 and G3 are merged through their public nodes
(labeled identically in each DAG), a directed path (a, c, d, b, n, k, g, j, l, a) is
formed.

16 Yang Xiang

G

o

l

G

i

G

e

f

c
m

t
s rq

g

nd

h

2

31

k

j

b

a

k

j

b

a

Fig. 10. A directed cycle is formed after the three DAGs are merged.

The possible cyclicity from merging multiple DAGs means that just en-
suring acyclicity at each subnet is not sufficient. That is, the global acyclicity
cannot be enforced at the level of individual agent developers. Verification
performed at the level of agent society is necessary. However, as each subnet
is private (built by an independent vendor), the global acyclicity cannot be
verified by physically merging individual subnets (which requires disclosure
of the internal structure of each subnet to a centralizing agent). Despite its
seeming impossibility, a verification method has been developed [29] that only
requires each agent to pass messages to their hypertree neighbors on whether
its subnet contains any parent or child of their shared variables (but not how
many and what they are). Nothing else about the internal structure of its
subnet is disclosed. Based on such messages, agents can cooperate to detect
global cyclicity whenever it occurs and to verify global acyclicity whenever
it holds. The verification tool DVerify in WebWeavr toolkit implements the
method, whose operation will be briefly illustrated below.

Next, we consider the directionality of arcs that connect public variables.
As mentioned in Section 4, variables in an agent interface should render
the two corresponding agent communities conditionally independent. In other
words, no matter whether or not the interface variables have been observed,
passing the subjective probability distribution over these variables from one
community (through the corresponding agent) should sufficiently inform the
other community. When a public variable is involved in a particular type
of dependency, termed induced dependence [1], it can cause violation of the
requirement.

In Figure 11, for instance, the fragment of a digital system in (a) has been
partitioned and represented in two agents A1 and A2 as shown in (b). The
interface between the agents contains variable sig5 that corresponds to the
output signal sig5 of AND gate g4. Suppose that agent A1 observed input
signal of NOT gate g1 to be sig1 = 0 as well as signal sig5 = 0. A2 observed
input signal of NOT gate g3 to be sig3 = 0. From the intended functions
of NOT and AND gates, we know that at least one of g1, g3 and g4 is
faulty. However, if A1 passes its probability distribution on sig5 to A2, it is
not possible for A2 to realize that g3 or g4 might be faulty, since A2 has no

Building Intelligent Sensor Networks With Multiagent Graphical Models 17

Fig. 11. (a) A fragment of a digital system. (b) Representation of the fragment in
subnets of adjacent agents.

information about the expected value of sig2. In fact, A2 does not even know
the existence of variable sig2 since it is private to A1.

Fig. 12. Modified subnet representation that satisfies the d-sepnode condition.

This problem lies in the fact that none of the agents has all the parent vari-
ables of sig5, namely, sig2, sig4 and g4. To avoid such problem, it is required
that every public variable is a d-sepnode: A public variable x is a d-sepnode
if at least one subnet contains all parent nodes of x from all subnets. The
d-sepnode condition can be satisfied in the above example by making variable
sig2 public, as shown in Figure 12.

18 Yang Xiang

With this new subnet representation, A2 can encode the dependence of
sig5 on sig2, sig4 and g4 within its subnet. If A1 is to pass a message to A2,
the message not only include the information sig5 = 0, it also include A1’s
expectation on the value of sig2. From the dependency, A1’s expectation on
sig2 (namely, sig2 = 1), and A2’s own expectation on sig4 (namely, sig4 = 1),
A2 will be able to identify the abnormal behavior of the digital system.

Again, because each subnet is private and the parent variables of a public
variable may also be private (e.g., the variable sig2 in Figure 11), the d-
sepnode condition cannot be verified by agents working independently. Due to
the need to protect agent privacy, it cannot be verified by physically merging
individual subnets at a centralizing agent either. A method has been developed
[30] that essentially requires an agent to tell its neighbors, for each of its public
variable x, whether it contains any private parent variables of x (but not how
many and what they are). Based on these messages, agents can cooperate to
detect every non-d-sepnode and to verify every d-sepnode. The method is also
implemented in the tool DVerify in WebWeavr toolkit.

To cooperate in verification of global acyclicity and d-sepnode condition,
each agent executes a copy of DVerify. One agent, arbitrarily chosen as the
coordinator initiates verification. During verification, messages will be passed
among agents along the hypertree, interleaved with local computation at each
agent. At the end of the cooperation, the coordinator agent is able to announce
whether the MAS has passed the global acyclicity test and d-sepnode test.

6 Agent Interface Enhancement

An MSBN-based MAS that has passed the above verification can support
autonomous and exact multiagent probabilistic reasoning. However, commu-
nication between agents may not be efficient. An agent communicates with an
adjacent agent by sending its subjective probability distribution over their in-
terface. For instance, the interface between A1 and A3 has 12 binary variables
(e0, ..., e11) and a message between them contains 4096 probability values. In
general, if the interface consists of m variables and each has k possible values,
the message contains km probability values.

To reduce the message size while supporting exact inference, factorization
of the probability distribution over the interface can be explored. For instance,
if variables e0, ..., e4 are conditionally independent of e8, ..., e11 given e5, e6, e7,
then the message between A1 and A3 can be encoded into two distributions
over e0, ..., e7 and e5, ..., e11 with a total size of 256+128 = 384: a reduction
of factor 10.

How to explore the conditional independence existing in the agent interface
through subnet compilation is presented in the next section. In this section,
we address the situation where no conditional independence relations can
be found within the natural agent interface or those that exist do not yet
offer sufficient efficiency gain. One solution is to enhance the interface with

Building Intelligent Sensor Networks With Multiagent Graphical Models 19

additional variables that can bring conditional independence relations from
the subdomain into the interface.

Fig. 13. (a) A fragment of a digital system. (b) Corresponding adjacent subnets.

Figure 13 illustrates the idea with a fragment of a digital system (a). It
is represented as adjacent subnets in (b). The agent interface consists of m
variables sig1, ..., sigm. There is no conditional independence relations within
the interface. This can be understood as follows: For any three signals sigi,
sigj and sigk (1 ≤ i < j < k ≤ m), if the value of sigi is known, it helps to
generate expectation on the value of sig0, which in turn generates expectation
on the value of sigj . Even if the value of sigk is known, it cannot diminish
this dependency between sigi and sigj . Hence, there is no conditional inde-
pendence relations among them and a message over the interface has a size of
2m.

Figure 14 shows new subnets where the agent interface is enhanced by
adding the variable sig0. Now, if the value of sig0 is known, it helps to gen-
erate expectation on the value of sigi. Knowing in addition the value of sigj

20 Yang Xiang

cannot change that expectation at all. Hence, sigi and sigj are conditionally
independent given sig0: an independence relation has been introduced into
the interface. Furthermore, the independence relation holds for every pair
of i and j. This allows the probability distribution over the interface to be
factorized into m distributions each defined over two variables sig0 and sigi

(i = 1, ..., m). The total size of the inter-agent message is reduced to 4m from
the original size of 2m.

Fig. 14. New subnets with enhanced agent interface.

To explore this idea, suitable variables (such as sig0) need to be identified.
Identification of these variables among a large number of alternatives is non-
trivial. The process often requires cooperation between agents. For instance,
if sigm+1 through sig2m all feed into a common gate in A2, then unless its
output signal is also added into the agent interface, the above mentioned
reduction in message size cannot be achieved. Instead of burdening the agent
developers with the enhancement task, it can be delegated to agents.

The enhancement involves search through many alternatives, including
disclosure of some originally private variables, to neighbor agents, as promising
enhancement candidates. To protect agent privacy during enhancement, each
agent classifies variables in its subnet into three groups: private, public, and
preferably private. The public group forms the natural initial agent interface.
The private group will be kept so absolutely. The preferably private group is
initially private, but the agent is allowed to make some elements of this group
public if it believes that the disclosure may improve efficiency. The agent is
required, however, to keep the disclosed variables as fewer as possible. That
is, any disclosed candidate variable should be highly promising through the
agent’s local evaluation. The actual efficiency improvement of an enhancement
can only be determined by agents’ cooperative evaluation.

A suite of algorithms for multiagent interface enhancement has been devel-
oped [31]. Through multiagent heuristic search, each of the four agent inter-

Building Intelligent Sensor Networks With Multiagent Graphical Models 21

faces are enhanced. For example, the interface between A1 and A3 (consisting
of e0, ..., e11) is enhanced with additional variables

yd82, yd101, yd106, w14, wr16, wr18.

These variables bring several independence relations into the interface. For
instance, e0, e1, e2 are independent of e3, e4, e5 given wr16, yd106. As the result
of enhancement, the message size between each pair of adjacent agents is
reduced significantly, as shown in Table 1, with the new message size to be as
low as about 4% of the original (between A3 and A4).

Table 1. The message size between each pair of adjacent agents before and after
interface enhancement.

Interface A0 − A1 A1 − A2 A1 − A3 A3 − A4

Before 2048 1024 4096 4096

After 136 136 336 160

Agent interface enhancement is the only technical step where information
about variables that are initially private (those that are preferably private)
may be disclosed. This step is not necessary for exact inference using the
MSBN-based MAS and should be regarded as an option for trading privacy
with efficiency.

7 Compilation into Linked Cluster Trees

Inference computation in an MSBN-based MAS consists of local inference at
individual agents and communication among agents. Local inference involves
updating the agent’s belief (subjective probability distribution) over its sub-
domain based on local sensor observations. During communication, the basic
operation of an agent involves passing to another agent its subjective probabil-
ity distribution over their interface (the message). The two computations are
intertwined: A message for communication must be derived from the sending
agent’s local distribution over its subdomain, and a message received should
be processed for updating the local distribution over the receiving agent’s
subdomain.

Suppose that an agent’s subdomain consists of n variables and each has
up to k possible values. The probability distribution over the subdomain has
a size of kn. To make the local inference efficient, the agent must avoid direct
manipulation of the distribution. The idea is to explore conditional indepen-
dence and factorization of the distribution. Each agent compiles its subnet into
a cluster tree, where variables are grouped into clusters with intersections of
adjacent clusters referred to as separators. The cluster tree is so constructed

22 Yang Xiang

such that the intersection of any two clusters is contained in every cluster on
the path between them. The property ensures that any update on the prob-
ability of a variable located in a cluster can be propagated to every other
cluster that contains the same variable. This idea of using such cluster trees
for probabilistic inference was proposed first in the single-agent paradigm
(see [32, 33, 34, 3]). It has been extended into operations under the multi-
agent paradigm [35, 7]. Details on compilation can be found from the given
reference. Figure 15 shows the cluster tree compiled from the subnet of agent
A0 through cooperation with other agents using the tool Structure Compiler
in WebWeavr toolkit.

Each cluster is associated with a probability distribution over its member
variables obtained from the CPTs in the subnet. The cluster tree encodes
the conditional independence relations existing in the subnet: Two adjacent
clusters are conditional independent given their separator. These indepen-
dence relations allow factorization of the the agent’s subjective probability
distribution over its subdomain. The cluster distributions are more efficient
spacewise, yet they uniquely define the agent’s subjective probability distri-
bution over its subdomain [33]. Furthermore, the tree topology allows local
inference to be performed by passing messages (probability distributions) over
separators along the tree structure (we describe the inference operation in the
next section). When the size of the largest cluster is bounded, the inference
is efficient.

During communication, an agent needs to send its subjective probability
distribution over an agent interface to the neighboring agent. As we discussed
earlier, sending the message as a single distribution over the agent interface
has the exponential complexity, which motivated agent interface enhancement.
However, interface enhancement only ensures that there exists conditional
independence relations within the interface. It does not create an explicit
data structure to utilize these independence relations. The data structure
that serves this purpose is called linkage tree.

Essentially, the linkage tree is also a cluster tree. The cluster tree compiled
from the agent’s subnet is composed of all variables in the agent’s subdomain.
On the other hand, the linkage tree is composed of only variables in an agent
interface and is used only for computation of message to the corresponding
adjacent agent. A linkage tree is derived from the local cluster tree and it
inherits all the conditional independence relations among interface variables
that are explicitly encoded in the local cluster tree. Details on how to derive
linkage tree from local cluster tree can be found from reference [36]. Figure 16
shows the linkage tree of agent A0 for computing messages to A1. Each cluster
in the linkage tree is called a linkage. Each linkage has a corresponding cluster
in the cluster tree, called its host, that contains the linkage.

Each linkage is associated with a probability distribution that is derived
from the distribution associated with its host. From these linkage distribu-
tions, the agent’s subjective probability distribution over the agent interface
can be constructed through factorization. Although the distribution over the

Building Intelligent Sensor Networks With Multiagent Graphical Models 23

F
ig

.
1
5
.

T
h
e

cl
u
st

er
tr

ee
fo

r
a
g
en

t
A

0
.

24 Yang Xiang

Fig. 16. The linkage tree for computing messages between A0 and A1.

interface has a size of 215 = 32768, the inter-agent message made of linkage
distributions has a total size of 3 ∗ 25 + 2 ∗ 24 + 1 ∗ 23 = 136.

Note that the possibility of efficient message representation using linkage
trees is a direct consequence of exploring conditional independence within
the agent interface. The compilation operation automatically identifies such
independence relations if they exist. If these relations do not yet exist in
the natural agent interface, they must be brought into the interface through
interface enhancement (Section 6) .

8 Multiagent Inference

The above compilation effectively converts the collective knowledge of multiple
agents, originally represented as an MSBN, into a set of linked cluster trees.
Using the local cluster tree, each agent can perform inference autonomously
without cooperation from other agents. For instance, if x is a variable repre-
senting a sensor output and an agent observes the value x being logic 1, then
the observation can be entered into the cluster tree as follows: First, a cluster
that contains x is selected. As mentioned above, the cluster has an associated
probability distribution, which specifies the probability for each combination
of the values of variables in the cluster. If a combination has the value of x
being logic 0, then the probability of the combination is set to 0, meaning
that this combination is now impossible given the observation x = logic 1.
The remaining combinations will have their probability values scaled up so
that they sum to one, while maintaining their original relative magnitudes.
This operation is termed entering observation.

After each sensor observation has been entered into the corresponding clus-
ter, the change in these clusters must be propagated to other clusters in order
to achieve their impact on other variables that depend on them. This is done

Building Intelligent Sensor Networks With Multiagent Graphical Models 25

through message passing along the local cluster tree. Each cluster receives a
message from each neighbor cluster. It sends one message to each neighbor
after it has received messages from all other neighbor clusters. Each message
is simply a probability distribution over the corresponding separator and it is
computed from the distribution associated with the sending cluster and mes-
sages received by the cluster. Over each separator, exactly two messages are
sent, one in each direction.

Since there are no more clusters than variables in the subdomain and there
are less separators than clusters, it can be seen that if the clusters are small in
size, the message propagation is efficient. It has also been shown [33, 3] that
the cluster probability distribution obtained through the propagation is exact
relative to the probability theory, the background knowledge of the subnet,
and sensor observations.

Since subnets in our case study represents components that are inter-
connected and therefore mutually constrained, sometimes communication
with other agents allows an agent to better ascertain the current situation of
its component than what is achievable by the agent’s autonomous inference
only. When such is the case, agents engage in a communication operation so
that they can benefit from each other’s local sensor observations. The com-
munication operates in a similar fashion as the message passing in a cluster
tree, but at the agent level and along the hypertree:

Each agent receives a message from each neighbor agent according to the
hypertree agent organization. It sends one message to each neighbor agent
after it has received messages from all other neighbor agents. A message is a set
of probability distributions each of which is over a linkage with the receiving
agent and is derived from the probability distribution of the linkage host
cluster. Collectively, these distributions define the sending agent’s belief over
the agent interface. Between each pair of adjacent agents on the hypertree,
exactly two messages are sent, one in each direction.

Since there are less linkages than clusters in the local cluster tree, there are
as many hypernodes in the hypertree as the number of agents, and there are
less hyperlinks than hypernodes, it can be seen that if the clusters are small
in size, the agent communication is also efficient. Furthermore, mathematical
analysis [36, 7] shows that the agents’ beliefs after communication are exact,
relative to the probability theory, the collective background knowledge of all
agents encoded in their subnets, and sensor observations of all agents. In the
next section, we demonstrate how these operations can be used to answer the
normality and culprit queries.

9 Sensor Net Monitoring and Fault Isolation

To monitor the digital system domain, each agent collects sensor outputs
and reason about the state of its subdomain autonomously. Less frequently,
agents may choose to communicate in order to benefit from information in

26 Yang Xiang

other agents. Through interleaving local inference and communication, agents
can collectively answer the normality and culprit queries.

The tool DMasMsbn in WebWeavr supports agent sensing, inference and
communication. We demonstrate digital system monitoring through the fol-
lowing scenario: AND gate wa130 in U1 and OR gate y049 in U3 are faulty and
produce incorrect output signals. The incorrect outputs propagate through
other gates and produce more incorrect signals throughout the system. Agents’
task is to detect that the system is abnormal (answering the normality query)
and to isolate the faulty gates (answering the culprit query).

To demonstrate the operation of the MAS while avoiding the cost of im-
plementing the digital hardware physically, the tool Scenario Simulator from
WebWeavr is used to simulate the digital system and associated sensor net-
work. The simulator accepts a set of externally specified input signals to the
digital system, simulates the behavior of all digital gates including the faulty
gates, and generates output signals of all gates. It responds to agents’ request
for observations and enforces the assumption that the state of a gate is not
observable. When a valid request is received from an agent, the value of the
corresponding signal as would be perceived by the sensor will be sent to the
agent.

To monitor the domain, each agent is assumed to have the bandwidth to
observe at one time as many sensors as about 5% of variables in its subdo-
main. We assume that all signals are observable except the outputs of the two
faulty gates wa130 and y049. As there are more observable signals than what
are permitted by the bandwidth, some strategy must be utilized to chose
what to observe. If gates differ in their prior probabilities of being faulty,
those gates with high fault probabilities may be observed with priority. Sig-
nals corresponding to their input and output are likely to detect their faults
soon after they occur. In the case study, we have assumed the same prior
fault probability for all gates. Hence, a random set of signals is observed ini-
tially. The first round of observations is shown in Table 2. After entering the

Table 2. Sensor observations in round 1.

A0 v9, v30, vr23, vd45, vd12

A1 w37, wd50, wt24, e3, w89, w136, w121, w120, w119, w107

A2 x27, x9, x12, xd33

A3 y45, y48, y104, y69, y97, y111, y12, yr27

A4 z60, z58, z55, z15, z1, z12

observations, each agent updates its belief autonomously. Since these local ob-
servations are not sufficient to detect any abnormality within each subdomain,
and automonous reasoning at individual agents cannot take into account the
constraints between components, none of the agents detects any problem.

Building Intelligent Sensor Networks With Multiagent Graphical Models 27

However, after one round of communication among agents, during which
one message is passed from each agent to each adjacent agent, the pooling of
information allows agents to detect abnormality. A0 has P (va44 = bad|obs) =
0.025. Note that this is two and half times higher than the prior fault proba-
bility value 0.01. A1 has a number of gates suspected,

wn132, wo124, wo163, wa126, wa122, wa139, wa141, wa130,

for instance, P (wa130 = bad|obs) = 0.131. Similarly, A2 has P (xa32 =
bad|obs) = 0.132, A3 suspected

yn39, yo43, yo49, yo15, yo102, yo121, yo95, ya105, ya46,

and A4 suspected zn20, zn6, zo18, zo61, za59, za13, za56. Therefore, agents have
collectively answered the normality query negatively.

The large number of candidate faulty devices is a consequence of prop-
agation of incorrect outputs of the two faulty gates to other devices which
causes their outputs to be incorrect. Note that the set of candidates includes
the two faulty gates wa130 and y049. Therefore, if these devices are replaced,
the system will be back to normal. However, that would be too costly. The
large number of candidates and low faulty probability value for each tell the
agents that further investigation is needed.

Alarmed, each agent makes more observations, subject to the bandwidth
restriction. Since the agents now have some candidate gates suspected to be
faulty, the observations can be focused on the input and output signals of
these gates. A0 observes signals associated with the suspected gate va44. Its
output vd45 has been observed. Hence, its inputs v42 and v43 are observed.
After entering observation and autonomous inference, A0 no longer suspects
va44.

A1 observes the output of each suspected gate, as listed in Table 3, except
that of wa130 (as has been deliberately forbidden to make the decision process
more interesting). After entering observation and autonomous inference, A1

reduces its uncertainty on the original eight candidate faulty gates and now
suspects only three:

wn128, wn132, wa130.

Note that wn128 is not one of the gates suspected earlier.

Table 3. Sensor observations in round 2.

A0 v42, v43

A1 wd140, wd142, wt133, wd123, wr125, wd127, c5

A2 xd16, c5

A3 yd47, yr96, yr103, yd106, yr16, yt40, yr44, e3

A4 h6, zd57, zt21, zr19, zt7, zd14

28 Yang Xiang

A2 observes two signals and no longer suspects xa32 after inference.
A3 observes 8 signals and decides that P (yo49 = bad|obs) = 0.504 and
P (yo95 = bad|obs) = 0.504. Given that the signal between the two, yr50,
is not observable, this is the best that anyone can achieve. A4 observes 6 sig-
nals. After inference, it decides that its subdomain is normal and does not
have any fault.

As A1 suspects three gates, it makes one more observation related to them:
wt129. After inference, it reduces the suspected gates to only wn132 (with
P (wn132 = bad|obs) = 0.387) and wa130 (with P (wa130 = bad|obs) = 0.617),
which is the best that anyone can achieve given the unobservability of the
signal between the two gates.

As the result of the above multiagent inference, A1 correctly isolates faulty
devices to wn132 and wa130, and A3 correctly isolates to yo49 and yo95 (note
that wa130 and yo49 are the true faulty devices). The probability of each of
these four devices being faulty is at least 0.387, while all other gates suspected
earlier have their probabilities of being faulty dropped to almost zero in all
agents. Given that we have forbidden observability between wn132 and wa130

and between yo49 and yo95, the agents have answered the culprit query well.
That is, they isolated faulty devices to the smallest possible set given the
information available from the sensor network. Replacement of the four devices
according to the answer to the query will return the system to its normal state.

What would happen if some agents in the MAS fail? To ensure exactness
of inference/communication as well as efficiency, the MSBN-based MAS uses
the hypertree agent organization. Because each hyperlink separates the MAS
into two agent communities, if the communication link between two adjacent
agents fails, the two resultant communities will no long be able to cooperate
as we demonstrated above. Furthermore, if an agent of k neighbors fails, the
MAS will be broken into k separate communities.

On the other hand, agents in each community can still cooperate within
themselves. Theoretical analysis [7] shows that after they communicate, each
agent’s belief is exact relative to the probability theory, the knowledge en-
coded in all agents within the community, sensor observations in the entire
MAS up to the last communication before the breaking of the MAS, and
sensor observations made by all agents in the community since the breaking.
Therefore, the MSBN framework allows the MAS to fail gracefully, rather
than to function as all or nothing.

10 Summary

MSBNs extend BNs to provide a rigorous computational framework for intel-
ligent sensor network applications. The key advantages of the framework are
the following:

1. Agents’ beliefs regarding the interpretation of the sensor observations are
exact according to Bayesian probability theory.

Building Intelligent Sensor Networks With Multiagent Graphical Models 29

2. Inference at each agent is autonomous and no centralized control is needed.
3. Communication within the agent society can be initiated by any agent

and no fixed controller is needed.
4. As long as the dependence structure of agents are sparse, the inference

and communication are efficient.
5. Operations for model construction, model compilation, inference, and

communication protect agent privacy. Agent interface enhancement is the
only step where information about preferably private variables may be
disclosed. This step is not necessary for exact inference using the MSBN-
based MAS and should be regarded as an option for trading privacy with
efficiency.

The performance guarantees (on autonomy, exactness, efficiency and pri-
vacy) offered by the MSBN framework require careful model construction,
model compilation and inference-communication operations. Most of the com-
pilation, inference and communication operations can be fully automated as
demonstrated by tools in WebWeavr toolkit. The model construction is the
step that demands particular effort from sensor network practitioners even
with the aid of tools. The modeling task can be broken down into the follow-
ing:

1. The integrator of the MAS needs to partition the domain into subdomains
over which individual agents will be developed, to specify agent interfaces,
and to define the hypertree agent organization. For many problems, there
exists some natural partition. Care must be taken so that all requirements
on agent interfaces are satisfied.

2. The developer of each agent must specify the agent’s subnet. This includes
the dependence structure over the agent’s subdomain in terms of a DAG
and the CPT for each node in the DAG.

3. Once the agent organization and subnets are specified, they should be
subject to verification. If global acyclicity and d-sepnode conditions are
violated, the subnets must be revised. Negotiation among agent developers
and integrator is needed to determine alternative modifications to subnets
and who will make the changes.

4. The modeling task may not end yet after subnets pass verification. After
they are compiled into linked cluster trees, resultant linkage trees may
not support efficient communication. In such case, interface enhancement
is needed. To enable enhancement, for each subnet, the agent developer
needs to specify a subset of variables as preferably private so that they
may be added to the agent interface.

5. Once agent interface is sufficiently efficient, measured by the size of the
largest linkage, the model construction is complete.

As any model of a complex domain, it only reflects the best knowledge
available at the time. As new information becomes available, the model may be

30 Yang Xiang

refined. The functional units of an MSBN-based MAS are the agents. There-
fore, the modeling units are the subnets embodied by agents. A subnet con-
sists of its graphical structure and its numerical CPTs. When the problem
domain is an artifact, such as a piece of equipment, the subnet structure is
constructed from the structure of the designed artifact. Hence, unless the arti-
fact is modified, it is unlikely that the subnet structure needs refinement. On
the other hand, CPTs encodes information on the artifact’s faulty behavior,
which is not designed. Therefore, refinement of CPTs is not only possible but
also desirable. It can be easily accomplished by utilizing the fault frequency
data accumulated. As subnets are thus refined, the MAS will perform more
effectively.

Acknowledgements

The financial support from National Sciences and Engineering Research Coun-
cil (NSERC) of Canada through Discovery Grant is acknowledged.

References

1. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

2. R.E. Neapolitan. Probabilistic Reasoning in Expert Systems. John Wiley and
Sons, 1990.

3. G. Shafer. Probabilistic Expert Systems. Society for Industrial and Applied
Mathematics, Philadelphia, 1996.

4. E. Castillo, J. Gutierrez, and A. Hadi. Expert Systems and Probabilistic Network
Models. Springer, 1997.

5. R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer, 1999.

6. F.V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, New
York, 2001.

7. Y. Xiang. Probabilistic Reasoning in Multi-Agent Systems: A Graphical Models
Approach. Cambridge University Press, Cambridge, UK, 2002.

8. Y. Xiang. WebWeavr-IV Research Toolkit. www.cis.uoguelph.ca/˜yxiang/.
9. H.P. Nii. Blackboard systems: the blackboard model of problem solving and the

evolution of blackboard architectures. AI Magazine, 7(2):38–53, 1986.
10. A. Rao and M. Georgeff. Deliberation and its role in the formation of intentions.

In B. D’Ambrosio, P. Smets, and P.P. Bonissone, editors, Proc. 7th Conf. on
Uncertainty in Artificial Intelligence, pages 300–307. Morgan Kaufmann, 1991.

11. M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons,
2002.

12. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

13. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13.

Building Intelligent Sensor Networks With Multiagent Graphical Models 31

14. J. McCarthy. Circumscription - a form of non-monotonic reasoning. Artificial
Intelligence, 13:27–39, 1980.

15. D.V. McDermott and J. Doyle. Non-monotontc logic i. Artificial Intelligence,
13:41–72, 1980.

16. J. Doyle. A truth maintenance system. Artificial Intelligence, 3(12):231–271,
1979.

17. C.L. Mason and R.R. Johnson. DATMS: a framework for distributed assumption
based reasoning. In L. Gasser and M.N. Huhns, editors, Distributed Artificial
Intelligence II, pages 293–317. Pitman, 1989.

18. M.N. Huhns and D.M. Bridgeland. Multiagent truth maintenance. IEEE Trans.
Sys., Man, and Cybernetics, 21(6):1437–1445, 1991.

19. N. Roos, A.T. Teije, and C. Witteveen. A protocol for multi-agent diagnosis with
spatially distributed knowledge. In Proc. 2nd Inter. Joint Conf. on Autonomous
Agents and Multiagent Systems, pages 655–661, Melbourne, 2003.

20. C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madde. Distributed regres-
sion: an efficient framework for modeling sensor network data. In Proc. 3rd inter.
symposium on Information processing in sensor networks, pages 1–10, Berkeley,
CA, 2004.

21. C. Boutilier. Multiagent systems: Challenges and opportunities for decision-
theoretic planning. AI Magazine, pages 35–43, Winter, 1999.

22. P. Xuan, V. Lesser, and S. Zilberstein. Communication in multi-agent Markov
decision processes. In Proc. 6th Inter. Conf. on Multi-agent Systems, pages
467–468, 2000.

23. R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed
pomdps: A synthesis of distributed constraint optimization and pomdps. In
Proc. 20th National Conference on Artificial Intelligence, pages 133–139, 2005.

24. D.S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentral-
ized control of Markov decision processes. In Proc. 16th Conf. on Uncertainty
in Artificial Intelligence, pages 32–37, Stanford, 2000.

25. S. Moral, R. Rumi, and A. Salmeron. Mixtures of truncated exponentials in
hybrid Bayesian networks. In Lecture Notes in Artificial Intelligent, volume
2143, pages 135–143. Springer-Verlag, 2001.

26. R.T. Cox. Probability, frequency and reasonable expectation. American J. of
Physics, 14(1):1–13, 1946.

27. de Finetti. Foresight: its logical laws, its subjective sources. Ann. Inst. H.
Poincare, 7:1–68, 1937. Reprinted in 1980 in Studies in Subjective Probability
(H.E. Kyburg and H.E. Smokler, Eds.), 93-158.

28. Y. Xiang and V. Lesser. On the role of multiply sectioned Bayesian networks to
cooperative multiagent systems. IEEE Trans. Systems, Man, and Cybernetics-
Part A, 33(4):489–501, 2003.

29. Y. Xiang. Verification of dag structures in cooperative belief network based
multi-agent systems. Networks, 31:183–191, 1998.

30. Y. Xiang and X. Chen. Interface verification for multagent probabilistic infer-
ence. In J.A. Gamez, S. Moral, and A. Salmeron, editors, Advances in Bayesian
Networks, pages 19–38. Springer, Berlin, 2004.

31. Y. Xiang and K. Zhang. Agent interface enhancement: Making multiagent
graphical models accessible. In Proc. 5th Inter. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS’06), pages 19–26, 2006.

32 Yang Xiang

32. S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on
graphical structures and their application to expert systems. J. Royal Statistical
Society, Series B, (50):157–244, 1988.

33. F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal prob-
abilistic networks by local computations. Computational Statistics Quarterly,
(4):269–282, 1990.

34. F.V. Jensen. An Introduction To Bayesian Networks. UCL Press, 1996.
35. Y. Xiang. Cooperative triangulation in MSBNs without revealing subnet struc-

tures. Networks, 37(1):53–65, 2001.
36. Y. Xiang. A probabilistic framework for cooperative multi-agent distributed

interpretation and optimization of communication. Artificial Intelligence, 87(1-
2):295–342, 1996.

