
Mixing ICI and CSI Models
for More Efficient Probabilistic Inference

Michael Roher and Yang Xiang

University of Guelph, Canada

Abstract. Conditional probability tables (CPTs) in Bayesian Networks
(BNs) have exponential space on the family size. Local models based on
independence of causal influence (ICI) or context-specific independence
(CSI) have been applied separately to improve the efficiency. We propose
a framework to mix both local models in the same BN for improved
efficiency. In particular, we show that ICI and CSI are orthogonal, and
each is unable to express the other efficiently and accurately. We propose
a formalism to encode both types of local models in the same BN, and to
convert it into a homogenous representation to support exact inference.
We report experimental evaluation where significant efficiency gain is
obtained in exact inference.

Keywords: Bayesian networks · Probabilistic inference · Causal inde-
pendence models · Context-specific independence models

1 Introduction

Discrete Bayesian networks (BNs) [6] exploit conditional independence among
variables through directed acyclic graph (DAG) structures, and only quantify de-
pendence of variables on their parents by conditional probability tables (CPTs).
As tabular CPTs have exponential space, which extends to inference complex-
ity, local models have been applied for further efficiency. Some exploit indepen-
dence of causal influence (ICI), e.g., noisy-OR [6], noisy-MAX [4], DeMorgan [5],
Non-Impeding Noisy-AND Tree (NIN-AND Tree or NAT) [11], and cancellation
model [10]. Other local models exploit context-specific independence (CSI), e.g.,
CPT-trees [1], rule-based CSI [8], and algebraic decision diagrams [2].

These methods exploit ICI or CSI, but not both. Since ICI and CSI apply to
individual families of variables in BNs, they can co-exist in an environment (see
Section 7). In such cases, methods that exploit only one type of local models
lose the opportunity afforded by also exploiting the other type.

We propose a framework that exploits both ICI and CSI for more efficient
inference in BNs. When both exist, we apply NAT local models for ICI and CPT-
tree local models for CSI, encoding both in the same BN. We convert each type
of local models accordingly to obtain a homogeneous runtime representation for
more efficient inference.

The remainder is organized as follows: Section 2 reviews background on NAT
and CSI. We establish their orthogonality in Section 3. We analyze alternatives

2 Michael Roher and Yang Xiang

for mixing NAT and CSI in Section 4, and specifies our choice formalism. Sec-
tion 5 formalizes CPT-tree transformation, and Section 6 combines it with NAT
de-causalization [13] to obtain a homogeneous runtime representation. We report
experimental results in Section 7.

2 Background

2.1 NAT Modelling of ICI

We review NAT modelling (see [11, 13] for more details). A NAT model encodes
dependency of an effect e on a set of uncertain causes C = {c1, ..., cn}, where
e ∈ {e0, ..., eν} (ν ≥ 1) and ci ∈ {c0i , ..., c

mi
i } (i = 1,, n; mi ≥ 1). The effect

and cause are inactive at e0 and c0i , and are active at other values (may be
written as e+ or c+i) where higher indices may denote higher intensity. C and e
form a family in BNs, where C is the parent set of e.

A causal event is a success or failure depending on if e is produced up to a
certain value, is single- or multi-causal depending on the number of active causes,
and is simple or congregate depending on the number of active effect values.
A simple single-causal success is an event that cause ci of value cij (j > 0)

renders e to occur at value ek (k > 0), when other causes are inactive. Its
probability is denoted P (ek ← cji) = P (ek|cji , c0z : ∀z 6= i, j > 0). A congregate
multi-causal success is an event where a set of active causes X = {c1, ..., cq}
caused e to occur at ek (k > 0) or higher intensity. Its probability is denoted

P (e ≥ ek ← cj11 , ..., c
jq
q) = P (e ≥ ek|cj11 , ..., c

jq
q , c0m : cm ∈ C \X), where ji > 0

for i = 1, ..., q, or P (e ≥ ek ← x+) for simplicity.

Fig. 1. (a) A direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

A NAT is composed of two types of NIN-AND gates, each over disjoint sets
of causes W1, ...,Wq. An input event of a direct gate (Fig. 1 (a)) is a causal
success e ≥ ek ← wi

+, and the output event is e ≥ ek ← w1
+, ..., wq

+. An input

of a dual gate (Fig. 1 (b)) is causal failure e < ek ← w+
i , and the output event

is e < ek ← w1
+, ..., wq

+. Probability of output event is the product of input
event probabilities.

Let ek be an active effect value. R = {W1, ...,Wm}(m ≥ 2) be a partition of
a set X ⊆ C of causes, S ⊂ R, and Y = ∪Wi∈SWi. Sets of causes in R reinforce
each other relative to ek, iff ∀S P (e ≥ ek ← y+) ≤ P (e ≥ ek ← x+). They

undermine each other iff ∀S P (e ≥ ek ← y+) > P (e ≥ ek ← x+).

3

A direct gate encodes undermining interactions and a dual gate encodes
reinforcing interactions. They are combined in a NAT to express complex inter-
actions among causes. Fig. 1 (c) shows a NAT with 3 gates. Causes h1 and h2
reinforce each other, and so do b1 and b2. The two groups undermine each other.

A BN is NAT-modelled if the CPT of each variable of 2 or more parents is a
NAT model. Its space is linear: O(N κ n), where N is the number of variables, κ
bounds variable domain sizes, and n bounds the number of parents per variable.

Common inference methods for BNs do not directly apply to NAT-modelled
BNs. Normalizing NAT models to full tabular CPTs loses efficiency of NAT-
modelling. Techniques to support efficient inference include multiplicative factor-
ization, where NAT-modelled BNs are converted to equivalent, efficient Markov
networks, and de-causalization, where they are converted to equivalent, efficient
tabular BNs. For NAT-modelled BNs with high treewidth and low density (mea-
sured by percentage of links beyond being singly connected), two orders of mag-
nitude speedup in inference has been demonstrated.

2.2 CPT-tree Modelling of CSI

We review CSI (see [1] for more details). For a BN variable, a context is an
assignment of values to some parents. For disjoint sets of variables X, Y , Z,
and Cxt, X and Y are contextually independent given Z and context Cxt =
cxt, denoted Ic(X;Y |Z,Cxt = cxt), if P (X|Z, cxt, Y) = P (X|Z, cxt) whenever
P (Z, cxt, Y) > 0.

Fig. 2. (a) A BN family. (b) CPT-Tree for the family.

When CSI exists in a BN family, the CPT contain similar values. The BN
family in Fig. 2 (a) admits Ic(b; r|s, q = q0) and Ic(b; r|q = q1, s ∈ {s1, s2}). Its
CPT has 14 parameters, though P (b|q, r, s) generally has 36.

A CPT with CSI can be specified as CPT-tree (b)1. A CPT-tree for variable
x and parents π(x) is directed from the root. Each non-leaf is a variable in
π(x). Each path from the root to a leaf is a context, and the leaf specifies the
conditional probability distribution (CPD) of x, given the context. The CSI
above are expressed by the left subtree and the rightmost branch, respectively.

We refer to BNs where some families are modelled by CPT-trees as CPT-tree-
modelled BNs. Common inference methods for BNs do not directly apply to CPT-
tree-modelled BNs. Techniques that support inference with CPT-tree-modelled
BNs include network transformation and clustering [1], cutset conditioning [1],
and variable elimination [7].

1 The example generalizes CPT-trees in [1] slightly as explained in Section 5.

4 Michael Roher and Yang Xiang

3 Orthogonality of NAT and CSI Models

A fundamental question that may undermine efforts to exploit a mixture of NAT
and CSI is whether the local models are orthogonal. A negative answer renders
the effort invalid, since one type of local models can be encoded by the other. For
instance, alternative ICIs, noisy-OR, noisy-MAX, and DeMorgan, are all special
NAT models. Below, we empirically answer the question positively.

First, we show that CSI generally cannot be exactly expressed as NAT mod-
els. A batch of 100 seed CPTs P (x0|x1, x2, x3, x4, x5) are simulated, where vari-
ables have the same domain {1, 2, 3, 4, 5}.

Given a seed CPT P and a CSI, we generate a CSI CPT P ∗ as follows:
For Ic(x0;x1, x2, x3|x4, x5 = 5), P ∗ must satisfy P ∗(x0|x1, x2, x3, x4, x5 = 5) =
P ∗(x0|x′1, x′2, x′3, x4, x5 = 5). For each distinct assignment (x0, x4), we arbitrarily
assign (x1, x2, x3), retrieve value P (x0|x1, x2, x3, x4, x5 = 5) from P , and assign
to every term P ∗(x0|x′1, x′2, x′3, x4, x5 = 5).

We specified 3 alternative CSIs (Table 1). They allow different space reduc-
tion (2nd col.). Using the above method, we generated 3 CSI CPTs for each
of 100 seed CPTs (a total of 400 source CPTs). We then compress each source
CPT into NAT model, and evaluate the average Kullback-Leibler and Euclidean
distances between the NAT and source CPTs (4th and 5th cols.).

Table 1. Summary of experiments on representing CSI CPTs as NAT models.

CSI Statement # Src Para # NAT Para KL ED

No CSI 12,500 80 0.738 0.219
Ic(x0;x4, x5|x1 = 1, x2 = 2, x3 ∈ {3, 4}) 12,304 80 0.710 0.214
Ic(x0;x2, x3, x4, x5|x1 = 1) 10,004 80 0.692 0.210
Ic(x0;x2, x3, x4, x5|x1 ∈ {1, 2, 3, 4}) 2,504 80 0.501 0.176

Table 1 reveals that source CPTs take much more space than resultant NAT
models (> 30 times). On the other hand, NAT models reduce space 30 to 150
times, but with errors. Though errors decrease as the numbers of source CPT
parameters, NAT models generally cannot express CSI CPTs exactly.

Next, we show that NAT models generally cannot be suitably expressed as
CSI models. Given a NAT CPT, if its probabilities can be grouped into tight
clusters (small distance between member values), and the total number of such
clusters is significantly less than the number of NAT parameters, then it pays
to express the NAT CPT as a CSI model. A smaller number of clusters means
space saving, and tight clusters mean small approximation errors. Based on this
idea, given a NAT CPT and a distance bound δ (e.g., δ = 0.02), we group values
in the CPT into a set Ψ of clusters, such that the following conditions hold:

1. For each cluster Q ∈ Ψ and each pair of values p, q ∈ Q, |p− q| ≤ δ.
2. For each two clusters Q,R ∈ Ψ , let minQ,minR,maxQ,maxR be extreme

values in Q and R, respectively. Either maxQ < minR or maxR < minQ.
3. For clusters Q,R ∈ Ψ where maxQ < minR, we have minR −maxQ > δ.

Condition 1 bounds inner distance within each cluster. Condition 2 orders
clusters by member values. Condition 3 bounds inter-cluster distance.

5

The number of clusters obtained is a lower-bound of the number of parame-
ters when the NAT CPT is approximated by a CSI model. This is because values
in the same cluster may refer to incompatible contexts, and cannot be encoded
by the same CPT-tree leaf. We split such clusters as needed.

The clustering is applied to 100 generated NAT CPTs, each over a family
of 5 parent variables. All variables are binary, with 32 parameters per CPT.
Results with δ = 0.02 are shown in Fig. 3. Each bar counts NAT CPTs that
produced a particular number of clusters. As values in a cluster can be encoded
by a single value with error < δ, the number of clusters indicates the number of
parameters needed if those NAT CPTs are encoded as CPT-trees. As is shown,
all CPT-trees require at least 17 parameters, while the NAT CPT only needs 5.

Fig. 3. Experiment results on representing NAT CPTs as CSI models.

CSI modelling errors are evaluated as follows: Compute the centroid of each
cluster as the mean of its values, and use it as the CPT-tree parameter. The
error to model a NAT CPT as CPT-tree is the Euclidean distance between the
two CPTs. In Fig. 3, average modelling error for CPTs in each bar is at the top,
with the standard deviation below it.

To summarize, it is generally not possible to encode CSI CPTs exactly as
NAT models. When NAT CPTs are represented as CSI models, it generally not
only introduces error, but also increases the number of parameters required.
These evidences suggest that NAT models and CSI models are orthogonal.

4 Mixed NAT-CSI Bayesian Networks

ICI and CSI can each be exploited to improve space and inference efficiency in
BNs. To our knowledge, no prior study considered inference on BNs that take
advantage of both simultaneously. For that purpose, we resolve issues below:

First, we observe that ICI and CSI are applicable to individual families in
BNs. Therefore, both can co-exist in an environment as well as in a BN: Some
family of variables follow ICI local models and others follow CSI local models.

Second, suitable representation is needed for each type of local models. For
ICI, we focus on NAT models for several reasons: They express both reinforcing
and undermining interactions. They can mix such interactions recursively among
cause subsets. They apply to multi-valued, ordinal, and nominal variables. They
generalize other ICI models including noisy-OR, noisy-MAX, and DeMorgan,
while having the same linear space.

For CSI, several formalisms are available. Rule bases and algebraic decision
diagrams (ADDs) have been used for inference by variable elimination [7, 2].

6 Michael Roher and Yang Xiang

When used to answer multiple queries (over multiple unobserved variables), the
compilation requires knowledge of evidence prior to inference. Loops in ADDs
tend to increase treewidth of the resultant structure. As we aim at computing
posteriors of all unobserved variables, with arbitrary evidence at inference time,
we selected CPT-trees [1] to encode CSI.

We define the representation of choice as mixed NAT-CSI Bayesian net
(MNCBN) (an example is given in Section 6):

Definition 1 A MNCBN is a BN (V,D, P) over a set V of variables with de-
pendency structure DAG D. The set P of CPTs is composed of one CPT per
variable in V , partitioned into (TC,NM,CT), where TC is a set of tabular
CPTs, NM is a set of NAT models, and CT is a set of CPT-trees.

Third, neither NAT models nor CPT-trees support common BN inference
algorithms directly. Each type of local models admits alternative processings
before inference. NAT modelled BNs admit multiplicative factorization or de-
causalization. CPT-tree-modelled BNs admit network transformation, cutset
conditioning, or variable elimination. To prepare MNCBNs for inference, we
have chosen to compile them into a homogeneous representation, by combining
de-causalization for NAT models and network transformation for CPT-trees,
as both convert local models into equivalent BN segments that tend to reduce
treewidth. This choice assumes no prior knowledge on evidence and supports
computing posteriors over all unobserved variables. In comparison, multiplica-
tive factorization for NAT models and cutset conditioning with CPT-trees do not
support a homogeneous representation. We demonstrate the choice in Section 6.

5 Formalizing CPT-tree Transformation

We apply network (CPT-tree) transformation to convert CPT-trees in MNCBNs
to BN segments. Although the idea is illustrated in [1] with a simple example
over binary variables, to the best of our knowledge, no general algorithm has
been formalized. We specify an algorithm suite, formalizing processings on multi-
valued variables, set-valued CPT-tree branches, and multiplexer CPTs.

Let dom(x) be the domain of variable x. A CPT-tree arc outgoing from node
t may be labeled by a subset of dom(t). A path from the root to a leaf, including
such arcs, defines a set of contexts, e.g., the rightmost branch in Fig. 2 (b). CPT-
trees with such set-valued arcs generalize those in [1], and allow more efficient
CSI encoding.

Algo. SetDagSeg takes a CPT-Tree T over variable x and parents π(x), and
builds a BN segment with auxiliary variables, all of which have domain dom(x).
Each node of T is at a level with the root at level 0, and each child of the root
is at level 1. Transformation is driven by topology of T from level 0 onwards.
For each node t in T , denote the path from root to t by path(t). The output is
a DAG G with a single leaf x, and G is constructed from x upwards.

7

Algorithm 1 SetDagSeg(x, π(x), T)

1 initialize empty graph G with nodes {x} ∪ π(x);
2 denote the root of T by ρ and set path(ρ) = {};
3 label x in G as xpath(ρ);
4 for level L = 0 to max level in T ,
5 for each node t in T at level L with path(t);
6 find node v in G that is labelled xpath(t) and add arc t→ v in G;
7 if each child of t in T is leaf, continue;
8 denote partition of dom(t) by arcs outgoing from t as {sd1, ..., sdm};
9 for i=1 to m,
10 add node y to G with domain dom(x) and label it x{path(t),t∈sdi};
11 add arc y → v in G;
12 return G;

Fig. 4. Transformation of the CPT-Tree in Fig. 2.

For CPT-tree T in Fig. 2, SetDagSeg begins with G in Fig. 4 (a). For level
L = 0 of T , q in T is processed with resultant G in (b). For L = 1, 1st instance
of s in T is processed as in (c), followed by 2nd instance as in (d), where arcs
outgoing from s partition dom(s) into subdomains {s0} and {s1, s2}. For L = 2,
r in T is processed to produce (e).

Node v in line 6 may not be processed by the for loop in line 9. If it is,
multiple parents are added to v, and v is called a multiplexer. In Fig. 4 (e), b{}
and bq=q1 are the only multiplexers.

Next, Algo. AssignCpt assigns a CPT to each node in G except those in π(x).
They include x{} and nodes added by SetDagSeg line 10, divided as follows.
Type 1: They are added in line 10 and never processed after by line 6. Hence,
they remain roots, e.g., bq=q1,s∈{s1,s2}. Type 2: They are processed in line 6 as
v and by the for loop in line 9. They are multiplexers such as b{} and bq=q1 .
Type 3: They are the remaining nodes that are processed in line 6 as v, passed
test in line 7, and skipped the for loop in line 9, e.g., bq=q0 and bq=q1,s=s0 .

For Type 1 node v in G, traverse its path in T from root to a leaf, and assign
its CPD to v. For bq=q1,s∈{s1,s2} in Fig. 4 (e), follow path (q = q1, s ∈ {s1, s2})
in Fig. 2 (b), and assign P (bq=q1,s∈{s1,s2}) over (b0, b1, b2) = (0.7, 0.2, 0.1).

For Type 3 node v, traverse its path in T to a node t. Since t passed test in line
7, each child of t is a leaf that specifies a CPD. Assemble them to form a CPT and
assign to v. For bq=q0 , follow path (q = q0) in Fig. 2 (b) to node s, retrieve CPDs,
and assign CPT: P (bq=q0 |s0) = (0.1, 0.6, 0.3), P (bq=q0 |s1) = ..., P (bq=q0 |s2) =
Algo. AssignCpt formalizes the above, where CPTs for Type 2 nodes are from
SetSwitchCpt presented below.

8 Michael Roher and Yang Xiang

Algorithm 2 AssignCpt(x, π(x), T,G)

1 for each node v in G,
2 if v ∈ π(x), continue;
3 if v is Type 1 with path(v),
4 traverse path(v) in T to leaf t;
5 retrieve CPD parameters at t and assign the CPD to v;
6 else if v is Type 3 with path(v),
7 traverse path(v) in T to node t;
8 for each child z of t in T , retrieve CPD parameters at z;
9 assemble the CPDs into CPT and assign to v;
10 else
11 denote the unique parent of v from π(x) by y;
12 call SetSwitchCpt(v, y, T,G) and assign the CPT returned to v;
13 return G;

Family of a Type 2 node v is created in SetDagSeg in line 6 (1st parent) and
11 (other parents). The 1st parent y is from π(x), and is identified in line 11 of
AssignCpt. Each other parent is auxiliary. CPT at v is to deterministically set
v value according to an auxiliary parent. The right parent is decided by y value
and path label of the parent. This is specified in Algo. SetSwitchCpt.

Algorithm 3 SetSwitchCpt(v, y, T,G)

1 initialize CPT P (v|y, u1, ..., uk) where {y, u1, ..., uk} is parent set of v in G;
2 for each assignment (v = v′, y = y′, u1 = u′1, ..., uk = u′k),
3 find ui in {u1, .., uk} whose path label = (path(v), y ∈ sdi) and y′ ∈ sdi;
4 if v′ = u′i, P (v′|y′, u′1, ..., u′k) = 1;
5 else P (v′|y′, u′1, ..., u′k) = 0;
6 return P (v|y, u1, ..., uk);

Consider CPT for bq=q1 with parent s ∈ π(x) (Fig. 4 (e)). To set value
P (bq=q1 = b0|s = s1, bq=q1,s=s0 = b0, bq=q1,s∈{s1,s2} = b1), variable bq=q1,s∈{s1,s2}
is selected since s = s1 satisfies its path label. Value bq=q1,s∈{s1,s2} = b1 is then
compared with bq=q1 = b0. Since they do not match, it results in value 0 for the
above probability.

6 Inference with Mixed NAT-CSI Bayesian Networks

We outline and demo a framework for exact inference with MNCBNs, that ex-
ploit both types of local models for improved efficiency.

First, the MNCBN is converted to standard BN: Each NAT model is de-
causalized into an efficiency preserving BN segment. Each CPT-tree is trans-
formed as described in Section 4. The result is a homogeneous, standard BN,
encoding the same joint probability distribution (JPD), with a treewidth lower
than that of MNCBN (if sparse). We refer to it as a de-causalized and trans-
formed BN (DTBN). The DTBN supports exact inference with any common
method.

9

Consider a MNCBN with the DAG in Fig. 5 (a). Family of g is a NAT model
(b) and family of h is modelled by CPT-tree (c). All variables are ternary. Fig. 6
shows DAG of the DTBN. The BN segment de-causalizing g family is dashed.
In the dashed region, variables outside {g} ∪ π(g) are auxiliary. If all CPTs are
tabular, the MNCBN has a total CPT size of 4506, where the largest CPT has
size 2187. The DTBN has a total CPT size of 1267, where the largest CPT has
size 243.

Fig. 5. (a) BN DAG. (b) NAT model for family of g. (c) CPT-tree over family of h.

Fig. 6. The DTBN.

7 Experiments

Our experimental study aims to (i) confirm co-existence of NAT and CSI in
real world BNs, (ii) evaluate computational gain by mixing NAT and CSI local
models, and (iii) compare effectiveness of NAT and CSI models.

The 1st experiment confirms co-existence of NAT and CSI local models. NAT
modelling has been applied to approximate 8 real world BNs from the bnlearn
repository with reasonable inference errors [12]. Here, we test the 2 binary BNs
from the 8, Andes and Win95pts, for CSI local models. We apply clustering
in Section 3 to each CPT where the variable has 2 or more parents. Similar
probabilities are grouped, subject to upper bound on inner-cluster distance and
lower bound on inter-cluster distance. We use bound δ = 0.02.

The results are shown in Table 2. The maximum number of parameters per
CPT (4th col.) is 64 (6 parents) and 128 (7 parents), respectively. The maximum

10 Michael Roher and Yang Xiang

number of clusters found per CPT (5th col.) is 3 and 6, respectively. Hence, a
significant amount of CSI exists in these CPTs. If modelled as CPT-trees, the
Euclidean error for Win95pts is 0.041 (6th col.). The error for Andes is 0: For
each cluster, all values are identical.

Table 2. Summary of results from clustering Andes and Win95pts BNs.

BN #Node #Fmly Proced Max #Para/CPT Max #Clus/CPT Eu Dist

Andes 223 50 64 3 0

Win95pts 76 24 128 6 0.041

CSIs have also been identified by others from biological datasets, other BNs
in bnlearn, and UCI datasets, e.g., [3, 9]. These studies, the result above, and
the NAT modelling study [12] suggest collectively co-existence of NAT and CSI
local models in practice.

The 2nd experiment evaluates computational gain by mixing NAT and CSI
models. We simulated MNCBNs each of 100 variables (binary or ternary), where
50% of families of 2 parents or more are NAT-modelled and the remaining
50% are CSI-modelled. The largest number of parents per node is 12, and each
MNCBN has at least 2 such families. At least one such family is NAT-modelled,
and at least one is CPT-tree modelled. Structural density of MNCBNs is con-
trolled at d = 5% or 10% more links beyond being singly connected.

When each variable is unique in a CPT-tree, its transformation has no loop.
Duplicated variables, e.g., s in Fig. 2, induce loops (see Fig. 4 (e)), and increases
treewidth of the transformed structure. We control the number of variable dupli-
cations at k = 0, 2, 4, 7, 10. For each combination of (d, k), 30 BNs are generated.
Hence, a total of 300 distinct MNCBNs are generated. Each MNCBN is converted
into 4 standard BNs (encoding the same JPD) by methods D+N, D+T, N+N,
and N+T, where D refers to De-causalizing NAT models, T refers to Transform-
ing CPT-trees, and N referes to Normalizing NAT models and CPT-trees.

Fig. 7. Summary of inference runtimes

Each resultant BN is compiled for inference by lazy propagation (LP) (See
Section 8 for rationale). Each BN has 10 inference runs, each with different
observations over 10 randomly selected variables. Inference runs by BNs from the
same MNCBN yielded the same posterior marginals (exact). Runtimes (2.9GHz
desktop) are shown in Fig. 7.

11

In all (d, k) combinations, N+N is the slowest. Both D+N and N+T are
advantageous, even though they only exploit one type of local models. D+T is
on average two orders of magnitude faster than alternatives, demonstrating clear
computational advantage of exploiting both NAT and CSI in MNCBNs.

Relative performance of D+N and N+T is indiscernible in Fig. 7, partly due
to existence of normalized CPTs. To evaluate relative gain from alternative local
models, the 3rd experiment generated BNs in two steps: In the 1st step, only
DAGs are generated with 200 variables each (binary or ternary). The largest
number of parents per node is 12, and each DAG has at least 4 such families.
We use d = 5%, 10% and k = 0, 2, 4, 7, 10, a total of 10 combinations. For each
combination, we simulated 30 DAGs, resulting in 300 distinct DAGs. In the 2nd
step, a pair of BNs are created from each DAG: NM-BN where each family of 2
parents or more is NAT-modelled, and CM-BN where such families are modelled
as CPT-trees. Hence, the pair share the DAG, and differ in JPDs.

Fig. 8. Summary of inference runtimes by NM-BNs and CM-BNs.

We de-causalize NM-BNs and transform CM-BNs for lazy propagation. Ten
inference runs are performed on each BN with random observations over 20
variables. The runtimes are shown in Fig. 8.

Runtimes of NM-BNs are the least, even relative to the most efficient CM-
BNs (k = 0). Let m be domain size of child variable of CPT-tree family. Assum-
ing single-valued CPT-tree arcs, each multiplexer has m + 1 parents. If CPT-
tree has k > 0, transformation has loops. On the other hand, every node in
de-causalized BN segment has at most 2 parents, and the segment is always
loop-free. Hence, NAT modelled BNs are generally more efficient than CPT-tree
modelled BNs, as confirmed by the experiment.

8 Conclusion and Remarks

The main contribution is a framework to mix ICI and CSI local models in BNs
for more efficient inference. They are shown to be orthogonal, and hence neither
subsumes the other. We have shown that NAT models and CPT-trees are suitable
ways for mixing, and combining de-causalization and transformation enables a
homogenous representation for exact inference. We report significant speedup in
inference relative to exploitation of only one type of local models.

Two questions were received from peer review, to which we respond below.
Due to space, we omit relevant references. (1) On why not adopt sum-product

12 Michael Roher and Yang Xiang

networks (SPNs): Although exact inference in BNs is NP-hard and that in SPNs
is linear, when a general BN is compiled into a SPN, it incurs an exponential
blow-up. Hence, SPNs are one way to explore special conditions in BNs, e.g.,
CSI, but not the only way, as this work shows. (2) On why not adopt simple
propagation (SP): Published work on SP reported that SP is not always faster
than LP. Other BN inference methods also exist. This work shows significant
gains in inference efficiency by mixing ICI and CSI, and our performance com-
parison only necessitates identical inference method on BNs with and without
mixing. There is no need for the fastest method, nor do we claim that LP is so.

Acknowledgement

Financial support from NSERC Discovery Grant to 2nd author is acknowledged.

References

1. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific inde-
pendence in Bayesian networks. In: Proc. 12th Conf. on Uncertainty in Artificial
Intelligence. pp. 115–123 (1996)

2. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimina-
tion. In: Proc. 20th IJCAI. pp. 2443–2449 (2007)

3. Friedman, N., Yakhini, Z.: On the sample complexity of learning Bayesian net-
works. In: Proc. 12th Conf. on UAI. pp. 274–282. Morgan Kaufmann (1996)

4. Henrion, M.: Some practical issues in constructing belief networks. In: Kanal, L.,
Levitt, T., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence 3, pp. 161–173.
Elsevier Science Publishers (1989)

5. Maaskant, P., Druzdzel, M.: An independence of causal interactions model for op-
posing influences. In: Jaeger, M., Nielsen, T. (eds.) Proc. 4th European Workshop
on Probabilistic Graphical Models. pp. 185–192. Hirtshals, Denmark (2008)

6. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1988)

7. Poole, D.: Probabilistic partial evaluation: exploiting rule structure in probabilistic
inference. In: Proc. 15th IJCAI. pp. 1284–1291 (1997)

8. Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Ap-
proach. Oxford University Press (1998)

9. Talvitie, T., Eggeling, R., Koivisto, M.: Learning Bayesian networks with local
structure, mixed variables, and exact algorithms. International Journal of Approx-
imate Reasoning 115, 69–95 (2019)

10. Woudenberg, S., van der Gaag, L., Rademaker, C.: An intercausal cancellation
model for Bayesian-network engineering. Inter. J. Approximate Reasoning 63, 32–
47 (2015)

11. Xiang, Y.: Non-impeding noisy-AND tree causal models over multi-valued vari-
ables. International J. Approximate Reasoning 53(7), 988–1002 (Oct 2012)

12. Xiang, Y., Baird, B.: Compressing Bayesian networks: Swarm-based descent, ef-
ficiency, and posterior accuracy. In: Bagheri, E., Cheung, J. (eds.) Canadian AI
2018, LNAI 10832, pp. 3–16. Springer (2018)

13. Xiang, Y., Loker, D.: De-causalizing NAT-modeled Bayesian networks for inference
efficiency. In: Bagheri, E., Cheung, J. (eds.) Canadian AI 2018, LNAI 10832, pp.
17–30. Springer (2018)

