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Abstract

Graphical models have been widely applied to uncertain reasoning in knowledge
based systems. For many problems tackled, a single graphical model is constructed
before individual cases are presented and the model is used to reason about each new
case. In this work, we consider a class of problems whose solution requires inference
over a very large number of models which are impractical to construct a priori. We
conduct a case study in the domain of vehicle monitoring and then generalize the
approach taken. We show that the previously held negative belief on the applicability of
graphical models to such problems is unjustified. We propose a set of techniques based
on domain decomposition, model separation, model approximation, model compilation,
and re-analysis to meet the computational challenges imposed by the combinatorial
explosion. Experimental results on vehicle monitoring demonstrated good performance
at near-real-time.
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1 Introduction

Graphical models [43, 41, 30, 9, 10], most notably Bayesian networks (BNs), have been widely
applied to uncertain reasoning in knowledge based systems such as for medical diagnosis
[26, 48], equipment troubleshooting [27, 47], financial forecasting [1], software debugging [7],
etc. For many problems tackled, a graphical domain model is constructed before individual
cases are presented. The model is used for reasoning about each new case. For instance,
a BN for diagnosis in a medical domain is often constructed and the same model is used
for diagnosis of each patient case. Alternatively, to adapt to the variation in variables and
their dependence relations that are needed in modeling each case, a graphical model can
be dynamically constructed after a new case is presented [6, 22, 28, 24, 44, 35, 40, 20]. In
this work, we consider a class of problems which requires probabilistic inference using a very
large number of dynamically constructed models. To make the study concrete, we conduct
a case study in the problem domain of vehicle monitoring and then generalize the approach
taken.

Vehicle monitoring (also known as tracking) takes as input the measurements from a
surveillance region which is populated by a number of moving objects (referred to as vehicles)
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and estimates the number of vehicles as well as their types and movements. Measurements
entering into a vehicle monitoring system are the output of a signal processing system which
directly processes the sensor output. Uncertainty involved in the task includes the unknown
number and types of vehicles, the unknown association of measurements and vehicles, the
inaccuracy of measurements, potentially missing measurements, environmental noise, and
“ghost” measurements.

For vehicle monitoring, due to the unknown number of vehicles and the intractable num-
ber of track patterns by multiple vehicles, construction of a graphical model a priori is
impractical. Even after a set of measurements in a given scenario has been presented, it is
impractical to construct one graphical model to accomplish the reasoning task. This diffi-
culty has led to the issue whether the graphical models are applicable to vehicle monitoring
types of problems [8]. Some researchers have applied graphical models to guide automated
highway vehicles [18] and to identify individual vehicles appearing on highway surveillance
cameras [29]. Their problems, however, are different from vehicle monitoring, which focuses
on identifying vehicle tracks in open regions.

In this research, we investigate whether graphical models can be applied to such prob-
lems where neither direct a priori modeling of the problem domain nor a posteriori modeling
using a single model is practical due to combinatorial explosion. We explore several general
ideas: decomposition of the problem into quasi-independent subproblems, approximation in
modeling to reduce complexity, model compilation to speed up runtime computation, and
focused re-analysis for error reduction. We show that by exploring these ideas, graphical
models can be applied successfully to the reasoning tasks in such problems. We have imple-
mented a prototype system and tested on simulated vehicle scenarios (Figure 1) with good
performance.

2 Bayesian Formulation of Vehicle Monitoring

We consider the measurements obtained from a surveillance region at k£ discrete instants
t =1,...,k. We assume k£ > 3 so that accelerations of maneuvering vehicles can be ex-
tracted. Denote the set of measurements at ¢ = ¢ by D; = {d;;[j = 1,2,...}. The total set
of measurements is then D = UleDi, which we refer to as a scene. Each measurement is
either produced by a vehicle of a particular type or is due to noise. Noisy measurements
may be unrelated to any vehicles, or may correspond to vehicle movements as in the case of
a “ghost”.

A full trajectory is a set of k measurements r = {d1,, ..., di;, }, where each measurement
di; is from a distinct instant. On the other hand, a partial trajectory is a set of k' < k
measurements where each measurement is from a distinct instant. If all measurements in a
trajectory r are produced by movements of a vehicle w, and no other measurements in D
are also produced by w, then r is the track of w. We assume! that there are no vehicles
entering and leaving the region between ¢ = 1 and ¢ = k. Hence, when there are no missing
measurements, each vehicle track corresponds to a unique full trajectory from D. Otherwise,
each track corresponds to a unique full or partial trajectory from D. A ghost track is similarly
defined. Two vehicles may be very closely located at time ¢ so that they are perceived by
the sensors as a single measurement. Without losing generality, we treat the measurement
as being generated by one of them, and treat the measurement at ¢ from the other vehicle

1Section 9 discusses how to handle the cases where the assumption does not hold.



Figure 1: Top: A simulated scene with 20 vehicles over 6 time instants. Bottom: The
interpretation obtained, where each identified track is shown by a different color.



as missing. Using the above convention, no two tracks will share any measurements. That
is, for every pair of tracks r and s from D, we have r N s = ().

An interpretation T of D is a partition {ry,ry, ..., 7, N} of D into full or partial trajec-
tories 11,79, ..., 7y, and a set N of measurements. Each trajectory r; corresponds to a believed
track. Measurements in NV correspond to believed noise unrelated to any tracks.

The task is then to find 7" such that P(7|D) is maximal among all interpretations,
where P(T'|D) reads “the probability that 7" is the correct interpretation of D”. This task
corresponds to the track formation in the tracking literature as opposed to track maintenance
where each new measurement is to be associated with an already established track. Note
that we have overloaded T to represent both an interpretation and the proposition “the
interpretation is correct”. Which meaning the symbol assumes should be clear from the
context.

In the literature some researchers (e.g., [37, 45]) assume multiple measurements for a
vehicle at each time instant while others (e.g., [3]) assume a single measurement. In this
work, we assume a single measurement for a vehicle at each time instant. Such restriction
does not compromise the generality as multiple measurements can usually be grouped by
their closeness and summerized as a single measurement.

Figure 1 (top) shows a simulated scene of 20 vehicles with £ = 6. The total number of
measurements is 123. Some vehicles have missing measurements, e.g., the track at the bottom
of the scene as indicated by an arrow. Environmental noise is present in the scene. An easily
identifiable one is at approximately the center of the scene, as indicated by an arrow. A
less obvious one is at the right-hand side of the scene., also shown with an arrow. Figure 1
(bottom) shows the interpretation with the highest P(T'|D) (See Section 11), where each
identified track is drawn with a different color and noise has been identified and removed.

3 Direct Method

A direct method would be to compute P(T'|D) for each T' and return the one with the
maximal value. To compute P(T'|D) for a given interpretation 7', we analyze the problem
in a fashion of hypothesis-causes-features and use Bayesian networks as the causal model:
If T is the correct interpretation, then each trajectory in 7" must behave like a track. A
binary hypothesis variable T € {true, false} is created with the semantics “T" is the correct
interpretation of D”. For each trajectory r in T, a binary child variable r € {true, false}
of T is created with the semantics “r represents a correct track”. Note that the two new
variables T and r just introduced are in bold face, to be distinguishable from 7" and 7.

Furthermore, the set N of measurements (see Section 2) must behave like noise. That
is, N should occupy an expected portion of the total measurements. For instance, if it is
expected that 10% of measurements are due to noise and an interpretation has N containing
30% of measurements, then it is highly likely that the interpretation is incorrect. This effect
can be represented as a variable N size (cardinality of N) conditioned on some relevant
variables. One obvious parent is T. Other parents include D size (cardinality of D) or
additional parameters that affect the noise model. The structure of a BN thus constructed is
shown in Figure 2. Note that the structure is interpretation specific. The number of children
of T varies for each interpretation.

The noise model works well in differentiating interpretations. Consider interpretations 7]
and 75, which are otherwise identical except that a trajectory r; in 7} is entirely contained
in the noise set Ny of T;. Suppose r; behaves well like a track and N; occupys a proportion
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Figure 2: Interpretation model as a Bayesian network.

of D that is fairly consistent with the expected frequency of noisy measurements. Using the
above representation, Ty will have one less positive support (r;) for being a correct interpre-
tation and one additional negative support (N, out of portion). Consequently, probabilistic
inference using the two corresponding BNs will result in P(77|D) > P(T3|D). We use the
BN in Figure 2 to compute P(7’|D) and refer to the BN as the interpretation model.

To specify the model, we need to specify the prior distribution P (7). If there is no
prior knowledge that allows one to prefer some interpretations over others, then an identical
distribution P(T') should be used for all interpretations. On the other hand, if one has some
prior knowledge that favors certain interpretations, different P(7") may be used for different
interpretations to reflect this knowledge. In either case, the exact numerical parameters
assigned are not as critical since we aim at the interpretation that maximizes P(T'|D).

The distribution P(r|T) can be specifies as follows: The probability

P(r = correct track|T = correct interpretation)

has the value close to 1. This means that a trajectory in a correct interpretation most likely
behaves like a track. However, occasionally, there may be a track that moves in an unusual
way. The probability

P(r = correct track|T = incorrect interpretation)

has the value close to 0. This means that most trajectories in an incorrect interpretation are
not tracks. It is possible, however, that some trajectories can be exceptions.

4 Modeling Trajectory

In the BN of Figure 2, variables r; are not directly observable. Hence, each of these variables
must be elaborated with a trajectory model. Each measurement signifies the location of a
potential vehicle at a given time. It may also contain the energy level of the measurement, the
frequency range (in the case of passive sensing of acoustic signals), and other relevant feature
information. We refer to the corresponding components of trajectory model as movement
model, frequency model, and so on.

First, we consider the location information in the measurements (the movement model).
To simplify discussion, we focus on 2-D movements. Denote the location of a vehicle at a
given time by (z,y). Denote the magnitude and angle of the velocity vector by v and w,
and the magnitude and angle of the acceleration vector by a and 7. Movements of a vehicle



can be represented as a dynamic Bayesian network in Figure 3 (left). Similar representation
was used by Forbes et al. [18]. The upper layers of each slice model the acceleration (a,n),
velocity (v,w) and location (x,y) of the vehicle at a particular time instant. Arcs from
one slice to the next model how the state of the vehicle depends on the previous state.
The location of the vehicle is not directly observable and can only be inferred through the
measurements. This is modeled by the measurements (z’,y’) which are dependent on the
true location (z,y) as well as the measurement error e.
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Figure 3: Left: A vehicle model as a dynamic BN, where a,7n are magnitude and angle of
acceleration, v, w are magnitude and angle of velocity, z,y are location of vehicle, 2',y" are
location measurements, and e is the measurement error. Right: A trajectory movement
model.

A trajectory may or may not correspond to a true vehicle track. We extend the vehicle
movement model into a trajectory movement model by adding the root variable r, which
models whether a given trajectory behaves as a vehicle track. Note that r corresponds to a r;
variable in the interpretation model (Figure 2). It represents the proposition “the trajectory
is a track”. We make r the parent of each variable a and variable v. The conditional
probability distribution P(a|r = true) models the acceleration of a vehicle. The distribution
P(a|r = false) models an arbitrary collection of measurements which does not correspond
to a track and hence has an arbitrary value for a. Due to the the following assumptions, we
do not model the angles w and 7 as the children of r:

We assume that each vehicle of a particular type can only move in a given range of v
values. It can however move at any directions. Within the v range, at any time it may freely
choose acceleration value @ in another range with no restriction on the angle n. Strictly
speaking, the freedom on 7 is an approximation as vehicles may have different acceleration
ranges for tangential directions and lateral directions. However, the approximation helps to
simplify our model and it seems to be quite reasonable: A running car cannot make a very
sharp turn, but neither can it speed up or slow down abruptly. We allow total freedom in 7
values in our simulated vehicles (see Figure 1) and they do not seem unrealistic. Under these
assumptions, the values of w and 7 are not causally dependent on r in the model. Since r



represents a hypothesis of our primary concern, this independence assumption implies that w
and 7 do not provide direct evidential support to confirm or reject the hypothesis. This leads
to a further approximation in the run-time representation to allow more efficient run-time
computation as will be seen in Section 8.

In addition to the movement, other information contained in the measurements can also
help evaluate if a trajectory behaves like a track. For example, measurements corresponding
to a true track may have similar energy levels and closely related signal frequencies (in the
case of passive sensing). For each feature at each time instant, a child variable of r can be
created in the trajectory model in Figure 3 (right).

In principle, given an interpretation of m trajectories, we can complete the interpretation
model in Figure 2 by extending each node r; with a trajectory model. Then belief propagation
can be used to compute P(T'|D).

5 Decomposition of Scene into Islands

The direct method discussed in Sections 3 and 4 requires explicit evaluation of all interpre-
tations. Unfortunately, it is intractable even for a scene produced by a few vehicles.

Consider a scene with k£ = 6, where 4 measurements per time instant are obtained. This
corresponds to a scene from 4 vehicles when there are no noise and missing measurements.
The total number of full trajectories is 45 = 4096. The total number of partial trajectories
with one missing measurement is 4° * 6 = 6144. Hence, the total number of trajectories
with one possible missing measurement is 10240. From these trajectories, a total of 20240
combinations can be constructed. Many of these combinations are not valid interpretations.
This happens when two or more trajectories in the same combination share measurements
(see Section 2). Hence, a validity test must be performed explicitly for each combination to
remove the invalid from further computation.

Our first basic idea for making the computation tractable is to decompose the problem
into independent or semi-independent subproblems which are easier to solve. In particular,
we decompose a scene into smaller independent or semi-independent groups of measurements.
Only interpretations within each group are explicitly evaluated, while interpretations across
multiple groups are ignored as much as possible.

We apply two levels of decomposition. The first level decomposes a scene into independent
groups which we refer to as islands (defined below). The second level is presented in Section 6.
Given two (location) measurements d and e, |d — e| denotes the distance between them. Let
MAXD denote the maximum distance any vehicle may travel in one time interval plus twice
the maximum location error.

Definition 1 An island in a scene is a subset L of measurements such that (1) for each pair
I1,l, € L there exists a sequence of measurements lo, l3, ..., l,_1 such that |l; — ;41| < MAXD
(1 <i<mn), and (2) for eachl € L and eachd € D\ L, |l —d| > MAXD.

Algorithm 1 decomposes a given set M of measurements into two sets L and R such that
L is an island.



Algorithm 1 (GetIsland)
Input: A set M of measurements.

R=M;
pick an element m from R;
L={m}, R=R\{m};
do
for each measurement m' in R,
if there exists m € L such that |m —m'| < MAXD,
L=LuU{m'}, R=R\{m'};
while L is modified in the last iteration;
return L and R;

Algorithm 2 decomposes a scene D into a set of islands.

Algorithm 2 (GetAllIsland)
Input: A scene D of measurements.

M = D, Islands = {};

while M # {}, do
run Getlsland(M) to obtain L and R;
Islands = Islands U {L};
M = R;

return Islands;

The decomposition computation is only quadratic on |D| (the cardinality of D), but the
computational savings by using islands can be tremendous. Consider the previous scene of
24 measurements. If the scene can be decomposed into two islands with 2 measurements per
time instant per island as shown in Figure 4, then for each island the total number of full
trajectories and partial trajectories with one missing measurement is 64 + 192 = 256 (512
for the scene), a significant reduction from the previous 10240.

Essentially, the decomposition of a scene into islands is based on the assumption that
measurements contained in an island are sufficient for the interpretation of the corresponding
trajectories and not necessary for the interpretation of measurements outside the island. In
other words, the interpretation of measurements that are inside the island can be performed
independently of the interpretation of measurements outside the island. The computation
of islands mimics clustering, commonly used in data analysis, but is used here for a very
different purpose. Ideas similar to ours have also been explored in [16] for goal planning.

What will be the error introduced by island decomposition? If there are no missing
measurements in the scene, then every trajectory corresponding to a true track is contained
in a unique island. Hence, island decomposition introduces no error at all. In fact, use of
islands introduces no error even when limited missing measurements are present as formalized
in the following proposition.

Proposition 2 In a scene with at most missing measurements at t = 1 or t = k, an
ezhaustive evaluation based on islands yields the identical result as one without using islands.



Figure 4: A scene of 4 tracks decomposed into two islands (divided by the straight line).

Proof:

Since no measurements are missing at t € {2,...,k — 1}, each true track is contained in
one island and will be evaluated.

On the other hand, a direct method evaluates explicitly each interpretation 7" which
contains trajectories crossing multiple islands. For each such trajectory r, P(r is a track|D)
is very small because r implies impossible velocity and acceleration values. This in turn
produces very small P(T|D) and hence T will not be accepted as the final interpretation.

O

When measurements are missing at t € {2,...,k — 1}, a track with one measurement
missing may be split into two islands and may not be evaluated at all. Let ¢ denote the
probability that a measurement may be missing. Assume that measurements miss inde-
pendently. The probability that an isolated track is split in the middle due to one missing
measurement is (k — 2) ¢ (1 — ¢)*~!. For k = 6 and ¢ = 0.02, this probability is 0.0723.

The above estimation corresponds to the worst case. The threshold M AX D is determined
by the fastest vehicles under consideration. For a slower vehicle, the distance traveled in two
time intervals may still be less than M AX D and hence the missing measurement does not
cause the track to be separated into two islands. Furthermore, if the track with a missing
measurement is no in isolation, the two sections of the broken track may still be included in
an island if other tracks are close enough to both. In Section 9, we discuss how to further
reduce the error under island decomposition due to missing measurements.

Assuming that each island can be independently interpreted, we obtain

P(T|D) = P(Ty,Ts,...,Tm|L1, Lo, ..., L)
= P(Ty|Ty,...,Tm, L1, ..., L) P(To|Ts, ..., Ty Lty - o, L) « .. P(Trp| L1, - . ., Ln)
P(T1|L1)-"P(Tm|Lm) (1)

where each L; is an island and 7; is the interpretation of L;. Hence, we only need to find
interpretation 7; for each island such that P(7;|L;) is maximal. We will then have T' = U;T;.
Algorithm 3 outlines the top level control of our scene interpretation system.



Algorithm 3 (InterpretScene)
Input: A scene D.

run GetAlllsland(D) to decompose D into islands,

for each island L; containing at least one trajectory,
process L; to get the island interpretation T;;
add T; to the scene interpretation T;

return T}

6 Decomposition of Islands into Peninsulas

Although islands are easier to deal with than the original scene, due to possible track crossing,
near-parallel tracks, or other types of adjacency, a large island may still include measurements
from several tracks. When this is the case, the combination explosion illustrated earlier
occurs at the island level. We apply a second level of decomposition within each large island
to make its evaluation more manageable.

Definition 3 A peninsula is a subset S of measurements in an island L such that the
following conditions hold:

1. For timet =1, S has exactly one measurement d,, called initiator.

2. Foreacht > 2, S contains every d, € L such that there exists dy_1 € S and |dy—dy_1| <
MAXD.

Algorithm 4 shows how to compute a peninsula given an initiator in an island. Note that
d; refers to a measurement obtained at time ¢.

Algorithm 4 (GetPeninsula)
Input: An island L of measurements and an initiator d;.

initialize peninsula S = {d1};
L=L\{d};
fort=1,2,...,
for each measurement d; in L,
if there exists dyy1 € L such that |dyy — dy) < MAXD,
S=5U{de1}, L=L\{d1};

return S;

Intuitively, if the initiator of a peninsula belongs to a track, then the entire track is
contained in the peninsula. As an example, consider an island made of two tracks that are
nowhere close except at time ¢t = k (k = 6). As discussed in Section 5, 22°¢ interpretations
should be evaluated. The island produces two peninsulas and each contains only £ measure-
ments. Hence, the total number of full trajectories and partial trajectories with one missing
measurement in each peninsula is 1 4+ 6 = 7, and the total number of interpretations to be
evaluated for the island becomes 2(27) = 256. Although this represents the best scenario,
in general, whenever the starting segment (¢ is close to 1) of a track is “clear” (no nearby
measurements from other tracks at the same time frames), decomposition into peninsulas
reduces the number of interpretations to be evaluated.
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The definition of peninsula can be extended to allow the measurement at time ¢t = &
to be the initiator. The corresponding peninsula is then a backward peninsula (versus the
forward peninsula as defined above).

What error might be introduced by using peninsula? When there are no missing mea-
surements, each track is contained in at least one peninsula and will be evaluated. Hence,
evaluation using peninsula introduces no error at all. However, error may occur when miss-
ing measurements are present. Consider the island shown in Figure 5 (a). It contains
measurements from two tracks, one of which is drawn in squares and the other in ovals. The
timestamp of each measurement is also shown. The upper track has the measurement at
t = 2 missing. The two forward peninsulas found are shown in (a) as rounded areas. The two
backward peninsulas are shown in (b). None of the peninsulas contains all measurements of
the upper track. Hence, this track will not be evaluated.

(a) (b)

Figure 5: (a) Forward peninsulas in an island. (b) Backward peninsulas in the island.

The following proposition identifies an error-free condition when using peninsulas.

Proposition 4 If an island only has missing measurements att =1 ort = k, each track is
either contained in a forward peninsula or a backward one.

Proof:

Let r be a track with measurements {di,...,dx} \ {d;} (1 = 1 ori = k). If i = 1,
all measurements are contained in the backward peninsula with initiator d;. If i = k, all
measurements are contained in the forward peninsula with initiator d;. O

Proposition 4 suggests the generation of both forward and backward peninsulas for all
measurements at ¢ = 1 and ¢ = k. Although this method cannot avoid errors due to a missing
measurement at ¢ (1 < ¢ < k), such errors do not always occur because the corresponding
track may still be included in a peninsula due to the presence of measurements from other
tracks in the same island.

Decomposition using islands and peninsulas can be equivalently formulated using an ad-
jacency graph where there is a link from a point to another if the distance in between is less
than M AXD. Whether to maintain and search such a graph explicitly or implicitly is an
implementation choice.

We emphasize that decompositions of a scene to islands and peninsulas are guided by
the general direction to explore subproblem independence to the largest degree possible.
Such independence, once identified, can significantly reduce the computational complexity
of interpretation by avoiding combinatory explosion due to trajectory combinations.
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7 Model Separation

After using peninsulas to generate trajectories from an island, we can evaluate each inter-
pretation 7' (we overload the notation 7 here for the island) with one interpretation model
(Sections 3 and 4). Because a trajectory participates in multiple interpretations, this method
will evaluate the trajectory multiple times.

To avoid such unnecessary re-evaluation, we evaluate 7" using a set of BNs: a top level
BN as in Section 3 and one trajectory BN for each trajectory as in Section 4. The evaluation
of each trajectory BN is performed separately. After evaluation of each trajectory in 7T is
completed, the results are used in the evaluation of the top level BN to produce P(T'|D).
The evaluation result of a trajectory r is reused for evaluating each interpretation in which
r participates.

Evaluation computation can be performed in several ways. We briefly describe the
method using an alternative graphical model, called a cluster tree [30]. The method groups
variables in a BN into overlapping subsets called clusters. The clusters are organized into a
tree. Probabilistic inference is performed by message passing (belief propagation) along the
tree. A message is simply a probability distribution over the intersection a pair of clusters
adjacent on the tree. With one round of inward propagation towards an arbitrary cluster
followed by another round of outward propagation away from the cluster, the updated prob-
ability for each variable can then be obtained in any cluster containing it. More details can
be found in the above reference.

Since each trajectory BN shares a single variable r; with the top level BN, if we compile
each BN into a cluster tree and join each trajectory tree with the top level tree at the cluster
containing rj, the resultant cluster tree is identical to what would be created without using
model separation (Figure 6). Since we are only interested in the posterior distribution on

T,Nsize,Dsize, ..2
4 .

top leve
cluster
tree

<:::;::> ..

cluster tree cluster tree

for trajecfory r for trajecgory

Figure 6: Belief propagation in cluster trees. Each oval represents a cluster. The tree on the
top is converted from Figure 2.

variable T which is contained in the top level tree, belief propagation consists of only nward
propagation toward a cluster containing T (as shown by arrows in Figure 6).

The model separation has a number of additional advantages. Most trajectories in a
scene do not correspond to actual tracks and hence their probabilities will be very low.
Separation of trajectory evaluation and interpretation evaluation allows those trajectories to
be eliminated early so that the interpretations they participate in are effectively discarded
without explicit evaluation.
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Model separation also allows variables shared by different models to be represented at
different degrees of coarseness as appropriate. Each variable r is shared by the interpre-
tation model and a trajectory model. In the trajectory model, the domain of r can be
{not_track, type_0_track,type_1_track,...}. Such refinement facilitates assessment of condi-
tional probability distributions in model building. Evaluation of the model can also provide
useful differentiation of vehicle types.

On the other hand, in the interpretation model, it is sufficient that r carries the belief
whether the corresponding trajectory is a track. The type of the vehicle is not relevant.
Hence, r can be a binary variable in the interpretation model. To allow the two representation
coexist, before the trajectory model passes belief to the interpretation model during inference,
it modifies its distribution accordingly with a simple summation:

P(r =is_rack|D) = > P(r = type_i_track|D).

Based on island decomposition and model separation, the island level control of the scene
interpretation system is outlined in Algorithm 5.

Algorithm 5 (InterpretIsland)
Input: An island L.

if L is not too large,

evaluate each trajectory;

get interpretation T of L from trajectories receiving high evaluations;
else

decompose L into peninsulas;

for each peninsula S,

evaluate each trajectory;

get interpretation T of L from trajectories receiving high evaluations;

return T';

The last step in the if segment and the last step in the else segment are detailed in
Algorithm 6. In the algorithm, the validity test rejects an interpretation candidate (a com-
bination of trajectories) if two or more trajectories in the combination share measurements
(see Section 5).

Algorithm 6 (EvaluateInterpretation)
Input: A set R of trajectories.

T = null;
for each interpretation candidate T' from R,
perform validity test on T';
if T" passes the test,
construct interpretation BN model;
compute P(T'|D) using the BN;
if P(T" = correct|D) is the highest so far, T =T";
return T';
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8 Movement Model Reduction

Each feasible trajectory in each peninsula can be evaluated using the trajectory model (Sec-
tion 4). P(r|D) can be computed using any one of several common inference algorithms (see
[11] for a survey). We consider the complexity using the cluster tree method [30]. For k& = 6,
a good cluster tree has about 31 clusters. About one third of them each has a size of 7
variables. If variables acceleration (a), velocity (v), location (z,y) and measurement (z',y’)
each has a domain size of at least 10, then the belief state space of many clusters will be
huge (about 107). Even if the inference computation is affordable, when it must be repeated
for hundreds or thousands trajectories, it is very expensive and near real-time monitoring
becomes impossible. Although a query DAG [12] can be used to speed up the inference, its
complexity is comparable to the original algorithm used to generate the query DAG. Hence,
a query DAG does not provide the magnitude of computational savings needed.

Instead, we explore the following alternative: Since we are primarily interested in P(r),
we try to reduce the model such that only r and observables are left. However, using z’
and y' as observables will end up with a model where every variable is strongly dependent
on every other. The cluster tree of the model will have a cluster of huge state space. The
alternative is to use observed velocity/acceleration. Each observed velocity is computed
using two adjacent location measurements and each acceleration is computed using three as
follows (assuming unit time interval):

o) = /(@) — 24)? + (g — )2

0 = /(@ — 20 +21)2 + (44 — 25 + v1)?
After replacing location and measurement variables (z,y, ',4'), we have the reduced model
in Figure 7 (a).

(b) (c)

Figure 7: (a) Replacing location measurements in movement model. (b) Approximate move-
ment model. (c) Cluster chain for movement model evaluation.

Each observed velocity is dependent on two measurement errors and each observed ac-

celeration is dependent on three measurement errors. Due to this dependence, a; and a3 are
not independent given r,ws, vy and ay (using d-separation to (a)). However, if the value of
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velocity and acceleration (|v| and |a|) are larger enough than the value of measurement error
(le]), this dependence is not strong. By ignoring this dependence, we obtain the Markov
property: a; and ag are independent given r,wsy, vy and ay, and v; and vz are independent,
given r,ws, vy and ap. By approximating the true value of velocity/acceleration with the
observed value (effectively clumping v with v' and a with @) and removing other unobserv-
ables, we obtain the model structure in Figure 7 (b). In order to assign numerical parameters
for the graphical model in (b) such that inaccuracy due to structural approximation can be
minimized, we use the full model in (a) to compute off line

P(a;|r) and P(vir).

Note that if we had not made the independence approximation between w, n and r in
Section 4, we would not be able to obtain the model in (b), because w and 7 would have
to be represented as the child variables of r, which would make the resultant model more
expensive to use.

From (b), we obtain the cluster chain (c) (through the normal graphical operations as
detailed in [30]), which can be evaluated efficiently as derived below: Conceptually, we
follow the cluster tree method [30]. After initialization, the cluster C} is associated with the
belief table (a probability distribution) P (v}, a}, v}, r). Other clusters have its belief table
similarly assigned. After observations v = v;, a; = a; (i,j = 1,2, ..., k) are obtained, they
are entered into the corresponding cluster belief tables. For example, the table with C
becomes P(r, v}, a}, vh|v1, a1, v5). For each observation, instead of entering it to one cluster
as normally performed [30], we enter into every cluster table that contains the corresponding
variable. For example, 1, will be entered into tables in both C; and C5. The benefit of
multiple entering is explained below.

To compute P(r|vy, ..., vk 1,1, ..., g _2), we propagate belief from cluster C; downwards.
The message from C to Cs is

ZU’pa’l P(I‘, ’Ui, CLS_, ’Ué|l/1, aq, ]/2)
P(r, vy)

This is a distribution over r and v}. At Cs, the local belief table is updated into the following
product with the message

Ev’l,a’l P(I’, Uia all7 Ué|V17 ay, VQ)
P(r,v))

P(r, vy, ay, v3|v2, oz, 3).

Since v has been entered into C, it is sufficient for the message from C; to C5 to be

zv’l,a’l,v; P(I‘, ’Uia alla /Ué‘yla ay, VZ)

Yy P(r, vh|ve) ’

which is a distribution over r only. That is, we have

Ev’l,a’l P(I‘, Uia U,Il,’l)é‘l/l, aq, V2)
P(r,v)

P(r, vy, ay, vs|ve, g, v3)

Xy, Pr, vy, al, vhlvr, aq, 1)

Zv.’z P(I‘, Ué|l/2)

P(r, vy, ay, vs|va, az, v3).
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Note that if we had not entered v into C5, the above equality would not hold. Note also that
to allow reasonably refined movement representation, v4, normally has a large domain size
(we used 12 in our experiments). Therefore, by replacing the message from a distribution
over r and v}, to a distribution over r only, the size of the message from C; to Cy is reduced
significantly. The amount of computation associated with the message passing is also reduced
significantly as a result.

Finally, we observe that

> P(r,vi,al, vhlvr, on,v0) = ¢ P(r|v, a1, 1)

J 7 !
Ul ,al ,U2

and
3" P(r,vhlvy) = d P(r|w),

where ¢ and d are normalizing constants. Hence, we have the following efficient algorithm
for computing P(r|vy, ..., Vg1, Q1 ooy Qp_2)

Algorithm 7 (EvaluateFullTrajectory)
Input: vy, ..., V_1, 04, ..., g2 of a full trajectory.

B(r) = P(r|vy, a1, 1),
fori=2to k-2,
B(r) = B(r) P(r|v;, a3, vit1) / P(r|v;);
normalize B(r) to get P(r|vy, ..., Vg 1,00, ..y O _2);
return P(r|vy, ..., Vg 1, 01, ooy O 2);

Using this algorithm, it is no longer necessary for the on-line inference computation to
actually maintain the cluster chain. This contributes significantly to real time or near-real-
time evaluation because a large number of evaluations must be performed. To obtain the
parameters required by Algorithm 7, we off-line compute P(r|vj, a}, v;,,) and P(r|vj ) using
the accurate model in Figure 7 (a). For our experiment (reported in Section 11), the off-line
computation took about 12 hours using a SUN Ultra60. The large amount of computation
is due to the large space in some distributions (for instance, P(v;y1|v;, w;, a;, 75, T) involves
several variables each of which has a domain size of about 10).

Note that Algorithm 7 can be easily extended to include processing of other observations
(e.g., frequency). It can also be easily modified to evaluate partial trajectories. The extension

and modification are straightforward and we omit the details.

9 Re-Analysis

In Algorithm 5, the operation “evaluate each trajectory” was performed for each small island
and each peninsula in a large island. The operation can be performed to evaluate every full
and partial trajectory. Normally, there are more partial trajectories than full ones (see
examples in Section 5). When there are no missing measurements, processing of partial
trajectories is completely wasted. Even when they are infrequent, most of the processing
on partial trajectories is still wasted. To achieve near real-time scene interpretation, it is
desirable to reduce such processing as much as possible.
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To this end, we explore re-analysis in the following way: For each small island and
each peninsula, we only evaluate full trajectories initially. We then select highly evaluated
trajectories and get the best possible interpretation 7" for the island L. If P(T|L) is not
satisfactory measured by some predetermined threshold, then the trajectory evaluation is
considered inadequate and partial trajectories are evaluated before a second round of inter-
pretation evaluation is performed.

As an example, consider Figure 5. If we search for peninsulas as defined in Section 6 and
assume no missing measurements at 1 < ¢ < k, a mistake will be made because the four
measurements in the upper track are not qualified as a partial track and will be considered as
noise. This will enlarge the noise set NV to an unexpected level, which in turn lowers P(T'|L)
for the best interpretation obtained. The low P(T'|L) will trigger a re-analysis looking for
peninsulas with a missing measurement, which will identify the partial trajectory.

The re-analysis can be applied to a more general context: Due to the intractability of an
exhaustive analysis, as we perform a bottom-up analysis (e.g., from trajectory to island to
scene), we only analyze according to the most likely cases initially (e.g., the full trajectories)
to make the analysis tractable. As we move up the abstraction levels, we watch for signs of
failure of early analysis (e.g., the low P(T'|L) above) since the reality may happen to be one of
those unlikely cases. When such signs are identified, we go back to a lower abstraction level,
re-analyze more thoroughly and go up the abstraction levels again. Such re-analysis allows
the initial analysis to be performed efficiently and allows mistakes made to be corrected with
limited and focused additional computation. Similar ideas have been explored in [33, 34] in
auditory signal processing.

In Section 2, we assumed that no entering/leaving vehicles between ¢ = 1 and ¢t = k.
These vehicles produce tracks that are partial trajectories, some of which can already be
interpreted correctly. However, if such a trajectory is too much shorter than a full one, it is
likely to be interpreted as noise. Using re-analysis, the corresponding measurements can be
combined with the previous or next scene to allow correct interpretation.

S E O =
B 5 g/ 7 8
] - = 4 ,
t=1 , 3 S
t=5 6| , 8 o L0 1L 12
| ] n x ] L

Figure 8: Two tracks across two scenes.

Consider the two tracks in Figure 8 which span two scenes: s with ¢t =1,...,6 (left) and
s' with ¢ = 7,...,12 (right). The upper track corresponds to a vehicle stopping in s’ and the
lower track corresponds to a vehicle starting in s. The measurements from the upper track
at t = 7,8 are likely interpreted as noise for s’. Using the upper track r in s (from ¢ = 1
to 6) as expectation, these measurements can be re-analyzed with focused processing. The
measurements from the lower track at t = 5,6 in s can be similarly re-analyzed using the
lower track 7’ in s’ as expectation.
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10 Putting Pieces Together

Algorithm 8 connects the techniques that we presented so far together to interpret a given
scene.

Algorithm 8 (InterpretScene2)
Input: A scene D.

1 run GetAlllsland(D) to decompose D into multiple islands;
2 for each island L, do

3 if no measurement for two or more instants in L,

4 interpret L as noisy measurements;

5 if no measurement for one instant in L,

6 run EvaluatePartialTrajectory() to evaluate each partial trajectory;

7 run Interpretlsland() to generate island interpretation for L;

8 if having measurements for each instant in L,

9 if L is a small island,

10 run EvaluateFull Trajectory() to evaluate each full trajectory;

11 run Evaluatelnterpretation() to generate island interpretation T' for L;
12 if P(T = correct|L) is not sufficiently high,

13 run EvaluatePartialTrajectory() to evaluate each partial trajectory;

1 run Evaluatelnterpretation() to generate island interpretation T for L;
15 else /* L is a large island*/

16 generate full tracks based on peninsulas;

17 run EvaluateFull Trajectory() to evaluate each full trajectory;

18 run EvaluateInterpretation() to generate island interpretation T for L;
19 if P(T = correct|L) is not sufficiently high,

20 run EvaluatePartial Trajectory() to evaluate each partial trajectory;

21 run Evaluatelnterpretation() to generate island interpretation T for L;

22 return collection of island interpretations as scene interpretation;

Line 1 decomposes the scene into islands using Algorithm 2. Subsequent processing
is performed independently on each island. Three different cases are considered: missing
measurements in two or more instants, missing measurements in one instant, and having
measurements for each instant. Each case is handled by an ¢f segment. Note that the three
cases correspond qualitatively to: too many measurement-missing instants, very few, and
none. The exact boundary (2 and 1) used in the algorithm is not significant.

Lines 3 and 4 deal with islands that miss measurements in too many time instants. These
islands are likely to be produced due to noise and will be interpreted as such. Lines 5 through
7 handle islands that miss measurements in very few instants. We will come back to them
later.

Lines 8 through 21 handle islands that have measurements in each instant. Note that
missing measurements is still possible. It’s just that for each time instant, at least one
measurement has been obtained. Small and large islands are separately processed (by the
if and else) segments. For small islands, initially each full trajectory is evaluated using the
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reduced movement model (Section 8) and Algorithm 7. Algorithm 6 is used to evaluate each
island interpretation constructed from only highly evaluated full trajectories. Note that
trajectory evaluation results are reused during interpretation evaluation.

Lines 12 through 14 applies re-analysis when the interpretation obtained from only full
trajectories is not sufficiently convincing. Each partial trajectory is now evaluated and a
new set of interpretations containing partial trajectories are considered. Note that Evalu-
atePartialTrajectory() is a slight variation of Algorithm 7.

Lines 15 through 21 handle large islands. The processing is essentially the same as that
for small islands, except that only trajectories consistent with peninsulas are evaluated. This
restriction is not necessary for small islands but reduces computation significantly for large
islands.

Next, we go back to lines 5 through 7. Since some instant has no measurement at all,
all trajectories are partial. Note that this segment can be elaborated with the separate pro-
cessing based on small or large islands, as described above. We did not do so to keep the
presentation simple. Furthermore, if more than one instant have missing measurements, ini-
tial processing can be applied to trajectories with only one missing measurement. Re-analysis
can be used if necessary to process additional trajectories with more missing measurements.

11 Experimental Results

To test the ideas and algorithms presented, we implemented a scene simulator and a scene
interpretor. The simulator generates randomly a scene which is used as the input to the
interpretor. The performance of the interpretor can then be evaluated by comparing its
interpretation with the simulated tracks.

Each measurement simulated contains a 2-D location plus a signal frequency as would
appear in passive sensing. The simulator allows specification of the size of the region, the
number of tracks in a scene, the velocity/acceleration distribution of each type of vehicles, the
amount of measurements due to environment noise, and the chance of missing measurements.
This allows testing of the interpretor under different conditions.

In the experiment, we used a 200 x 200 grid region, populated by between 5 and 18
vehicles of two possible types. Note that the size of the grid and the number of vehicles are
insignificant to the performance, but the density of vehicles is. A scene with 5 vehicles in
the given grid is sparse and easy to interpret. A scene with 18 vehicles is dense and is much
harder to process. The type 1 vehicle has its velocity from the set {6,7,8,9,10} and the
type 2 vehicle from {8,9,10,11,12}. The two sets have significant overlapping to increase
the difficulty in vehicle type recognition. The initial velocity of each type is distributed
evently. The accelerations of the two types of vehicles are chosen from {0, 1,2} and {0, 3, 4},
respectively. Measurement errors are chosen from {0,1} and can be added to the actual
vehicle location in each of the 4 possible directions. Each measurement is associated with a
signal frequency reading and an energy level. The frequency ranges from {100, 200, 300} for
type 1 and {300,400, 500} for type 2. The energy level ranges from {0, 2, 3,4} for type 1 and
{0,1,2, 3} for type 2. ‘Negative’ noise (missing measurement) is simulated when the energy
level of a measurement is 0. ‘Positive’ noise is simulated by adding an arbitrary measurement
in a time instant with 30% probability.

Figure 1 (top) shows a typical simulated scene in a 200x200 grid region of 20 vehicle tracks
with two types of vehicles. The temporal length of the scene is £ = 6. The interpretation
generated (Figure 1 (bottom)) matched the simulated tracks with 100% accuracy.
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Figure 9: Summary of experimental results. X-axis: number of simulated tracks per scene in
each batch. Top left: Average CPU time per scene. Top right: Percentage of fully matched
tracks in each batch. Bottom left: Percentage of partially matched tracks in each batch.
Bottom right: Percentage of both fully matched and partially matched tracks in each batch.

Figure 9 summarizes the interpretation results of 280 scenes of different degrees of diffi-
culty. The 280 scenes were divided into 14 batches. Each batch has 20 scenes of the identical
size (the number of simulated tracks). The x-axis of each graph in Figure 9 is labeled by the
size (from 5 to 18) of the scenes in each batch. The larger the size, the higher the density of
measurements and the more difficult to interpret the scene. Each vehicle track consists of at
most k£ = 6 measurements. Hence, the total number of measurements per scene ranges from
about 30 to 108 plus measurements due to noise (about 8% on average) and minus missing
measurements (each measurement may be missing with a 0.02 probability).

The top left graph shows the average CPU time in interpreting each scene in a given batch.
Our implementation is in Java using a Pentium IT 400MHz PC. Near-real-time performance
was obtained for a wide range of scene sizes. As the complexity of the scene increases, the
interpretation time used increases gradually. Significant increases are observed after the
scene size is larger than 16 as very larger islands are frequently detected in the scenes.

The top right graph shows the percentage of fully matching tracks in each batch. An
interpreted track r' fully matches a simulated track r (which may have missing measure-
ments) if r' matches each measurement in r. The bottom left graph shows the percentage of
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partially matching tracks in each batch. An interpreted track r’ partially matches a simu-
lated track r if r' matches each measurement in r except one. The bottom right graph shows
the percentage of both fully and partially matching tracks in each batch. As the number
of tracks per scene increases from 5 to 18, the percentage decreases gradually from 100% to
91%.

12 Constructive Graphical Models Approach

So far we have focused on a constructive graphical models approach to the problem of vehicle
monitoring. The problem, however, is an instance of a class of problems that some refers
to as sensor interpretation problems [8]. In this class, a set of sensor data is generated
by multiple events (e.g., multiple vehicles), but the number of events (e.g., the number of
vehicles), the nature of each event (e.g., the type of each vehicle), and which pieces of data
are produced by which particular event are unknown. The task is to identify the number
and the nature of the events given the sensor data.

In the following, we generalize the constructive graphical models approach to sensor
interpretation problems. We consider a domain where a unknown number of unknown events
of a target class C occur. These events are assumed independent of each other.? The events
generate a set D of observations. The task is to identify from D the events occurred which
we refer to as the interpretation of D.

More formally, an interpretation T of D consists of a set of target events {e1, e, ..., €1}
in C and a partition {rq, 79, ..., m, N} of D, where r; is a subset of observations (believed
to be) caused by the event e;, and N is a subset of observations (believed to be) caused
by events outside the target class C'. Since the number m, the identity of each e;, the
composition of each r; and with which event it associates are unknown, the number of
possible interpretations resulting from all possible combinations is intractable.

The constructive graphical models approach starts with the Bayesian formulation: to
compute the interpretation 7* such that the posterior probability P(7*|D) is maximal. Note
that we overload 7™ with two meanings as described in Section 2. To make the computation
tractable, the approach deploys a number of techniques:

The general technique of domain decomposition separates the problem domain into inde-
pendently or semi-independently evaluable subdomains each of which contains a subset of
target events. It is elaborated by island decomposition and peninsula decomposition described
below.

Given D, denote the set of events in 7* by {e7, e, ..., €5, } and the observation partition by

*

{ry,ry,...,r%, N*}. The technique of island decomposition partitions D into a set of islands

< lms

{L1, Lo, ..., L} with the following properties:

1. Each island L; is the union of one or more 7;’s plus some elements of N*. That is,
the island partition is consistent with the partition {r}, 3, ..., N*} but may be less
refined.

2. The events €], €3, ..., ey, can be grouped into E, Es, ..., B}, accordingly such that obser-
vations in L; depend only on events in E; and events in F; can only produce observations
in LZ

20therwise, the dependence can be explored and the complexity of the solution may be reduced.
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It is important to indicate that the island partition {L;, Lo, ..., Ly} must be obtained
without yet knowing 7. Instead, the above properties of islands facilitate the computation
of T* from D. As exemplified in Eqn (1), island decomposition allows P(T’| D) to be evaluated
as follows, where E; is overloaded similarly as T (and T):

P(T|D) = P(E\|Ly) ... P(Eg|Ly).

The amount of computation is reduced by excluding from explicit consideration those inter-
pretations that relate observations on different islands to a same event.

The peninsula decomposition is applied to each island L to facilitate the computation of
P(E|L). Without lossing generality, denote the events in 7 that generate L by {e], €3, ..., €; }.
Observations in L are divided into two sets: the initiator set Init and the remainder set Rest,
and observations in Init are further partitioned into {Inity, Inits,...} with the following
properties:

1. Each event e}, generates observations in exactly one initiator Inut;.
2. Each initiator Init; uniquely determines a subset Rest;, C Rest.

3. The union A, = Init; U Resty, is called a peninsula. A contains all observations that
the event e} generates.

Again, the initiators must be computed without yet knowing {e},e3, ..., ef]}. The above
properties of peninsulas facilitate the computation of these events. A peninsula A, ensures
that the event ej can be identified by considering only observations in A (at this level
of analysis). That is, it is either certain or highly probable that e; maximizes P(e|Ay)
among other conceivable events e given Aj. Peninsula decomposition reduces the amount
of computation by excluding from explicit consideration those interpretations that relate
observations on different peninsulas to a same event.

The technique of model separation allows submodels to be constructed at different ab-
straction levels and their evaluation to be reused and combined. Given an interpretation, a
graphical model can be constructed to represent the probabilistic dependence of the observa-
tions on hypothesized events as well as the overall coherence of the interpretation. To apply
model separation, it is important that the dependence between an event and the observations
that it generates is encoded in a graphical submodel that is sufficiently self-contained. The
submodel that represents the overall coherence of the event set should have a concise interface
with the submodel corresponding to each individual event. The individual event submodels
should have no coupling other than the interaction through the coherence submodel.

With the graphical model so constructed, when an event participates in multiple inter-
pretations, its contribution to the evaluation of P(T'|D) can be computed once and reused
for each relevant interpretation. When many individual events participate in many interpre-
tations, model separation saves the repeated computations for each interpretation.

The technique of model approximation reduces the amount of computation by simplifying
an exact model. Often, a graphical model, reflecting all relevant dependence of the domain,
may be too expensive to evaluate. The problem is worsened when a very large number of
models (one per interpretation) must be evaluated. It is often the case that a simplified
model is much more efficient to evaluate and can lead to the same decision as to accept or to
reject a given interpretation even though the model evaluates P(7|D) only approximately.
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A graphical model can be simplified in a number of ways. Variables (nodes) that corre-
spond to neither observations nor events may be eliminated. Dependence relations (links)
that are weak may be ignored as if their endpoints (variables) are conditionally independent.
A variable representing an observable quantity and another variable representing the cor-
responding observed value may be merged, which is equivalent to ignoring the observation
errors. A continuous variable may be approximated by a discrete one. A discrete variable
with a large space may be approximated by a variable with a small number of possible values.

The technique of model compilation identifies reusable intermediate computational re-
sults, computes them off-line, and uses them to reduce the on-line computation and to im-
prove the performance. Model compilation may perform an off-line computation to simplify
the model to be used for on-line computation. Hence, model approximation and model com-
pilation may overlap. A key difference is that model compilation does not usually introduce
error while model approximation usually does.

The technique of re-analysis allows more efficient computation at low abstraction levels
and allows mistakes made to be corrected with limited and focused additional computation.
The technique restricts the initial computation to that needed by a smaller subset of likely
interpretations and only the corresponding graphical models or submodels will be evaluated.
This restricted initial computation improves efficiency in most cases. As the results from
the evaluation of low abstraction level submodels are being integrated at high abstraction
level submodels, if there are indications that the initial subset of interpretations has been
mistaken, the computation will be resumed at the low abstraction level with the target
interpretation set enlarged. Such re-analysis corrects occasional mistakes made in restricted
initial computation and improves the accuracy of the final interpretation.

13 Related Work

Vehicle monitoring has been a subject of considerable literature in the field of multiple target
tracking and data fusion, mostly studied in the engineering discipline. Common approaches
include Kalman filter, particle filter and multiple model method, and have various degree of
success in a range of applications such as military target recognition, military situation as-
sessment, smart weapons, machinery monitoring, automated plant management, and image
processing. We make no claim that our approach is overall superior than the existing meth-
ods for vehicle monitoring: A systematic comparison is beyond the main objective of this
work and a reasonable space limit. The primary contribution of this work is to show that,
contrary to the previously held belief [8], graphical models, as a concise and intuitive repre-
sentation and inference formalism, are applicable to sensor interpretation types of problems,
where a single graphical model (or a few) is inadequate no matter it is constructed a priori
or a posteriori. We have demonstrated this assertion by successfully applying a constructive
graphical models approach to solving vehicle monitoring as an example problem. This con-
tribution enables and encourages the application of graphical models to other problems of
similar types, as well as to refinement and extension of our solution to vehicle monitoring.

For the sake of completeness, we briefly review some common approaches to vehicle
monitoring. A study conducted in early 90s surveyed about 30 systems and identified more
than 75 algorithms [25]. Our review focuses on the main ideas of some common approaches
and is by no means exhaustive.

Most common approaches represent the domain by a set of state equations and a set
of measurement equations. State equations model the vehicle movements and measurement

23



equations model the dependence of measurements on the movements. The task is to associate
measurements with the vehicles (data association) and to estimate the vehicle tracks.

The nearest-neighbor standard filter [3] selects the measurement closest to a predicted
measurement and uses it to estimate the corresponding vehicle location. Alternatively, the
probabilistic data association filter [19] assigns an association probability for each close mea-
surement and uses these probabilities to weight the measurements for location estimation.
Kalman filtering [32] has long been applied to vehicle monitoring [3, 2]. The state equations
and measurement equations are linear equations subject to zero-mean, white, Gaussian noise.
At each time instant, vehicle states for the next instant are predicted using the state equa-
tions based on estimated states of the current instant. Measurements for the next instant are
predicted using measurement equations and are compared with the actual measurements.
The difference is then used to update the prediction and to arrive at the estimated states
for the next instant. Kalman filtering is optimal when the linearity /Gaussian assumptions
hold. To deal with nonlinearity due to vehicle manoeuvre, extended Kalman filters linearize
the state equations by expanding the nonlinear functions in Taylor series and use the lower
order terms [14].

Multiple model method attempts to deal with nonlinearity or ‘mode jump’ using mul-
tiple filters. For each time instant, multiple sets of representations are maintained each
corresponding to one possible mode of the vehicle. The overall state estimate is a combina-
tion of the estimates from all filters. Static multiple model method [39] uses a fixed set of
element filters without interaction. Interacting multiple model method [4] allows a fixed of
element filters to interact. Variable structure multiple model method [38] uses a variable set
of elment filters.

Performance of extended Kalman filters still rely on the Gaussian assumption. Particle
filters [23] are more appropriate for nonlinear and non-Gaussian domains. The posterior
probability distribution of the vehicle is represented by a set of random samples (the particles)
with associated weights. As the number of particles becomes very large, this Monto Carlo
representation approaches the optimal Bayesian estimate.

The constructive graphical models approach we presented provides an alternative to the
above engineering approaches to address the nonlinear domains.

In the artificial intelligence field, vehicle monitoring has been chosen as a testbed for
various methodologies and architectures for building knowledge-based systems. These efforts
are mostly connected to the Distributed Vehicle Monitoring Testbed (DVMT) project [37, 15,
8, 45]. The approaches taken are based on incremental vehicle track construction combined
with ad-hoc measures of uncertainty on hypothesized tracks. Heuristics and incremental
planners are used to control the initiation and maintenance of tracks. Blackboard-based
architectures are used to pursue multiple hypothesized tracks.

The idea similar to our re-analysis were explored in traditional knowledge-based systems
[17, 16, 33, 34]. They applied approximate bottom-up processing to produce a set of likely
high level models which were used to drive focused and more detailed processing in heuristic
problem solving. The current work makes the idea applicable in a Bayesian, graphical models
framework.

Since early 1980s, graphical models [43, 41, 36, 30, 9, 10, 46] have been actively researched
as intuitive, concise, and normative formalisms for uncertain knowledge representation and
inference in intelligent systems. Although building a graphical domain model a priori is
the common way to apply this technology, recent advances on knowledge-based construction
have allowed more flexible situation specific representations such as in story understanding or
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military situation accessment [6, 21, 22, 28, 44, 24, 40, 31]. For the particular tasks addressed,
it is usually sufficient to construct and evaluate one model after observations and the query
variables are given. Our work has been influenced by their approach. However, the vehicle
monitoring problem and the more general sensor interpretation problems pose additional
representational and computational challenges by requiring construction and evaluation of a
very large number of models in real or near-real time. Most of the techniques we presented
are developed to meet such challenges.

Another branch of related work is dynamic Bayesian networks (DBNs) [13], where a
dynamic system is represented by a sequence of BNs, each of which represents the dynamic
domain at a given time instance. Forbes et al [18] used DBNs for modeling and control of
automated highway vehicles. Boyen, Friedman and Koller [5] study how to discover DBNs
from data. Pavlovic, Frey, and Huang [42] use a mixed-state DBN framework to model and
classify object trajectories. Our work complements theirs on dealing with a large unknown
number of moving objects.

14 Conclusion

We propose a constructive graphical models approach to solve a class of sensor interpre-
tation problems and we demonstrate a solution to a particular problem instance, vehicle
monitoring. To meet the computational challenges imposed by these tasks, we integrate a
set of techniques: Domain decomposition separates the problem domain into independently
or semi-independently evaluable subdomains each of which contains a subset of target events.
Model separation allows submodels to be constructed at different abstraction levels and their
evaluation to be reused and combined coherently. Model approzimation/compilation helps
to reduce the amount of computation to be performed within the allowable time frame. Do-
main decomposition, model separation and model approximation demonstrate different ways
to explore independence inherent in the problem domain in order to speed up interpreta-
tion computation. Re-analysis allows more efficient computation at lower abstraction levels
and allows mistakes made to be corrected with limited and focused additional computation.
Variants of these techniques have been explored elsewhere under different contexts. We bring
them together to solve the sensor interpretation problems in a Bayesian, graphical models
framework.

The contribution of this work is manifold: Our result invalidates previously held belief in
the field of knowledge-based systems which regarded graphical models not applicable to sen-
sor interpretation problems. We have shown that by applying domain decomposition, model
separation, model approximation/compilation, and re-analysis, these tasks can benefit from
graphical models and real or near-real-time performance can be obtained. Our approach
complements state equation based approaches in solving sensor interpretation types of prob-
lems by applying the graph modeling tools. Our approach extends previous work in situation
specific graphical models to problems with a magnitude higher complexity.

Our approach as presented is centralized. As it is closely related to the traditional
knowledge-based systems approach, which has provided many lessons in solving sensor in-
terpretation problems through a distributed and multi-agent architecture, a natural step
forward is to extend this approach under a multiagent framework.
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