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Abstract. Conditional independence encoded in Bayesian networks (BNs) avoids
combinatorial explosion on the number of variables. However, BNs are still sub-
ject to exponential growth of space and inference time on the number of causes
per effect variable in each conditional probability table (CPT). A number of
space-efficient local models exist that allow efficient encoding of dependency be-
tween an effect and its causes, and can also be exploited for improved inference
efficiency. We focus on the Non-Impeding Noisy-AND Tree (NIN-AND Tree or
NAT) models due to its multiple merits. In this work, we develop a novel frame-
work, de-causalization of NAT-modeled BNs, by which causal independence in
NAT models can be exploited for more efficient inference. We demonstrate its
exactness and efficiency impact on inference based on lazy propagation (LP).
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1 Introduction
Conditional independence encoded in BNs avoids combinatorial explosion on
the number of variables. However, BNs are still subject to exponential growth of
space and inference time on the number of causes per effect variable in each CPT.
A number of space-efficient local models exist that allow efficient encoding of
dependency between an effect and its causes. They include noisy-OR [9], noisy-
MAX [4, 2], context-specific independence (CSI) [1], recursive noisy-OR [5],
Non-Impeding Noisy-AND Tree (NIN-AND Tree or NAT) [13], DeMorgan [6],
tensor-decomposition [10], and cancellation model [11].
We consider expressing BN CPTs as, or compressing them into, NAT models
[13]. The merits of NAT models include being based on simple causal interac-
tions (reinforcement and undermining), expressiveness (recursive mixture, multi-
valued), and generality (generalizing noisy-OR, noisy-MAX [15], and DeMorgan
[13]). Since causal independence encoded in a NAT model is orthogonal to CSI,
NAT models provide an alternative to CSI for efficient local modeling in BNs.
Local models not only reduce space and time to acquire CPT parameters, they
can also be exploited to improve inference efficiency. Through multiplicative fac-
torization (MF) of NAT-modeled BNs, inference based on LP [7] was made up
to two orders of magnitude faster in very sparse BNs [15]. In this work, we de-
velop a framework alternative to MF which is referred to as de-causalization of
NAT-modeled BNs, where causal independence in NAT models can be exploited
for more efficient inference. We also evaluate its impact on LP efficiency.
The remainder of the paper is organized as follows. Section 2 reviews the back-
ground on NAT modeling. In Sections 3 and 4, we present how to de-causalize
dual and direct NIN-AND gate models. The tree-width of the de-causalized rep-
resentation is further reduced in Section 5. This de-causalization is extended to
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a general NAT model in Section 6 and then to a NAT-modeled BN in Section 7.
The impact of de-causalization is empirically evaluated in Section 8.

2 Background on NAT Models
This section briefly reviews background on NAT models. More details can be
found in [13, 14]. A NAT model is defined over an effect e and a set of n causes
C = {c1, ...,cn} that are multi-valued, where e ∈ De = {e0, ...,eη} (η ≥ 1) and
ci ∈ {c0

i , ...,c
mi
i } (i = 1, ...,n,mi ≥ 1). C and e form one family (a child variable

plus its parents) in a BN, whose dependence is quantified by a CPT by default.
Values e0 and c0

i are inactive. Other values (may be written as e+ or c+i ) are
active. A higher index often means higher intensity (graded or ordinal variables),
but that is not necessary (see [14] for generalization to nominal variables).
A causal event is a success or failure depending on if e is active up to a given
value, is single- or multi-causal depending on the number of active causes, and is
simple or congregate depending on value range of e. For instance, P(ek← c j

i ) =

P(ek|c j
i ,c

0
z : ∀z 6= i) ( j > 0) is probability of a simple single-causal success, and

P(e≥ ek← c j1
1 , ...,c jq

q ) = P(e≥ ek|c j1
1 , ...,c jq

q ,c0
z : cz ∈C \X)

is probability of a congregate multi-causal success, where j1, ..., jq > 0, X =
{c1, ...,cq} (q > 1). The latter may be denoted as P(e ≥ ek ← x+). Interactions
among causes may be reinforcing or undermining as defined below.
Definition 1 Let ek be an active effect value, R = {W1, ...,Wm} (m ≥ 2) be a
partition of a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in
R reinforce each other relative to ek, iff ∀S P(e ≥ ek ← y+) ≤ P(e ≥ ek ← x+).
They undermine each other iff ∀S P(e≥ ek← y+)> P(e≥ ek← x+).

Fig. 1. A direct NIN-AND gate (a), a dual NIN-AND gate (b), and a NAT (c).

A NAT has multiple NIN-AND gates. A direct gate involves disjoint sets of
causes W1, ...,Wm. Each input event is a success e≥ ek ← w+

i (i = 1, ...,m), e.g.,
Fig. 1 (a) where each Wi is a singleton. The output event is e≥ ek← w+

1 , ...,w
+
m .

The probability of output event of a direct NIN-AND gate is

P(e≥ ek← w+
1 , ...,w

+
m) =

m

∏
i=1

P(e≥ ek← w+
i ). (1)

Direct gates encode undermining causal interactions. Each input event of a dual
gate is a failure e < ek ← w+

i , e.g., Fig. 1 (b). The output event is e < ek ←
w+

1 , ...,w
+
m . The probability of output event of a dual NIN-AND gate is

P(e < ek← w+
1 , ...,w

+
m) =

m

∏
i=1

P(e < ek← w+
i ). (2)

Dual gates encode reinforcement causal interactions.
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Fig. 1 (c) shows a NAT, where causes h1 and h2 reinforce each other, and so
do b1 and b2. However, the two groups undermine each other. From the NAT
and probabilities of its input events, in the general form P(ek ← c j

i ) ( j,k > 0),
called single-causals, P(e≥ e1← h1

1,h
1
2,b

1
1,b

1
2) can be obtained. From the single-

causals and all derivable NATs [12], CPT P(e|h1,h2,b1,b2) is uniquely specified
[13]. A NAT model is specified by the topology and a set of single-causals with a
space linear on n.
A BN where the CPT of every family of size 3 or larger is a NAT model is a NAT-
modeled BN. A discrete BN where every CPT is tabular has a space complexity of
O(N κn), where N is the number of variables, κ is the size of largest variable do-
mains, and n+1 is the largest family size. On the other hand, a NAT-modeled BN
has a linear space complexity of O(N κ n). The efficiency of NAT-modeled BNs
can extend to inference. A MF framework has been developed [15], where each
NAT model in the BN is converted into a hybrid network segment by exploiting
causal independence. The multiplicatively factorized NAT-model BN allows up
to two orders of magnitude speedup in LP for very sparse BNs.

3 De-Causalizing Dual NIN-AND Gate Models

First, we de-causalize a dual NIN-AND gate model, a building block of NAT
models. It has been shown that a dual NIN-AND gate over multi-valued variables
is equivalent to noisy-MAX [15]. A BN segment can be used [3] to structure
noisy-MAX models. Given the equivalence between a dual NIN-AND gate and
a noisy-MAX model, any structuring of noisy-MAX is also applicable to dual
gates. Nevertheless, we give below an alternative justification of the mapping of
dual gates to the BN segment, that is direct and hence more intuitive.

Fig. 2. The DAG structure of BN segment of an NIN-AND gate model.

Fig. 2 shows the BN segment structure, where root variables are the n causes and
the leaf is the effect e. For each cause ci, a probabilistic auxiliary child variable zi
is introduced, whose domain is De. It represents the impact of cause ci to effect
e. The CPT at zi, referred as single-causal (SC) CPT, is

P(zi = e j|ci = ck
i ) =

{
1, i f e j = e0 and ck

i = c0
i ,

P(e j← ck
i ), i f e j > e0 and ck

i > c0
i .

(3)

The 1st formula says that when ci is inactive, it cannot render e active. The 2nd
formula expresses the impact to e when ci is active. The CPT at e, referred to
as a MAX CPT, encodes a MAX function as follows, where the domain of every
variable is De and the number of αi variables is finite.

P(τ|α1,α2, ...) =

{
1, i f τ = MAX(α1,α2, ...),
0, otherwise.

(4)

For the MAX CPT at e, τ is substituted by e and α1,α2, ... by z1, ...,zn.
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Definition 2 Let G be the DAG in Fig. 2 over C = {c1, ...,cn} and e, and CP be
the set of CPTs specified by Eqns. (3) and (4). Then Φ = (C,e,G,CP) is the BN
segment for a dual NIN-AND gate model.

We show below that the BN segment Φ is equivalent to the dual gate model
illustrated in Fig. 1 (b).

Proposition 1 Let Φ = (C,e,G,CP) be a BN segment for a dual NIN-AND gate
model. Then the CPT P(e|c1, ...,cn) from Φ defined by the marginalized product

∑
z1,...,zn

(P(e|z1, ...,zn)
n

∏
i=1

P(zi|ci))

is the same as that defined by the dual NIN-AND gate model.

Proof: The dual NIN-AND gate model is characterized by Eqn. (2). When each
set of causes is a singleton, Eqn. (2) becomes the following where, without losing
generality, c1, ...,cm are active and cm+1, ...,cn are inactive:

P(e < ek← c+1 , ...,c
+
m) =

m

∏
i=1

P(e < ek← c+i ), (k = 1, ...,η).

It is equivalent to

P(e≤ ek← c+1 , ...,c
+
m) =

m

∏
i=1

P(e≤ ek← c+i ), (k = 0, ...,η−1),

which is a cumulative causal distribution. If Φ has the same cumulative distribu-
tion (which we show below), then P(e|c1, ...,cn) from Φ is also the same as that
of the dual gate model.
Assume that c1, ...,cm are active and cm+1, ...,cn are inactive. In Φ , since the CPT
by Eqn. (4) encodes the MAX function, we have

P(e≤ ek← c+1 , ...,c
+
m) = ∑

MAX(z1,...,zn)≤ek

P(z1, ...,zn|c+1 , ...,c
+
m ,c

0
m+1, ...,c

0
n).

Since MAX(z1, ...,zn)≤ ek iff zi ≤ ek for i = 1, ...,n, the above is equal to

∑
z1≤ek ,...,zn≤ek

P(z1, ...,zn|c+1 , ...,c
+
m ,c

0
m+1, ...,c

0
n)

= ∑
z1≤ek

... ∑
zn≤ek

P(z1, ...,zn|c+1 , ...,c
+
m ,c

0
m+1, ...,c

0
n).

By the DAG structure of Φ , zi is independent of z j for i 6= j given ci. Hence, the
above equals

∑
z1≤ek

... ∑
zn≤ek

(P(z1|c+1 ) ... P(zm|c+m)P(zm+1|c0
m+1) ... P(zn|c0

n))

= ∑
z1≤ek

P(z1|c+1 ) ... ∑
zm≤ek

P(zm|c+m) ... ∑
zm+1≤ek

P(zm+1|c0
m+1) ... ∑

zn≤ek

P(zn|c0
n).
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Since ∑zi≤ek P(zi|c0
i ) = 1 for i = m+1, ...,n, the above equals

∑
z1≤ek

P(z1|c+1 ) ... ∑
zn≤ek

P(zm|c+m) =
m

∏
i=1

P(zi ≤ ek← c+i ).

From Eqn. (3), the above equals ∏
m
i=1 P(e≤ ek← c+i ). Hence, we have

P(e≤ ek← c+1 , ...,c
+
m) =

m

∏
i=1

P(e≤ ek← c+i ). �

4 De-Causalizing Direct NIN-AND Gate Models

Next, we de-causalize a direct NIN-AND gate model, another building block of
NAT models. The structure of BN segment is the same as Fig. 2. However, the
domain of each auxiliary variable zi is Da = {e0, ...,eη ,aaci}, where an extra
value aaci (all above causes inactive) is added to De. Its semantics are elaborated
below. When values of zi are compared, the relation e0 < ... < eη < aaci is as-
sumed. Note that events in Fig. 1 are causal events, while events in Fig. 2 are not.
Hence the name de-causalization.
The CPT at zi, referred to as a single-causal-plus (SC+) CPT, is the following,
where + signifies the enlarged domain of zi beyond De:{

P(zi = aaci|ci = c0
i ) = 1,

P(zi = e j|ci = ck
i ) = P(e j← ck

i ), (e j > e0,ck
i > c0

i ).
(5)

The 1st formula explicitly signifies that ci is inactive (the above cause is inactive).
The 2nd formula covers all cases where ci is active. The CPT at e, referred to as
PMIN CPT, encodes a pseudo-MIN (PMIN) function below over a finite set of
arguments, where each argument has domain Da and function range is De:

PMIN(α1,α2, ...) =

{
e0, i f ∀i αi = aaci,
MIN(α ′1, ...,α

′
m), i f α ′1, ...,α

′
m 6= aaci (m > 0).

The PMIN CPT at e is the following:

P(τ|α1,α2, ...) =

{
1, i f ∀i αi = aaci ∧ τ = e0,
1, i f α ′1, ...,α

′
m 6= aaci (m > 0) ∧ τ = MIN(α ′1, ...,α

′
m).

(6)
We define the BN segment below and establish its soundness.

Definition 3 Let G be the DAG in Fig. 2 over C = {c1, ...,cn} and e, and CP be
the set of CPTs specified by Eqns. (5) and (6). Then Φ = (C,e,G,CP) is the BN
segment for a direct NIN-AND gate model.

We show below that the BN segment Φ is equivalent to the dual gate model
illustrated in Fig. 1 (a). The proof is omitted due to space limit.
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Proposition 2 Let Φ = (C,e,G,CP) be a BN segment for a direct NIN-AND gate
model. Then the CPT P(e|c1, ...,cn) from Φ defined by the marginalized product

∑
z1,...,zn

(P(e|z1, ...,zn)
n

∏
i=1

P(zi|ci))

is the same as that defined by the direct NIN-AND gate model.

5 Reducing Tree-Width of BN Segment
The complexity of probabilistic reasoning with a BN is critically dependent on
its tree-width. By reducing the tree-width of BN segments, the tree-width of a
BN may also be reduced. The BN segments presented in previous sections have a
tree-width of n. Below, we take advantage of deterministic CPTs in Eqns. (4) and
(6), and apply parent divorcing [8] to reduce the tree-width of these BN segments
from n to 2.
Fig. 3 shows the enhanced DAG structure. A total of n−2 deterministic auxiliary
variables yi are introduced. Since the DAG is a directed tree where each node has
no more than two parents, its tree-width is 2.

Fig. 3. The DAG structure of BN segment by applying parent divorcing.

For the enhanced BN segment of a dual gate model, the domain of each yi is De.
The CPT at each yi (i = 1, ...,n− 2) and e is a MAX CPT defined by Eqn. (4).
It can be shown that the collection of CPTs at yi and e is equivalent to the single
MAX CPT P(e|z1, ...,zn) described in Section 3. We omit the proof due to space
considerations.
Assume that all cause variables have the same domain size η +1 as e. The total
size of the CPT collection is (n−1)(η +1)3, while the single CPT has a size of
(η +1)n+1. For n = η = 4, the two sizes are 375 and 3125.
For the enhanced BN segment of a direct gate model, the domain of each yi is Da.
The CPT at e is a PMIN CPT defined by Eqn. (6), where condition variables are
yn−2 and zn. When one of yn−2 and zn is not aaci, the MIN function is trivialized.
The CPT at each yi (i = 1, ...,n− 2), referred to as a PMIN+ CPT, encodes the
following pseudo-MIN-plus (PMIN+) function:

PMIN+(α1,α2) =

{
aaci, i f αi = aaci (i = 1,2),
MIN(α ′1,α

′
m), i f α ′1,α

′
m 6= aaci (m > 0).

When m = 1, the MIN function is trivial. The PMIN+ CPT at each yi is the
following, where τ is substituted by yi, and αi are substituted by parents of yi:

P(τ|α1,α2) =

{
1, i f αi = aaci (i = 1,2) ∧ τ = aaci,
1, i f α ′1,α

′
m 6= aaci (m > 0) ∧ τ = MIN(α ′1,α

′
m).

(7)
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The 1st formula signifies that all causes above yi are inactive, so that the non-
impeding behavior of a direct gate model is enabled. It can be shown that the
collection of CPTs at yi and e are equivalent to the single PMIN CPT described
in Section 4. The size of the CPT collection is (n−2)(η +2)3+(η +1)(η +2)2,
while the single PMIN CPT has a size of (η +1)(η +2)n. For n = η = 4, the two
sizes are 612 and 6480.

6 De-Causalizing NAT Models

A NAT model generally consists of multiple NIN-AND gates organized into a
tree. To de-causalize a general NAT model, we apply the BN segment for each
gate and interface the gate segments so that the BN segment of the NAT model
encodes the exact CPT of the NAT model. If an NIN-AND gate feeds into another
in the NAT model, its effect variable is replaced with a quasi-effect variable.

Fig. 4. (a) A NAT. (b) The enhanced BN segment.

Consider the NAT in Fig. 4 (a), where labels of causal events have been simplified
(e.g., input events to gates) or omitted (e.g., output events). Suppose that the leaf
gate g2 is dual. Then g1 is direct. The (enhanced) BN segment of the NAT is
shown in (b). The BN segment of g1 consists of causes variables ci (i = 1,2,3),
probabilistic auxiliary variables zi (i = 1,2,3), deterministic auxiliary variable
y1, and quasi-effect variable q. This segment can be implemented as in Sections 4
and 5, except that the variable e there is renamed as q.
The BN segment of g2 consists of causes variables ci (i = 4,5), quasi-effect vari-
able q as an input from g1, probabilistic auxiliary variables z j ( j = 4,5), determin-
istic auxiliary variable y2, and effect variable e. This segment can be implemented
as in Sections 3 and 5, except that the quasi-effect variable q should be treated in
the same way as probabilistic auxiliary variables z j ( j = 4,5).
Next, suppose that the leaf gate g2 is direct and g1 is dual. The BN segment of the
NAT is the same as in Fig. 4 (b). However, the BN segment of dual gate g1 must
be modified relative to that of Sections 3 and 5. In Sections 3 and 5, auxiliary
variables zi and yi, as well as the effect e, have the domain De. This is no longer
valid. Since g1 is not the leaf gate, it now feeds into the direct gate g2. To support
non-impeding behavior of the direct gate, domains of zi, yi, and quasi-effect q
have to be enlarged into Da.
Due to this enlargement, SC CPTs cannot be applied to zi (i = 1,2,3), and MAX
CPTs cannot be applied to y1 and q. Instead, auxiliary variables zi (i = 1,2,3)
adopt SC+ CPTs (Eqn. (5)). A new form of CPT is needed for y1 and q. It
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is referred to as PMAX+ CPTs, and encodes the following pseudo-MAX-plus
(PMAX+) function, where domain of each argument and function range are Da:

PMAX+(α1,α2) =

{
aaci, i f αi = aaci (i = 1,2),
MAX(α ′1,α

′
m), i f α ′1,α

′
m 6= aaci (m > 0).

The PMAX+ CPTs at y1 and q are the following:

P(τ|α1,α2) =

{
1, i f αi = aaci (i = 1,2) ∧ τ = aaci,
1, i f α ′1,α

′
m 6= aaci (m > 0) ∧ τ = MAX(α ′1,α

′
m).

(8)

The BN segment of the direct leaf gate g2 can be encoded as Sections 4 and
5, except that the quasi-effect q should be treated in the same way as auxiliary
variables z4 and z5.

Table 1. Summary of variable domains

Auxiliary variable Quasi-effect
Level 0 Dual gate De NA

Direct gate Da NA
Level 1 Dual gate Da Da

Direct gate Da De
Level 2+ Dual gate Da Da

Direct gate Da Da

In general, domains of auxiliary variables (both probabilistic and deterministic)
and quasi-effect variables should be set as summarized in Table 1, where level 0
is the leaf level. The primary criteria are to keep the domain as small as possible,
while ensuring non-impeding behavior of direct gates.
CPTs for auxiliary, quasi-effect, and effect variables should be set as summarized
in Table 2, where the last column refers to effect (level 0) or quasi-effect (level
1+). The primary criteria are to maintain exact CPT as corresponding NIN-AND
gate model, while ensuring non-impeding behavior of direct gates downstream.

Table 2. Summary of variable CPTs

Level Gate Probabilistic aux Deterministic aux (Quasi)-effect
0 Dual SC CPT MAX CPT MAX CPT

Direct SC+ CPT PMIN+ CPT PMIN CPT
1 Dual SC+ CPT PMAX+ CPT PMAX+ CPT

Direct SC+ CPT PMIN+ CPT PMIN CPT
2+ Dual SC+ CPT PMAX+ CPT PMAX+ CPT

Direct SC+ CPT PMIN+ CPT PMIN+ CPT

It can be shown formally that the collection of CPTs in the BN segment of the
NAT model ensures the exact P(e|c1, ...,cn) of the NAT model. We omit the for-
mal analysis due to space restriction. Instead, we demonstrate the exactness em-
pirically in Section 8.

7 De-Causalizing NAT-Modeled Bayesian Networks
To de-causalize a NAT-modeled BN, for each NAT model family (child e plus
parents c1, ...,cn), delete the directed link from each parent to the child (as well
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as the CPT of the child), reconnect the family by the de-causalizing BN segment,
and assign a CPT to each variable (except c1, ...,cn) as presented above.
Consider the example NAT-modeled BN in Fig. 5, where the NAT model over
family of v8 is shown with simplified labeling, and all variables are ternary. The
gate g3 is direct and remaining gates are dual.

Fig. 5. Left: DAG of a NAT-model BN. Right: NAT-model over family of v8.

The de-causalized BN is shown in Fig. 6. For causes vi (i = 1, ...,7) in that order,
the probabilistic auxiliary variables are x10, x16, x11, x20, x17, x21, x18, respec-
tively. For gate g2, the quasi-effect is q13. For gate g1, the deterministic auxiliary
variable is y19 and the quasi-effect is q12. For gate g3, the deterministic auxiliary
variables are y14 and y15. A BN with the DAG in Fig. 5 (left), where all variables
are ternary and all CPTs are tabular, has 6642 numerical parameters (values in all
CPTs). The de-causalized BN has 489 parameters.

Fig. 6. The NAT-modeled BN in Fig. 5 after de-causalization.

Let a NAT-modeled BN be over the set V of variables and its de-causalized BN
be over the set V ∪W of variables, where W is the set of all auxiliary and quasi-
effect variables. Let P(V ) be the joint probability distribution (JPD) of the NAT-
modeled BN, and P(V,W ) be the JPD of the de-causalized BN. Since for each
replaced BN family, the CPT P(e|c1, ...,cn) specified by the de-causalizing seg-
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ment is equal to the original NAT CPT of the family, we have

∑
w∈W

P(V,W ) = P(V ).

The de-causalized BN can be used for probabilistic reasoning using any standard
inference algorithm. Only observations over variables in V can be entered, as
variables in W are not observable. In Section 8, we demonstrate the posterior
marginals thus computed from de-causalized BNs are exact as computed from
original NAT-modeled BNs.

8 Experiments

The 1st experiment evaluates the space of a NAT model-CPT as a tabular CPT
(TAB), of a de-causalized CPT without parent divorcing (DEC), and of a de-
causalized CPT with parent divorcing (DPD). The numbers of causes per CPT are
n = 5,7,9,11. The uniform domain sizes of variables in each CPT are d = 3,5,7.
For each combination of (n,d), 30 random NAT topologies are generated. Hence,
a total of 4∗3∗30 = 360 distinctly structured NAT models are evaluated.
Fig. 7 show spaces of CPTs in log10 by TAB, DEC, and DPD when d = 7. Due
to space consideration, we omit presentation of result for d = 3,5. Space of TAB
CPTs are completely determined by n and d, and are constant. Spaces of both
DEC and DPD CPTs are sensitive to the NAT topology, but DPD CPTs are only
slightly so. DEC CPTs are often more space-efficient than TAB CPTs. But for
some NAT topologies, they are less efficient. For instance, the 11th DEC CPT for
n = 11 and d = 7 is less efficient than the TAB CPT, whose NAT has two gates
and one of them has 10 inputs. DPD CPTs are always the most efficient, and are
5 orders of magnitude more efficient than TAB CPTs for n = 11 and d = 7.

Fig. 7. Spaces (s) of CPTs as TAB, DEC, and DPD, where d = 7.

The 2nd experiment evaluates the impact of de-causalization on inference effi-
ciency, where the inference method is LP. We simulated NAT-modeled BNs with
100 variables per BN. The maximum number of parents per variable in each BN
is bounded at m = 6,8,10,12, respectively. The uniform domain size of all vari-
ables is controlled at s = 2,3, respectively. The structural density of BNs is con-
trolled by adding w = 5,10,15,20,25,30,35, 40,45,50,55% of links to a singly
connected network, respectively. Hence, there are a total of 4×2×11 = 88 dis-
tinct (m,s,w) combinations. For each combination, we simulated 10 BNs. This
amounts to a total of 880 NAT-modeled BNs.
For each NAT-modeled BN, we created a normalized BN (NM-BN) where each
NAT model is expanded into a tabular CPT, and a de-causalized BN (DC-BN).
Both NM-BN and DC-BN are compiled for LP, conditioned on the same obser-
vation over 10% of randomly selected variables. For each pair of NM-BN and
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DC-BN, LP resulted in the same posterior marginals, which empirically demon-
strates exactness of de-causalization. LP runtimes for m = 10,12, using a desktop
of 3.4 GHz clock speed, are summarized in Fig. 8. Runtimes for m = 6,8 are
omitted due to space restriction.

Fig. 8. LP runtimes (msec in log10) for NM-BNs and DC-BNs where m = 10,12.

The inference becomes harder as m, s and w grow. For sparse BN structures, as
inference becomes harder, DC-BNs become more advantageous than NM-BNs.
For instance, with w = 5, as m and s grow, the runtime by DC-BNs become sig-
nificantly less than NM-BNs. At (m = 12,s = 3,w = 5), LPs with DC-BNs are
two orders of magnitude fasters than NM-BNs.
Furthermore, as m and s grow, the range of structural densities where DC-BNs
are more efficient than NM-BNs grows as well. For instance, for (m = 6,s = 3),
DC-BNs and NM-BNs tie in runtime around w = 20. As m grows to 8, 10, 12,
the corresponding structural density grows to w = 30,50,55, respectively.

9 Conclusion

The main contribution of this work is the novel de-causalization framework, by
which a NAT-modeled BN is converted into a de-causalized BN for inference
computation. An existing alternative is the MF framework. In comparison, the
MF frame has a limitation where one potential for each NIN-AND gate is ex-
ponential on η (domain size of effect e). In the de-causalization framework, no
component is exponential. We demonstrated that the de-causalized BNs support
exact inference, and can speed up LP inference by up to two orders of magni-
tude for a wide range of sparse BN structures. We are currently investigating the
efficiency impact of de-causalization, when inference is performed through sum-
product networks (SPNs).
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