
Compressing Bayesian Networks: Swarm-Based
Descent, Efficiency, and Posterior Accuracy

Yang Xiang and Benjamin Baird

University of Guelph, Canada

Abstract. Local models in Bayesian networks (BNs) reduce space complexity,
facilitate acquisition, and can improve inference efficiency. This work focuses on
Non-Impeding Noisy-AND Tree (NIN-AND Tree or NAT) models whose mer-
its include linear complexity, being based on simple causal interactions, expres-
siveness, and generality. We present a swarm-based constrained gradient descent
for more efficient compression of BN CPTs (conditional probability tables) into
NAT models. We show empirically that multiplicatively factoring NAT-modeled
BNs allows significant speed up in inference for a reasonable range of sparse
BN structures. We also show that such gain in efficiency only causes reasonable
approximation errors in posterior marginals in NAT-modeled real world BNs.

Keywords: Uncertainty, Bayesian Networks, Causal Independence Models

1 Introduction

Local models (modeling the CPT over an effect and its causes) in BNs, such
as noisy-OR [9], noisy-MAX [3, 2], context-specific independence (CSI) [1], re-
cursive noisy-OR [6], NIN-AND Tree or NAT [12], DeMorgan [7], cancellation
model [11], and tensor-decomposition [10], reduce the space complexity of BNs,
facilitate knowledge acquisition, and can improve efficiency for inference. This
work focuses on NAT models [12], whose merits include linear complexity, being
based on simple causal interactions (reinforcement and undermining), expressive-
ness (recursive mixture, multi-valued, ordinal and nominal [13]), and generality
(generalizing noisy-OR, noisy-MAX [14], and DeMorgan [12]). In addition, NAT
models support much more efficient inference, where two orders of magnitude
speedup in lazy propagation is achieved in very sparse NAT-modeled BNs [14].
Since causal independence encoded in a NAT model is orthogonal to CSI, NAT
models provide an alternative mechanism to CSI for efficient inference in BNs.
This work advances the state of the art of NAT modeling around three issues.
Given a general BN, it can be compressed into a NAT-modeled BN for improved
space and inference efficiency. A key step of compression is to parameterize
alternative NAT models through constrained gradient descent. We investigate a
swarm-based constrained gradient descent for more efficient compression.
NAT-modeling has been shown to improve inference efficiency in very sparse
BNs. In this work, we apply NAT-modeling to BNs with a wider range of struc-
tural densities, and assess the impact on inference efficiency in that range.
Compression of a general BN into a NAT-modeled BN introduces approximation
errors. The compression errors have been evaluated through Kullback−Leibler
divergence and Euclidean distance between the target CPT (from the general BN)

2

and the NAT CPT [13]. In this work, we investigate the impact of compression
errors on the posterior marginals from inference, which provide a more direct
evaluation of approximation errors of NAT-modeling.
The remainder of the paper is organized as follows. Section 2 reviews the back-
ground on NAT modeling. The swarm-based parameterization is presented in
Section 3. Evaluations on efficiency gain in inference due to NAT modeling and
on posterior accuracy are reported in Sections 4 and 5, respectively.

2 Background on NAT Models
NAT models deal with uncertain causes, that can render their effects but do not
always do so. The effect and causes in NAT models are causal variables.

Definition 1 [13] A variable x that can be either inactive or be active in multiple
ways, and is involved in a causal relation, is a causal variable if when all causes
of the effect are inactive, the effect is inactive with certainty.

A causal variable can be ordinal or nominal, and hence is more general than the
graded variable, commonly assumed in noisy-OR or noisy-MAX, e.g., in [2].
The inactive value of a causal variable e is indexed as e0, and its active values
are indexed arbitrarily. In practice, some orders of indexing on active values are
preferred over others. However, the semantics of NAT models does not dictate
choice on such orders.
In general, we denote an effect by e and the set of all causes of e by C = {c1, ...,cn}.
The domain of e is De = {e0, ...,eη} (η > 0) and the domain of ci (i = 1, ...,n) is
Di = {c0

i , ...,c
mi
i } (mi > 0). An active value may be written as e+ or c+i .

A causal event is a success or failure depending on whether e is rendered active
at a certain range of values, is single-causal or multi-causal depending on the
number of active causes, and is simple or congregate depending on the range of
effect values.
A simple single-causal success is an event that cause ci of value c j

i (j > 0) caused
effect e to occur at value ek (k > 0), when every other cause is inactive. Denote
the event probability by P(ek← c j

i) = P(ek|c j
i ,c

0
z : ∀z 6= i) (j > 0). A multi-causal

success involves a set X = {c1, ...,cq} (q > 1) of active causes, where each ci ∈ X
has the value c j

i (j > 0), when every other cause cm ∈C\X is inactive. A congre-
gate multi-causal success is an event such that causes in X collectively caused the
effect to occur at value ek (k > 0) or values of higher indexes, when every other
cause is inactive. We denote the probability of the event as

P(e≥ ek← c j1
1 , ...,c jq

q) = P(e≥ ek|c j1
1 , ...,c jq

q ,c0
z : cz ∈C \X) (j > 0),

where X = {c1, ...,cq} (q > 1). It can also be denoted P(e≥ ek← x+).
A congregate single-causal failure refers to an event where e < ek (k > 0) when
cause ci has value c j

i (j > 0) and every other cause is inactive. We denote the
probability of the event as P(e < ek← c j

i) = P(e < ek|c j
i ,c

0
z : ∀z 6= i) (j > 0).

A NAT consists of two types of NIN-AND gates, each over disjoint sets of causes
W1, ...,Wq. An input event of a direct gate (Fig. 1 (a)) is e ≥ ek ← w+

i and the
output event is e ≥ ek ← w+

1 , ...,w
+
q . An input of a dual gate (Fig. 1 (b)) is e <

ek ← w+
i and the output event is e < ek ← w+

1 , ...,w
+
q . The probability of the

output event of a gate is the product of probabilities of its input events.
Interactions among causes may be reinforcing or undermining, either between
causes or groups of causes, as specified in Def. 2.

3

Fig. 1. A direct NIN-AND gate (a), a dual NIN-AND gate (b), and a NAT (c)

Definition 2 [12] Let ek be an active effect value, R= {W1, ...} be a partition of a
set X ⊆C of causes, R′ ⊂R, and Y =∪Wi∈R′Wi. Sets of causes in R reinforce each
other relative to ek, iff ∀R′ P(e≥ ek← y+)≤ P(e≥ ek← x+). They undermine
each other relative to ek, iff ∀R′ P(e≥ ek← y+)> P(e≥ ek← x+).

Direct gates model undermining and dual gates model reinforcing. A NAT or-
ganizes multiple gates into a tree and expresses mixtures of reinforcing and un-
dermining recursively, as illustrated in Fig. 1 (c). A NAT specifies the interac-
tion between each pair of ci and c j, denoted by the PCI bit pci(ci,c j) ∈ {u,r},
where u stands for undermining and r for reinforcing. The collection of PCI
bits is the PCI pattern of the NAT. The PCI pattern for the NAT in Fig. 1 (c)
is {pci(h1,h2) = r, pci(h1,b1) = u, pci(h1,b2) = u, pci(h2,b1) = u, pci(h2,b2) =
u, pci(b1,b2) = r}. A NAT can be uniquely identified by its PCI pattern [16].
From the NAT in Fig. 1 (c) and probabilities of its input events, in the gen-
eral form P(ek← c j

i) (j,k > 0), called single-causals, P(e≥ e1← h1
1,h

1
2,b

1
1,b

1
2)

can be obtained. From the single-causals and all derivable NATs, the NAT CPT
P(e|h1,h2,b1,b2) is uniquely defined [12]. A NAT model for |C|= n is specified
by a NAT topology and a set of single-causals of space linear on n.
A general CPT over C and e has space exponential on n. The complexity is re-
duced to being linear by compressing the CPT into a NAT model, with the fol-
lowing main steps. (1) Extract one or more PCI patterns from the target CPT
[13]. (2) Retrieve NAT structures that are compatible with the PCI patterns [15].
(3) Search for numerical parameters for each NAT structure and return the NAT
structure and its parameters that best approximate the target CPT [13].

3 Parameterizing NAT Models by Swarm Descent

Parameterization (the step (3) above) is a time consuming compression step (see
experiment at end of section). This section presents a novel method to improve
its efficiency. To clarify key issues, we present the existing method [13] algorith-
mically so that the enhancement can be elaborated.
The input includes a target CPT PT (e|C) and a set Ψ of candidate NATs over C
and e. The output is a NAT Y ∈Ψ and a set SC of single-causals associated with
Y . The criterion is to select the NAT model M = (Y,SC) such that its CPT PM
best approximates PT . The difference of PM from PT to be minimized is average
Kullback−Leibler divergence,

KL(PT ,PM) =
1
Z

Z−1

∑
i=0

∑
j

PT (i, j)log
PT (i, j)
PM(i, j)

,

where i indexes conditional probability distributions (CPDs) in PT , j indexes
probabilities in each CPD, and Z counts the CPDs. This is achieved by con-
strained gradient descent described below. In the experimental study, average

4

Euclidean distance

ED(PT ,PM) =

√√√√ 1
K

Z−1

∑
i=0

∑
j
(PT (i, j)−PM(i, j))2

is also obtained, where K counts probabilities in PT .
The gradient gM is the set of partial derivatives of KL(PT ,PM) relative to each
single-causal x ∈ SC, where gM(x) = ∂KL(PT ,PM)/∂x. In a single-causal de-
scent step, a single-causal x is revised into x−α ∗gM(x), where α is the descent
scale (e.g., 0.01). A descent step consists of |SC| single-causal descent steps, one
per x∈ SC. During a descent step, each x in the general form P(ek← c j

i) (j,k > 1)
is constrained by x ∈ (0,1). In addition, for every c j

i , elements of SC are collec-
tively constrained by ∑

η

k=1 P(ek← c j
i)< 1 . One descent round consists of up to

MaxStep (e.g., 200) descent steps, as specified in Algo. 1.

Algorithm 1 Descent(PT ,Y,SC)

1 for step = 1 to MaxStep,
2 compute gradient gM from PT and M = (Y,SC);
3 if gM signifies convergence, return SC;
4 for each x ∈ SC, x = x−α ∗gM(x), subject to relevant constraints;
5 return SC;

Given a NAT Y , the returning SC and the KL distance of NAT model M = (Y,SC)
is often dependent on the initial single-causals SC. To get the best KL distance
from Y , MaxRound (e.g., 10) of descent rounds are performed as Algo. 2.

Algorithm 2 MultiDescent(PT ,Y)

1 BestSC = null, BestKL = ∞;
2 for round = 1 to MaxRound,
3 randomly initialize a set SC of single-causals;
4 SC′ = Descent(Y,SC);
5 compute KL(PT ,PM), where M = (Y,SC′);
6 if KL(PT ,PM)< BestKL, then BestSC = SC′, BestKL = KL(PT ,PM);
7 return (BestSC,BestKL);

Parameterization step selects the best NAT from candidates as Algo. 3.

Algorithm 3 ParameterizeNAT (PT ,Ψ)

1 BestNAT = null, BestSC = null, BestKL = ∞;
2 for each NAT Y ∈Ψ ,
3 (SC,KL) = MultiDescent(PT ,Y);
4 if KL < BestKL, then BestNAT = Y , BestSC = SC, BestKL = KL;
5 return (BestNAT,BestSC);

5

The above method is time consuming (see experiment at end of section). We ob-
serve that it conducts descent rounds independently, one for each candidate NAT
and each initial SC set. In the following, we apply particle swarm optimization [5]
to develop a novel swarm-based constrained gradient descent, where dependency
between multiple descent rounds is introduced to improve efficiency.
A particle captures a descent round relative to a NAT Y and an initial set SC
of single-causals. The descent round is divided into multiple descent intervals,
where each interval involves IntervalLength (e.g., 10) descent steps. The oper-
ation of a particle during a descent interval is specified as Algo. 4. It is similar
to Algo. 1 but over a smaller number of steps. Instead of returning SC, it saves
SC, a flag, gradient, and KL distance as attributes of the particle, to be used for
evaluating the particle performance.

Algorithm 4 ParticleDescent(PT ,Y,SC)

1 init flag converged = f alse;
2 for step = 1 to IntervalLength,
3 compute gradient gM from PT and M = (Y,SC);
4 if gM signifies convergence, converged = true and break;
5 for each x ∈ SC, x = x−α ∗gM(x), subject to relevant constraints;
6 compute kl = KL(PT ,PM), where M = (Y,SC);
7 save SC, converged, gM , and kl;

A particle group is a set of particles that share the same NAT Y . Performances of
particles in a group G are evaluated after each intra-group check period consisting
of a constant of InGroupCheckPeriod (e.g., 2) descent intervals. The evaluation
is specified in Algo. 5, where each particle R ∈ G is associated with attributes
such as its α value, converged flag, gradient, and KL distance at the end of the
last interval of the period. These attributes can be accessed by, e.g., R.converged
and R.kl. For each R.gM , we denote the average of its element by R.gM .
In Algo. 5 below, each particle R∈G not yet converged is evaluated as promising,
average, or poor. A particle is promising, if its average KL distance is better than
the group average and it is faster in descending. A particle is poor performing,
if its average KL distance is worse than the group average and it is slower in
descending. Each promising particle is rendered to descend even faster, and each
poor performing particle is halted, where γ and ρ are threshold scales (e.g., ≥ 1).

Algorithm 5 InGroupCheck(G)

1 avgKL = (∑R∈G R.kl)/|G|;
2 avgGradient = (∑R∈G R.gM)/|G|;
3 for each particle R ∈ G, where R.converged = f alse,
4 if R.kl < γ ∗avgKL and R.gM > avgGradient, increase R.α;
5 else if R.kl > ρ ∗avgKL, R.gM < avgGradient, and |G|> 1,
6 remove R from G;
7 return G;

Each candidate NAT is processed by exactly one particle group. Performances of
all particle groups are evaluated after each inter-group check period consisting

6

of a constant of InterGroupCheckPeriod (e.g., 4) descent intervals. As the out-
come of evaluation, poorly performing groups are terminated. The evaluation is
specified in Algo. 6, where Φ denotes the set of all particle groups, and β is a
threshold scale (e.g., 1.25). Lines 1 to 4 determine average group performance,
and the remainder uses it to identify poorly performing groups.

Algorithm 6 InterGroupCheck(Φ)

1 avgKL = 0;
2 for each particle group G ∈Φ ,
3 G.bestKL = minR∈G R.kl, avgKL = avgKL+G.bestKL;
4 avgKL = avgKL/|Φ |;
5 for each particle group G ∈Φ ,
6 if G.bestKL > β ∗avgKL and |Φ |> 1, remove G from Ψ ;
7 return Φ;

Algo. 7 is the top level algorithm for swarm-based descent. GroupSize defines
the initial number of particles per particle group. It serves the role equivalent
to MaxRound in Algo. 2. MaxInterval (e.g., 10) controls the total number of
descent intervals. Lines 1 to 5 initialize all particle groups. Particles descend in
lines 6 to 11, subject to intra-group and inter-group evaluations and eliminations.
The remainder selects the best NAT model emerging from the descent.

Algorithm 7 ParameterizeBySwarm(PT ,Ψ)

1 create a set Φ of |Ψ | particle groups;
2 for each group G ∈Φ ,
3 assign a distinct NAT Y ∈Ψ to G as G.Y ;
4 create GroupSize particles in G;
5 for each particle R ∈ G, init R.α and a set of single-causals as R.SC;
6 for interval = 1 to MaxInterval,
7 for each group G ∈Φ ,
8 for each particle R ∈ G, R runs ParticleDescent(PT ,G.Y,R.SC);
9 if (interval mod InGroupCheckPeriod) = 0,
10 for each group G ∈Φ , G = InGroupCheck(G);
11 if (interval mod InterGroupCheckPeriod) = 0, Φ = InterGroupCheck(Φ);
12 BestNAT = null, BestSC = null, BestKL = ∞;
13 for each group G ∈Φ ,
14 for each particle R ∈ G,
15 if R.kl < BestKL, then BestNAT = G.Y , BestSC = R.SC, BestKL = R.kl;
16 return (BestNAT,BestSC);

We observe that although ParticleDescent by multiple particles are executed se-
quentially, they are independent until intra-group evaluations. To further improve
efficiency, we also investigated a parallel version of swarm-based descent, where
ParticleDescent by each particle is run on a separate thread. The primary differ-
ence from Algo. 7 is to execute line 8 by threads. All particle threads must also
be completed before line 9 is executed.

7

The three alternative methods for parameterization, referred to as CGD (con-
strained gradient descent), SSD (sequential swarm-based descent), and PSD (par-
allel swarm-based descent), are evaluated experimentally. Five batches of target
CPTs are randomly generated with the number of causes n = 5,6,7,8,9, respec-
tively. Each batch consists of 2 groups with the variable domain size bounded
at s = 3,4, respectively. Each group consists of 50 CPTs. Hence, the experiment
consists of a total of 5∗2∗50 = 500 target CPTs. Each CPT is run by each of the
3 methods, using a 6-core desktop at 3.7GHz clock speed.

Fig. 2. Runtimes (msec) of PSD, SSD, and CGD in Log10

Fig. 2 summarizes runtime. For each method, as n grows from 5 to 9, computation
cost grows by about 100 times. Change of domain sizes from 3 to 4 only increases
the computational cost, but does not affect the relative efficiency of the three
methods. PSD is consistently more efficient than SSD, and SSD is consistently
more efficient than CGD. Furthermore, as n grows from 5 to 9, the advantage of
PSD over SSD and that of SSD over CGD becomes more pronounced. At n = 9,
PSD is about 3.1 times faster than SSD and SSD is about 3.1 times faster than
CGD. This results in PSD being about one order of magnitude faster than CGD.
Fig. 3 compares the average KL distance of compressed CPTs from target CPTs
by CGD and SSD (PSD has the same KL distance as SSD). Fig. 4 compares the
average ED distance. As n grows from 5 to 9, the approximation errors tend to
increase, but the average ED distances are between 0.23 and 0.32.

Fig. 3. Average KL distance between target and NAT CPTs from CGD and SSD

Errors by SSD are similar to those of CGD, and are more often (but not always)
slightly larger. The slightly large errors can be attributed to early termination
of some particles or particle groups. Although they do not perform well in the
early descent rounds (and hence are terminated by SSD), they could lead to more
accurate approximations later on if allowed to continue. Hence, the swarm-based
descent should be viewed as a good heuristic and trade-off of slight accuracy for
efficiency, rather than as a dominate strategy.

8

Fig. 4. Average ED distance between target and NAT CPTs from CGD and SSD

4 Impact of MF of NAT Models on Inference Efficiency

In this section, we investigate the impact of NAT modeling on efficiency of in-
ference with BNs. We consider BNs where the CPT of every non-root variable
of 2 or more parents is a NAT model, which is referred to as a NAT-modeled
BN. For the inference method, we focus on lazy propagation (LP) [8]. In order
to perform LP with NAT-modeled BNs, we compile them through multiplicative
factorization (MF) [14]. In particular, the NAT model of each CPT is structured
into a hybrid graph, where link potentials for undirected links and family poten-
tials for directed families are assigned based on parameters of the NAT model.
As a result, the NAT-modeled BN is converted into a Markov network and then
compiled into a lazy junction tree (JT) for LP. We refer to BNs compiled as so as
MF of NAT-modeled BNs (MF-BN).
For comparison, we created a peer BN (PR-BN) for each NAT-modeled BN,
where each NAT model is expanded into a tabular CPT. The peer BN is then
compiled into a lazy JT for LP. In an earlier work, it has been shown that for
very sparse BNs (5% more links than singly connected), MF-BNs support up to
2 orders of magnitude speedup in LP than peer BNs [14]. The question of our
interest is whether the speedup in LP extends to less sparse NAT-modeled BNs.
We provide positive empirical evidence below.
We simulated NAT-modeled BNs with 100 variables per BN. The maximum num-
ber of parents per variable in each BN is bounded at n = 8,10,12, respectively.
The uniform domain size of all variables is controlled at m = 3,4, respectively.
The structural density of BNs is controlled by adding w = 5,10,15,20,25,30,35,
40,45,50% of links to a singly connected network, respectively. Hence, there are
a total of 3×2×10 = 60 distinct (n,m,w) combinations. For each combination,
we simulated 10 BNs. This amounts to a total of 600 NAT-modeled BNs.
For each NAT-modeled BN, we perform LP with its MF-BN and PR-BN, and
compare runtimes from a laptop of 2.8 GHz clock speed. Fig. 5 shows MF-BN
runtimes, that grow significantly as BN structures become denser (we omit anal-
ysis based on tree-width growth due to space). On the other hand, little growth is
observed as n grows from 8 to 12. We attribute this to MF of NAT models, which
breaks large BN CPTs into smaller MF factors.
Fig. 6 shows ratios of PR-BN runtimes versus MF-BN runtimes. MF-BNs have
superior efficiency for very sparse structures (w = 5%), and the superiority grows
as n and m grow. This is consistent with findings in [14]. For n = 10,12, MF-BNs
run faster than PR-BNs by up to 2 orders of magnitude (984 times faster in one
case). The superiority decreases as w grows (denser structures), but persists up
to w = 20% for n = 10, and up to w = 30% for n = 12. Hence, the advantage of
MF of NAT-modeling extends to a wider range of sparse structures than reported

9

Fig. 5. Runtimes for MF-BNs

Fig. 6. Ratios of PR-BN runtimes (TP) versus MF-BN runtimes (TM)

[14]. Between w = 25 and 35% for n = 10 and w = 35 and 45% for n = 12, either
MF-BNs or PR-BNs may run faster depending on particular BNs.

5 Posterior Accuracy After NAT-Modeling

CPT compression errors are assessed in Section 3, among others. This section
investigates the degree in which they translate into errors of posterior marginals
in inference. Eight real world discrete BNs are selected from the well-known bn-
learn repository. The selection criterion is that the BN must contain a sufficient
number of variables whose CPTs are suitable for NAT-modeling. More specifi-
cally, the following variables are not suited for NAT-modeling.

1. Root: Its CPT is trivial (not conditional).
2. Single parent: Its tabular CPT is not exponentially spaced.
3. Some CPDs in the CPT are partially deterministic: The causes are not uncer-

tain causes as assumed by NAT models.

10

4. The variable has a large domain (e.g., of size 20) but a few parents (e.g, 4).
As analyzed in [14], MF of NAT models are not more efficient than tabular
CPTs for such variables.

Table 1 lists selected BNs. In their NAT-modeled versions, variables unsuited
for NAT-modeling keep original CPTs. CPTs of remaining variables in each BN
(percentage in 4th column) are NAT-modeled and subject to compression er-
rors. These errors translate into errors in posterior marginals during inference.
The objective of the experiment is to access the magnitude of errors in posterior
marginals, in relation to CPT compression errors.

Table 1. Real world BNs (Andes−: Andes with 3 isolated nodes removed)

Network # Nodes # NAT CPTs % NAT CPTs # links w
Alarm 37 16 43.2 46 28

Andes− 220 106 48.2 338 54
Barley 48 28 58.3 84 79
Child 20 6 30.0 25 32

Hepar2 70 33 47.1 123 78
Insurance 27 8 29.6 52 100
Win95pts 76 8 10.5 112 49

Munin 1041 11 1.1 1397 34

For each BN, we perform LP on the original version (RW-BN) as well as the
NAT-modeled version (NT-BN), conditioned on the same observation over 10%
of randomly selected variables. For each pair of RW-BN and NT-BN, 10 runs of
LP are performed with distinct observations. This amounts to a total of 8∗2∗10=
160 LP runs.

Fig. 7. Average KL and ED distances from LP runs

Average KL and ED distances (Section 3) are shown in Fig. 7. We observe that
both distances are reasonably small. Hence, the posterior marginals are reason-
ably accurate, even though a significant percentage of CPTs in each BN (between
30 and 50% for most BNs) are NAT-modeled. The posterior errors are generally
smaller than CPT compression errors (Figs. 3 and 4). That is, CPT compression
errors are attenuated, rather than amplified, by the inference.

11

Fig. 8 (left) summarizes the NT-BN runtime. Ratios of RW-BN runtimes over
NT-BN runtimes are summarized in Fig. 8 (right). NT-BNs for Win95pts and
Munin run LP faster than RW-BNs, which can be attributed to their lower density
levels (w in Table 1). For other BNs, their density levels are generally higher than
the threshold level observed in Section 4, and their NT-BNs run LP slower than
RW-BNs.

Fig. 8. Left: NT-BN runtimes; Right: Runtime ratios (RW-BN over NT-BN)

In summary, the result demonstrates that NAT-modeling maintains reasonable
posterior accuracy in inference (while reducing BN CPT space from being ex-
ponential to being linear). As MF of NAT-modeled BNs are more efficient in
inference when BN structures are sparse, a promising direction for future work
is to learn sparse NAT-modeled BNs directly from data (rather than building a
dense BN and then compressing it).

6 Conclusion
Contributions of this work are on local modeling in BNs for more efficient infer-
ence, with focus on NAT models. First, we proposed swarm-based constrained
gradient descent that allows one order of magnitude faster search and parameteri-
zation of NAT-models. Second, our experimental study shows that by multiplica-
tively factorizing NAT-modeled BNs, LP efficiency can be improved for a range
of sparse BN structures. In particular, up to 2 orders of magnitude efficiency gain
can be obtained when BN structural densities are up to about 30% more links be-
yond being singly-connected. Finally, our experimental study of NAT-modeling
real world BNs for LP inference demonstrated reasonable accuracy in posterior
marginals that tend to be more accurate than CPT compression.
A number of directions for future research can be envisioned. We have NAT-
modeled real world BNs by keeping deterministic CPTs. They may be approx-
imated by NAT models or other compact local models, e.g., algebraic decision
diagrams [4], and then integrated with NAT models in a same BN. The range of
structural densities where MF of NAT modeled BNs show superior LP perfor-
mance suggests direct learning of NAT modeled BNs constrained to that density
range. Finally, MF of NAT models is linear in number of causes but exponential
in the effect domain size. Methods other than MF without such limitation may be
explored.

Acknowledgement
Financial support from NSERC Discovery Grant to first author is acknowledged.

12

References

1. C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific
independence in Bayesian networks. In E. Horvitz and F. Jensen, editors,
Proc. 12th Conf. on Uncertainty in Artificial Intelligence, pages 115–123,
1996.

2. F.J. Diez. Parameter adjustment in Bayes networks: The generalized noisy
OR-gate. In D. Heckerman and A. Mamdani, editors, Proc. 9th Conf. on Un-
certainty in Artificial Intelligence, pages 99–105. Morgan Kaufmann, 1993.

3. M. Henrion. Some practical issues in constructing belief networks. In L.N.
Kanal, T.S. Levitt, and J.F. Lemmer, editors, Uncertainty in Artificial Intelli-
gence 3, pages 161–173. Elsevier Science Publishers, 1989.

4. J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In Proc. 15th Conf. on Uncertainty in Artificial
Intelligence, pages 279–288, 1999.

5. J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proc. IEEE
Inter. Conf. on Neural Networks, pages 1942–1948, Piscataway, NJ, 1995.

6. J.F. Lemmer and D.E. Gossink. Recursive noisy OR - a rule for estimating
complex probabilistic interactions. IEEE Trans. on System, Man and Cyber-
netics, Part B, 34(6):2252–2261, Dec 2004.

7. P.P. Maaskant and M.J. Druzdzel. An independence of causal interactions
model for opposing influences. In M. Jaeger and T.D. Nielsen, editors, Proc.
4th European Workshop on Probabilistic Graphical Models, pages 185–192,
Hirtshals, Denmark, 2008.

8. A.L. Madsen and F.V. Jensen. Lazy propagation: A junction tree inference
algorithm based on lazy evaluation. Artificial Intelligence, 113(1-2):203–
245, 1999.

9. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann, 1988.

10. J. Vomlel and P. Tichavsky. An approximate tensor-based inference method
applied to the game of Minesweeper. In Proc. 7th European Workshop on
Probabilistic Graphical Models, Springer LNAI 8745, pages 535–550, 2012.

11. S. Woudenberg, L.C. van der Gaag, and C. Rademaker. An intercausal can-
cellation model for Bayesian-network engineering. Inter. J. Approximate
Reasoning, 63:3247, 2015.

12. Y. Xiang. Non-impeding noisy-AND tree causal models over multi-valued
variables. International J. Approximate Reasoning, 53(7):988–1002, 2012.

13. Y. Xiang and Q. Jiang. NAT model based compression of Bayesian network
CPTs over multi-valued variables. Computational Intelligence (online DOI:
10.1111/coin.12126; paper version in press), 2017.

14. Y. Xiang and Y. Jin. Efficient probabilistic inference in Bayesian networks
with multi-valued NIN-AND tree local models. Int. J. Approximate Reason-
ing, 87:67–89, 2017.

15. Y. Xiang and Q. Liu. Compression of Bayesian networks with NIN-AND
tree modeling. In L.C. vander Gaag and A.J. Feelders, editors, Probabilistic
Graphical Models, LNAI 8754, pages 551–566. Springer, 2014.

16. Y. Xiang and M. Truong. Acquisition of causal models for local distributions
in Bayesian networks. IEEE Trans. Cybernetics, 44(9):1591–1604, 2014.

	Camera-ready for Canadian AI 2018:

