
Partial Evaluation for Planning in Multiagent

Expedition

Y. Xiang and F. Hanshar

University of Guelph, Canada

Abstract. We consider how to plan optimally in a testbed, multiagent
expedition (MAE), by centralized or distributed computation. As op-
timal planning in MAE is highly intractable, we investigate speedup
through partial evaluation of a subset of plans whereby only the intended
effect of a plan is evaluated when certain conditions hold. We apply this
technique to centralized planning and demonstrate significant speedup
in runtime while maintaining optimality. We investigate the technique in
distributed planning and analyze the pitfalls.

1 Introduction

We consider a class of stochastic multiagent planning problems termed multi-
agent expedition (MAE) [8]. A typical instance consists of a large open area
populated by objects as well as mobile agents. Agent activities include mov-
ing around the area, avoiding dangerous objects, locating objects of interest,
and object manipulation depending on the nature of the application. Successful
manipulation of an object may require proper actions of a single agent or may
require cooperation of multiple agents coordinating through limited communi-
cation. Success of an agent team is evaluated based on the quantity of objects
manipulated as well as the quality of each manipulation. MAE is an abstraction
of practical problems such as planetary expedition or disaster rescue [3].

Planning in MAE may be achieved by centralized or distributed computa-
tion. Its centralized version can be shown to be a partially observable Markov
decision process (POMDP) and its distributed version can be shown to be a
decentralized POMDP (DEC-POMDP). A number of techniques have been pro-
posed for solving POMDPs [4, 6]. The literature for DEC-POMDPs is growing
rapidly, e.g., [1, 5]. Optimal planning is highly intractable in general for either
POMDP or DEC-POMDP. Inspired by branch-and-bound techniques to improve
planning efficiency [2], we propose a method partial evaluation that focuses on
the intended effect of a plan and skips evaluation of unintended effects when
certain conditions are met.

We focus on on-line planning. We experiment with partial evaluation for
centralized planning in MAE and demonstrate a significant speedup in runtime
while maintaining plan optimality. We also examine its feasibility in distributed
planning. It is found to be limited by local optimality without guaranteed global
optimality or intractable agent communication. This result yields insight into
distributed planning that suggests future research on approximate planning.

2 Y. Xiang and F. Hanshar

The remainder of the paper is organized as follows: Section 2 reviews back-
ground on MAE. Sections 3-6 present partial evaluation for centralized planning
with experimental results reported in Section 7. Section 8 first reviews back-
ground on collaborative design networks (CDNs), a multiagent graphical model
for distributed decision making, and then investigates partial evaluation for dis-
tributed planning based on CDNs.

2 Background on Multiagent Expedition

In MAE, an open area is represented as a grid of cells (Figure 1 (a)). At any
cell, an agent can move to an adjacent cell by actions north, south, east, west
or remain there (halt). An action has an intended effect (e.g., north in Figure 1
(d)) and a number of unintended effects (other outcomes in (d)), quantified by
transition probabilities.

(b)(a) (c)
0.025

0.0250.025

0.9

0.025

1

0

1 2 3 4
agents

r
e
w
a
r
d

(d)

Fig. 1. a) Grid of cells and reward distribution in MAE. b) Cell reward distribution.
c) Agent’s perceivable area. d) Intended effect (arrow) of action north.

The desirability of a cell is indicated by a numerical reward. A neutral cell
has a reward of a base value β. The reward at a harmful cell is lower than β.
The reward at an interesting cell is higher than β and can be further increased
through agent cooperation.

When a physical object is manipulated (e.g., by digging), cooperation is
often most effective when a certain number of agents are involved, and the per-
agent productivity is reduced with more or less agents. We denote the most
effective level by λ. Figure 1(b) shows the reward distribution of a single cell
with λ = 2. At this cell, the reward collected by a single agent is 0.3, if two
agents cooperate at the cell, each receives 0.8. Reward decreases with more than
λ agents, promoting only effective cooperations.

After a cell has been visited by any agent, its reward is decreased to β. As
a result, wandering within a neighbourhood is unproductive. Agents have no
prior knowledge how rewards are distributed in the area. Instead, at any cell, an
agent can reliably perceive its location and reward distribution within a small
radius (e.g. shaded cells in Figure 1(c)). An agent can also perceive the location
of another agent and communicate if the latter is within a given radius.

Each agent’s objective is to move around the area, cooperate as needed, and
maximize the team reward over a finite horizon based on local observations and
limited communication. For a team of n agents and horizon h, there are 5nh

Partial Evaluation for Planning in Multiagent Expedition 3

joint plans each of which has 5nh possible outcomes. With n = 6 and h = 2, a
total of 524 ≈ 6× 1016 uncertain outcomes need evaluated. Hence, solving MAE
optimally is highly intractable.

In the following, we refer to maximization of reward and utility interchange-
ably with the following assumption: A utility is always in [0, 1], no matter if it is
the utility of an action, or a plan (a sequence of actions), or an joint action (simul-
taneous actions by multiple agents), or a joint plan (a sequence of joint actions).
In each case, the utility is mapped linearly from [min reward,max reward],
with min reward and max reward properly defined accordingly.

3 Partial Evaluation

We study how to speedup planning in the context of MAE, based on an idea:
partial evaluation. Let a be an action with two possible outcomes: an intended

and an unintended. The intended outcome has the probability p1 and utility
u1, and the unintended p2 = 1 − p1 and u2, respectively. Its expected utility is
evaluated as

eu = p1u1 + p2u2. (1)

Let a′ be an alternative action with the same outcome probabilities p1 (for
intended) and p2, and utilities u3 and u4, respectively. Its expected utility is
eu′ = p1u3 + p2u4. The alternative action a′ is dominated by a if

eu− eu′ = eu− p1u3 − p2u4 > 0. (2)

From Eqn (2), the following holds:

u3 <
eu

p1
−

p2
p1

u4 (3)

Letting umax denote the maximum utility achievable, we have

eu

p1
−

p2
p1

umax ≤
eu

p1
−

p2
p1

u4. (4)

Eqn (3) is guaranteed to hold if we maintain

u3 <
eu

p1
−

1− p1
p1

umax ≡ t. (5)

When the number of alternative actions is large, the above idea can be used
to speed up search for best action: For an unevaluated action a′, if u3 satisfies
Eqn (5), discard a′. We say that a′ is partially evaluated. Otherwise, eu′ will be
fully evaluated. If eu′ exceeds eu, then a will be updated as a′, eu updated as
eu′, and u1 will be updated as u3.

Eqn (5) allows more efficient search without losing optimality, and is an exact

criterion for partial evaluation. The actual speed-up depends on the threshold t
for u3. The larger the value of t, the less actions that must be fully evaluated,
and the more efficient the search.

Consider the value of umax. When utility is bounded by [0, 1], we have the
obvious option umax = 1. That is, we derive umax from the global utility distribu-
tion over all outcomes of actions. Threshold t increases as umax decreases. Hence,

4 Y. Xiang and F. Hanshar

it is desirable to use a smaller umax while maintaining Eqn (4). One option to
achieve this is to use umax from the local utility distribution over only outcomes
of current alternative actions. The trade-off is the following: With umax = 1, it
is a constant. With the localized umax, it must be updated before each planning.

4 Single-Agent Expedition

In single-agent expedition, an action a has an intended outcome and four unin-
tended ones. We assume that the intended outcome of all actions have the same
probability p1, and unintended outcomes have the same probability (1 − p1)/4.
Hence, we have

eu = p1u1 +

4∑

i=1

u2,i (1− p1)/4, (6)

where u2,i is the utility of the ith unintended outcome. Comparing Eqn (1) and
Eqn (6) , we have

p2 u2 =

4∑

i=1

u2,i

1− p1
4

= (1− p1) (
1

4

4∑

i=1

u2,i).

If we aggregate the four unintended outcomes as an equivalent single unin-
tended outcome, then this outcome has probability p2 = 1 − p1 and utility
u2 = 1

4

∑4

i=1
u2,i.

Let uamax (where ‘a’ in ‘ua’ refers to ‘agent’) denote the maximum utility

of outcomes. Substituting u2 in Eqn (2) by 1

4

∑4

i=1
u2,i, repeating the analysis

after Eqn (2), and noting that 1

4

∑4

i=1
u2,i is upper-bounded by uamax, we have

an exact criterion for partial evaluation:

u3 < t =
1

p1
eu−

1− p1
p1

uamax (7)

As discussed in the last section, the smaller the value of uamax, the more
efficient the search. Since uamax was replacing 1

4

∑4

i=1
u4,i (compare Eqns (3)

and (5)), we can alternatively replace 1

4

∑4

i=1
u4,i with an upper bound tighter

than uamax. Since
1

4

∑4

i=1
u4,i is essentially the average utility over unintended

outcomes, we can replace uamax by α uaavg, where uaavg is the average (local)
utility of outcomes and α ≥ 1 is a scaling factor. This yields the following:

u3 < t =
1

p1
eu−

1− p1
p1

α uaavg (8)

According to Chebyshev’s inequality, the smaller the variance of utilities over
outcomes, the closer to 1 the α value can be without losing planning optimality.

5 Single Step MAE by Centralized Planning

Next, we consider multiagent expedition with n agents. Each agent action has k
alternative outcomes o1, ..., ok, where o1 is the intended with probability p. A
joint action by n agents consists of a tuple of n individual actions and is denoted

Partial Evaluation for Planning in Multiagent Expedition 5

by a. The intended outcome of a is the tuple made of the intended outcomes of
individual actions, and is unique. We denote the utility of the intended outcome
of a by u. Outcomes of individual agent actions are independent of each other
given the joint action plan. Hence, the intended outcome of a has probability
pn. The expected utility of a is

eu = pn u+
∑

i

pi ui, (9)

where i indexes unintended outcomes, ui is the utility of an unintended outcome,
and pi is its probability. Note that pi 6= pj in general for i 6= j, and pn+

∑
i pi = 1.

Let a′ be an alternative joint action whose intended outcome has utility u′.
Denote the expected utility of a′ by eu′. The joint action a′ is dominated by joint
action a if

eu− eu′ = eu− pnu′

−

∑

i

pi u
′

i > 0. (10)

Eqn (10) can be rewritten as follows:

u′ < p−n (eu−
∑

i pi u
′
i)

Let utsavg (where ‘t’ in ‘uts’ refers to ‘team’ and ‘s’ refers to ‘single step’) denote
the average utility of outcomes of joint actions. From

0 < pi < 1− pn, 0 < pi

1−pn < 1,
∑

i
pi

1−pn = 1,

∑

i

pi u
′
i = (1 − pn)

∑

i

pi
1− pn

u′
i,

we have the expected value of
∑

i
pi

1−pn u′
i (weighted mean with normalized

weights) to be utsavg, and the expected value of
∑

i pi u
′
i to be (1− pn) utsavg.

We can choose α ≥ 1 (e.g. based on Chebyshev’s inequality) so that it is highly
probable

∑
i pi u′

i ≤ (1 − pn) α utsavg and hence eu −
∑

i pi u′
i ≥ eu − (1 −

pn) α utsavg. It then follows from Eqn (10) that the joint action a′ is dominated
by a with high probability if the following holds,

u′ < t =
eu

pn
−

1− pn

pn
α utsavg, (11)

in which case a′ can be discarded without full evaluation. Note that the condition
is independent of k.

In order to compute u′ by any agent Ag, it needs to know the intended
outcome of the action in a′ for each other agent, and use this information to
determine if any cooperation occurs in the intended outcome of a′. To do so, it
suffices for Ag to know the current location of each agent as well as a′. Ag also
needs to know the unilateral or cooperative reward associated with the intended
outcome to calculate u′. When other agents are outside of the observable area
of Ag, this information must be communicated to Ag. Similarly, in order to
compute utsavg, Ag needs to collect from other agents the average rewards in
their local areas.

6 Y. Xiang and F. Hanshar

Alternatively, following a similar analysis, we could base threshold t on
utsmax, the maximum utility achievable by the outcome of any joint action,
and test u′ by the following condition:

u′ < t =
eu

pn
−

1− pn

pn
utsmax (12)

Since utsmax > α utsavg, the search is less efficient, but its probability to get
the optimal plan is 1. To compute utsmax, Ag needs to collect from other agents
the maximum rewards in their local areas, instead of average rewards as in the
case of utsavg.

6 Multi-Step MAE by Centralized Planning

Consider multiagent expedition with horizon h ≥ 2 (single step is equivalent to
h = 1). Each agent selects a sequence a of h actions. The n agents collectively
select a joint plan A (an n× h array). The intended outcome of joint plan A is
made of the intended outcomes of all individual actions of all agents. Assume that
the outcome of each individual action of each agent is independent of outcomes
of its own past actions and is independent of outcomes of actions of other agents
(as is the case in MAE). Then the probability of the intended outcome of joint
plan A is phn.

We denote the utility of the intended outcome of A by u. The expected utility
of A is then

eu = phn u+
∑

i

pi ui, (13)

where i indexes unintended outcomes, ui is the utility of an unintended outcome,
and pi is its probability. Note that phn +

∑
i pi = 1.

Let A′ be an alternative joint plan whose intended outcome has utility u′.
Denote the expected utility of A′ by eu′. The joint plan A′ is dominated by A if

eu− eu′ = eu− phn u′

−

∑

i

pi u
′

i > 0. (14)

Through an analysis similar to that in the last section, and from the similarity
of Eqns (14) and (10), we can conclude the following: Let utmavg (where ‘m’ in
‘utm’ refers to ‘multi-step’) denote the average utility of outcomes of joint plans.
Let α ≥ 1 to be a scaling factor. With a large enough α value, the joint plan A′

is dominated with high probability by plan A if the following inequation holds,

u′ < t =
eu

phn
−

1− phn

phn
α utmavg, (15)

in which case A′ can be discarded without full evaluation.
In order to compute u′ by any agent Ag, it needs to know A′, the current

location of each agent, and unilateral or cooperative reward associated with the
intended outcomes. In order to compute utmavg, Ag needs to collect from other
agents average rewards in their local areas.

Partial Evaluation for Planning in Multiagent Expedition 7

To increase the probability of plan optimality to 1, Ag can use the following
test, with the price of less efficient search:

u′ < t =
eu

phn
−

1− phn

phn
utmmax (16)

7 Centralized Planning Experiment

The experiment aims to provide empirical evidence on efficiency gain and op-
timality of partial evaluation in multi-step MAE by centralized planning. Two
MAE environments are used that differ in transition probability pt (0.8 or 0.9)
for intended outcomes. Agent teams of size n = 3, 4 or 5 are run. The base re-
ward β = 0.05. The most effective level of cooperation is set at λ = 2. Planning
horizon is h = 2.

Several threshold values from Section 6 are tested. The first, utmmax,1 = 1,
corresponds to the global maximum reward. The second, utmmax, corresponds
to the local maximum reward for each agent. The third, utmavg,α = α utmavg,
corresponds to average reward over outcomes, scaled up by α. We report result
for α = 1 as well as for a lower bound that yields an optimal plan by increasing
α in 0.25 increments.

Tables 1 and 2 show the result for different values of pt. Each row corresponds
to an experiment run. Full% refers to the percentage of plans fully evaluated.
BFR denotes the team reward of the best joint plan found, and an asterisk
indicates if the plan is optimal. BFR% denotes ratio of BFR over reward of
optimal plan. T ime denotes runtime in seconds.

Table 1. Experiments with pt = 0.9.

n Threshold Full%. BFR BFR% Time

utmmax,1 48.87 3.192* 100 3.3
utmmax 0.780 3.192* 100 0.3

3 utmavg,1 0.172 3.102 97.18 0.1
utmavg,3 0.812 3.192* 100 0.3

utmmax,1 83.51 4.940* 100 142.6
4 utmmax 0.053 4.940* 100 2.5
utmavg,1 0.046 4.940* 100 1.9

utmmax,1 100 5.262* 100 4671.2
utmmax 0.002 5.046 95.89 52.2

5 utmavg,1 0.001 5.046 95.89 52.1
utmavg,5 0.19 5.262* 100 62.4

Table 2. Experiments with pt = 0.8.

n Threshold Full%. BFR BFR% Time

utmmax,1 100 2.407* 100 6.2
utmmax 2.0 2.407* 100 0.2

3 utmavg,1 0.16 2.327 96.67 0.1
utmavg,3 2.25 2.407* 100 0.2

utmmax,1 100 3.630* 100 167.3
4 utmmax 0.068 3.630* 100 19.6
utmavg,1 0.051 3.630* 100 19.0

utmmax,1 100 3.902* 100 6479.5
utmmax 0.002 3.745 95.97 53.5

5 utmavg,1 0.001 3.745 95.97 52.3
utmavg,4.5 1.704 3.902* 100 136.0

The results show that partial evaluation based on utmmax,1 is conservative:
all plans are fully evaluated in 4 out of 6 runs. Second, utmmax finds an optimal
plan in 4 out of 6 runs, and utmavg,1 in 2 out of 6 runs. Third, partial evaluation
based on utmmax and utmavg,α shows significant speedup on all runs. For exam-
ple, with pt = 0.8, n = 5 and utmavg,α, an optimal plan is found when α = 4.5
and only 1.7% of joint plans are fully evaluated. The planning takes 136 seconds
or 2% of the runtime (108min) by utmmax,1 which evaluates all plans fully.

8 Y. Xiang and F. Hanshar

Table 3. Mean (µ) and standard deviation (σ) of team rewards over all plans

n # Plans pt µ σ pt µ σ

3 15,625 0.558 0.342 0.542 0.260
4 390,625 0.9 0.738 0.462 0.8 0.713 0.352
5 9,765,625 0.914 0.514 0.882 0.342

Table 3 shows the mean and standard deviation of team rewards over all joint
plans for n = 3, 4 and 5, and pt = 0.8 and 0.9. The mean team reward in each
case is no more than 23% of the corresponding optimal reward in Tables 1 and
2. For example, consider n = 5 and pt = 0.8, the optimal reward from Table 2 is
3.902 whereas the mean reward is 0.882, approximately 23% of the magnitude of
the optimal plan. This signifies that the search space is full of low reward plans
with very few good plans. Searching such a plan space is generally harder than a
space full of high reward plans. The result demonstrates that partial evaluation
is able to traverse the search space, skip full evaluation of many low reward plans,
and find high reward plans. This is true even for relatively aggressive threshold
utmavg,1, achieving at least 95% of the optimal reward (see Table 2).

8 Partial Evaluation in Distributed Planning

8.1 Collaborative Design Networks

Distributed planning in MAE can be performed based on multiagent graphical
models, known as collaborative design networks (CDNs) [8], whose background
is reviewed in this subsection. CDN is motivated by industrial design in supply
chains. An agent responsible for a component encodes design knowledge into a
design network (DN) S = (V,G, P). The domain is a set of discrete variables
V = D∪T ∪M ∪U . D is a set of design parameters. T is a set of environmental

factors of the product under design.M is a set of objective performance measures

and U is a set of subjective utility functions of the agent.
Dependence structure G = (V,E) is a directed acyclic graph (DAG) whose

nodes are mapped to elements of V and whose set E of arcs is from the follow-
ing legal types: Arc (d, d′) (d, d′ ∈ D) signifies a design constraint. Arc (d,m)
(m ∈ M) represents dependency of performance on design. Arc (t, t′) (t, t′ ∈ T)
represents dependency between environmental factors. Arc (t,m) signifies de-
pendency of performance on environment. Arc (m,m′) defines a composite per-
formance measure. Arc (m,u) (u ∈ U) signifies dependency of utility on perfor-
mance.

P is a set of potentials, one for each node x, formulated as a probability dis-
tribution P (x|π(x)), where π(x) are parent nodes of x. P (d|π(d)), where d ∈ D,
encodes a design constraint. P (t|π(t)) and P (m|π(m)), where t ∈ T,m ∈ M ,
are typical probability distributions. Each utility variable has a space {y, n}.
P (u = y|π(u)) is a utility function util(π(u)) ∈ [0, 1]. Each node u is assigned
a weight k ∈ [0, 1] where

∑
U k = 1. With P thus defined,

∏
x∈V \U P (x|π(x))

is a joint probability distribution (JPD) over D ∪ T ∪ M . Assuming additive
independence among utility variables, the expected utility of a design d is

Partial Evaluation for Planning in Multiagent Expedition 9

EU(d) =
∑

i ki(
∑

m
ui(m)P (m|d)), where d (bold) is a configuration of D,

i indexes utility nodes in U , m (bold) is a configuration of parents of ui, and ki
is the weight of ui.

Each supplier is a designer of a supplied component. Agents, one per sup-
plier, form a collaborative design system. Each agent embodies a DN called a
subnet and agents are organized into a hypertree: Each hypernode corresponds to
an agent and its subnet. Each hyperlink (called an agent interface) corresponds
to design parameters shared by the two subnets, which renders them condition-
ally independent. They are public and other subnet variables are private. The
hypertree specifies to whom an agent communicates directly. Each subnet is
assigned a weight wi, representing a compromise of preferences among agents,
where

∑
i wi = 1. The collection of subnets {Si = (Vi, Gi, Pi)} forms a CDN.

Figure 2 shows a trivial CDN for agents A0, A1, A2.

m2

G1

u 1

d0

m0u0

G0

m1

��
��
��
��

�
�
�
�

s0

u2

m4m3

G2

0s s1

s 1

1

1

G2

G0

A1

���
���
���

���
���
���

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

G
s

s0

A0

A2

Fig. 2. Subnets G0, G1, G2 (left) and hypertree (right) of a CDN. Design nodes are
denoted by s if public and d if private, performance nodes by m, and utility nodes by
u.

The product
∏

x∈V \∪iUi
P (x|π(x)) is a JPD over ∪i(Di ∪ Ti ∪ Mi), where

P (x|π(x)) is associated with node x in a subnet. The expected utility of a design
d is EU(d) =

∑
iwi (

∑
j kij (

∑
m
uij(m) P (m|d))), where d is a configuration

of ∪iDi, i indexes subnets, j indexes utility nodes {uij} in ith subnet, m is a
configuration of parents of uij , and kij is the weight associated with uij . Given
a CDN, decision-theoretical optimal design is well defined.

Agents evaluate local designs in batch before communicating over agent in-
terfaces. An arbitrary agent is chosen as communication root. Communication is
divided into collect and distribute stages. Collect messages propagate expected
utility evaluation of local designs inwards along hypertree towards root. A re-
ceiving agent knows the best utility of every local configuration when extended
by partial designs in downstream agents. At end of collect stage, the root agent
knows the expected utility of the optimal design. Distribute messages propagate
outwards along hypertree from root. After distribute stage, each agent has iden-
tified its local design that is globally optimal (collectively maximize EU(d)).
Computation (incl. communication) is linear on the number of agents [7] and is
efficient for sparse CDNs.

8.2 Distributed Per-Plan Evaluation

We consider partial evaluation in distributed planning based on CDN. Each
MAE agent uses a DN to encode its actions (moves) as design nodes, outcomes
of actions as performance nodes, and rewards as utility nodes. The hypertree for
a team of agents (A, B, C) and DN for agent B are shown in Figure 3. An agent

10 Y. Xiang and F. Hanshar

only models and communicates with adjacent agents on hypertree. Movement
nodes are labelled mv, performance nodes are labelled ps, and utility nodes are
labelled rw.

A,1mv mvC,1mvB,1

A,2mv B,2mv C,2mv

rwB,A,2

psB,2
A,2psrw B,C,1

GB

GA GB GC

ps

rw

ps

rw

A,1

psC,1

C,2

B,A,1

B,C,2

psB,1

(a)

(b)A B C

Fig. 3. (a) DN for MAE agent B. (b) Hy-
pertree.

GA DG
D

C

A B

GB

C

Gx y z

12 4 1 |D |=4

|D |=2
|D |=3

x
y

z

Fig. 4. Message collection where Dx is
the domain of x.

As shown earlier, partial evaluation relies on sequentially evaluating (fully or
partially) individual joint plans. A distributed per-plan evaluation involves four
technical issues: (1) How can a joint plan be evaluated fully? (2) How can it be
evaluated partially? (3) As the root agent drives sequential per-plan evaluations,
how can it know the total number of joint plans when it does not know other
agents’ private variables? (4) When a given joint plan is being evaluated, how
does each agent know which local plan should be evaluated when it does not
know the joint plan as a whole?

First, the existing distributed MAE planning by CDN [8] processes all plans
in one batch. At the end of collect stage, the root agent knows the utility of the
optimal plan. If we reduce the batch to a single joint plan, at the end of collect
stage, root would know the expected utility of that plan.

Second, to evaluate a joint plan partially, instead of passing expected utility,
collect messages should contain utility based only on intended outcome.

Third, we propose a method for root to determine the total number of joint
plans. Consider the hypertree in Figure 4 over agents A,B,C and D with root
A. Assume that x, y and z are the only action variables and are public (no
private action variables in MAE). Each agent i maintains a counting variable
di: the number of joint plans over agents downstream from i. Root A initiates
message collection along hypertree (Figure 4). Leaf agent D passes to C message
dD = 1 (no downstream agent). C passes dC = dD ∗ |Dz| = 4 to B, and B passes
dB = dC ∗ |Dy| = 12 to A. In the end, A computes the total number of joint
plans as dA = dB ∗ |Dx| = 24.

Fourth, as any joint plan is evaluated, each agent needs to know how to
instantiate their local (public) variables accordingly. For instance, B needs to
know the values of x and y, but not z. We assume that the order of domain values
of each public variable, e.g., x ∈ (x0, x1), is known to corresponding agents. Joint
plans are lexicographically ordered based on domains of public variables. Hence,
0th joint plan corresponds to (x0, y0, z0), and 22nd to (x1, y2, z2).

We propose a message distribution for each agent to determine values of
local variables according to current joint plan. Each agent i maintains a working

Partial Evaluation for Planning in Multiagent Expedition 11

index wri. Root A sets wrA to the index of current joint plan. Each other agent
receives wri in message. The index of a variable, say x, is denoted by xinx.

Suppose A initiates message distribution with wrA = 22. A computes xinx =
⌊wrA % dA

dB
⌋ = 1, where % and ⌊ ⌋ are mod and floor operations. A passes

the index wrB = ⌊wrA % dA⌋ = 22 to B. B computes xinx = ⌊wrB
dB

⌋ = 1 and

yinx = ⌊wrB % dB

dC
⌋ = 2. B passes to C the index wrC = ⌊wrB % dB⌋ = 10.

Similar computations at C and D determine zinx = 2.
The above can be combined for distributed planning with partial evaluation.

It consists of a sequence of message collection followed by one message distri-
bution. The first collection fully evaluates the first joint plan. Local maximum
and average utilities from agents are also collected and aggregated for use in all
subsequent evaluations (Section 6).

The second collection calls for a partial evaluation (Section 3) of the next
joint plan. Upon receiving the response, A determines if the second joint plan
needs full evaluation or can be discarded. If full evaluation is needed, A issues
the next collection as a full evaluation of the second plan. Otherwise, a call of
partial evaluation on the third joint plan is issued. This process continues until
all joint plans are evaluated.

One distribution is used after all plans are evaluated to communicate the
optimal plan. If 22nd joint plan is optimal, a message distribution as described
earlier suffices for each agent to determine its optimal local plan.

It can be shown that the above protocol achieves the same level of optimality
as centralized planning. However, for each joint plan, one round of communica-
tion is required, resulting in a communication amount exponential on the number
of agents and horizon length. This differs from the existing method for planning
in CDN (Section 8.1), where two rounds of communication are sufficient.

8.3 Aggregation of Local Evaluation

Given the above analysis, we consider an alternative that attempts to avoid
intractable communication: Each agent applies partial evaluation to evaluate all
local plans in a single batch. The results are then assembled through message
passing in order to obtain the optimal joint plan. After local evaluation, agent i
has a set Ei of fully evaluated local plans and a set Li from partial evaluation.
From analysis in Section 3, Ei contains the local optimal plan at i.

Table 4. Utilities for MAE team

Joint Plan UA UB UC UABC Joint Plan UA UB UC UABC

P1 0.3 0.3 0.3 0.9 P3 0.1 0.6 0.1 0.8
P2 0.6 0.1 0.1 0.8 P4 0.1 0.1 0.6 0.8

Consider some selected joint plans in Table 4 for agents A,B and C. Each
row corresponds to an evaluated joint plan. Each agent i evaluates expected
utilities locally as shown in the Ui column. Overall expected utilities are given
in the UABC column as sum of local values. Joint plan P2 is the best according to
evaluation by agent A. P3 and P4 are the best according to B and C, respectively.
All of them are inferior to P1.

12 Y. Xiang and F. Hanshar

From the above illustration, the following can be concluded. Optimal plan-
ning cannot be obtained from independent local partial evaluations in general.
It cannot be obtained based on Ei, nor Li or their combination.

9 Conclusion
The main contribution of this work is the method of partial evaluation for cen-
tralized planning in uncertain environments such as MAE. The key assumption
on the environment is that each agent action has a distinguished intended out-
come whose probability given the action is independent of (or approximately so)
the chosen action. This assumption seems to be valid for many problem domains
where actions normally achieve some intended consequences where failures are
rare occurrences. We devised simple criteria to divide planning computation into
full and partial evaluations to allow only a small subset of alternative plans to
be fully evaluated while maintaining optimal or approximate optimal planning.
Significant efficiency gains are obtained with our experiments.

Alternatively, extending the method to distributed planning has resulted
in unexpected outcomes. Two very different schemes are analyzed. One eval-
uates individual plans distributively, which demands an intractable amount of
agent communication. Another evaluates local plans in batch and assembles the
joint plan distributively, but is unable to guarantee a globally optimal joint
plan. These analyses discover pitfalls in distributed planning and facilitate de-
velopment of more effective methods. As such, we are currently exploring other
schemes of distributed planning that can benefit from partial evaluation.

Acknowledgements

We acknowledge financial support from Discovery Grant, NSERC, Canada, to
the first author, and from NSERC Postgraduate Scholarship, to the second au-
thor.

References

1. Besse, C., Chaib-draa, B.: Parallel rollout for online solution of Dec-POMDPs. In:
Proc. 21st Inter. Florida AI Research Society Conf. pp. 619–624 (2008)

2. Corona, G., Charpillet, F.: Distribution over beliefs for memory bounded Dec-
POMDP planning. In: Proc. 26th. Conf. on Uncertainty in AI (UAI 2010) (2010)

3. Kitano, H.: Robocup rescue: a grand challenge for multi-agent systems. In: Proc.
4th Int. Conf. on MultiAgent Systems. pp. 5–12 (2000)

4. Murphy, K.: A survey of POMDP solution techniques. Tech. rep., U.C. Berkeley
(2000)

5. Oliehoek, F., Spaan, M., Whiteson, S., Vlassis, N.: Exploiting locality of interaction
in factored Dec-POMDPs. In: Proc. 7th Inter. Conf. on Autonomous Agents and
Multiagent Systems. pp. 517–524 (2008)

6. Ross, S., Pineau, J., Chaib-draa, B., Paquet, S.: Online planning algorithms for
POMDPs. J. of AI Research pp. 663–704 (2008)

7. Xiang, Y., Chen, J., Havens, W.: Optimal design in collaborative design network.
In: Proc. 4th Inter. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS’05). pp. 241–248 (2005)

8. Xiang, Y., Hanshar, F.: Planning in multiagent expedition with collaborative design
networks. In: Advances in Artificial Intelligence, LNAI 4509. pp. 526–538. Springer-
Verlag (2007)

