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Non-Impeding Noisy-AND (NIN-AND) Tree (NAT) models offer a highly expressive approximate repre-
sentation for significantly reducing the space of Bayesian Networks (BNs). They also improve efficiency of BN
inference significantly. To enable these advantages for general BNs, several technical advancementsare made in this
work to compress target BN Conditional Probability Tables (CPTs) over multi-valued variables into NAT models.
We extend the semantics of NAT models beyond graded variables that causal independence models commonly
adhered to, and allow NAT modeling in nominal causal variables. We overcome the limitation of well-defined
Pairwise Causal Interaction (PCI) bits and present a flexible PCI pattern extraction from target CPTs. We extend
parameter estimation for binary NAT models to constrained gradient descent for compressing target CPTs over
multi-valued variables. We reveal challenges associated with persistent leaky causes (PLCs) and develop a novel
framework for PCI pattern extraction when PLCs exist. The effectiveness of the CPT compression is validated
experimentally.
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1. INTRODUCTION

When directions of links are (loosely) causally interpreted, adiscrete BN quantifies
causal strength between each effect and itsn causes by a CPT whose number of parameters
is exponential onn. Common Causal Independence Models (CIMs), e.g., noisy-OR (Pearl
(1986)), reduce the number to being linear onn, but are limited in expressiveness. As
members of CIM family, NAT models (Xiang (2012b,a); Xiang and Truong (2014); Xiang
and Liu (2014)) express both reinforcing and undermining as well as their recursive mixture
using only a linear number of parameters. Thus, NAT models offer a highly expressive
approximate representation for significantly reducing the space of BNs.

CIMs are not directly operable by common BN inference algorithms, e.g., the cluster
tree method (Jensen et al. (1990)). A number of techniques have been proposed to over-
come the difficulty (Zhang and Poole (1996); Madsen and D’Ambrosio (2000); Takikawa
and D’Ambrosio (1999); Savicky and Vomlel (2007)). By multiplicatively factorizing NAT
models and compiling NAT modeled BNs for lazy propagation (Madsen and Jensen (1999)),
it has been shown that efficiency of exact inference with BNs can also be improved signifi-
cantly (Xiang (2012a); Xiang and Jin (2016)).

The above efficiency gain is applicable to NAT modeled BNs (each CPT is a NAT
model), or BNs over binary variables where each CPT must be compressed first into a NAT
model (Xiang and Liu (2014)). It is not yet applicable to general BNs over multi-valued
variables. The goal of this research is to achieve the efficiency gain for inference with general
BNs by compressing their CPTs into multi-valued NAT models (Xiang (2012b)). Advancing
compression from binary to multi-valued NAT models encounters several challenges. In this
work, we investigate the following.

1This article significantly extends Xiang and Jiang (2016).
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First, a general discrete BN can contain both ordinal variables, often referred to asgraded
variables (Diez (1993)), and nominal variables. CIMs are commonly limited to ordinal vari-
ables, e.g., (Zagorecki and Druzdzel (2013)). In this work, we generalize the semantics of
NAT models to allow NAT models over nominal causal variables as well. This advancement,
coupled with that on PLCs (below), enables NAT modeling on any discrete variables in a
general BN.

Second, to gain efficiency with both space and inference time through NAT modeling,
each target BN CPT is approximated(compressed) into a NAT model. The first step is to find
a small set of candidate NAT structures to focus subsequent parameter search. A NAT can
be uniquely identified by a function that specifies interactions between each pair of causes,
termed a PCI pattern (Xiang et al. (2009)). Therefore, we extract a PCI pattern from the target
CPT, which yields the candidate NATs. Since a target CPT is generally not a NAT model, how
to extract a PCI pattern that provides good approximation of its causal interaction structure
is a challenge. The second contribution is a scheme that meets this challenge.

Third, once candidate NATs are obtained, probability parameters of the corresponding
NAT models must be assessed. The third contribution of this work is to extend the framework
for doing so with binary NAT models to multi-valued NAT models. We present a constrained
gradient descent as the key component of the extension. Although the general idea of con-
strained gradient descent already exists, this contribution investigates specific constraints for
compressing multi-valued CPTs.

Fourth, CIMs allow both explicit causes and implicit causes, termed leaky causes. Leaky
causes may be persistent (PLCs) or non-persistent. We show that existence of PLCs raises
another challenge. The fourth contribution is a framework for PCI pattern extraction with
PLCs.

The remainder is organized as follows. Section 2 introduces the terminology and extends
the semantics for NAT models beyond graded variables. How to extract PCI patterns from
general target CPTs is presented in Section 3. Section 4 deals with constrained gradient
descent for parameter estimation. PCI pattern extraction under the condition of PLCs is
developed in Section 5. Experimental validations of the proposed techniques are reported
in Section 6. We draw conclusions and discuss future work in Section 7.

2. EXTENDED SEMANTICS OF NAT MODELS

In this section, we extend the semantics for NAT models over multi-valued variables
(Xiang (2012b)) beyond the commonly required graded variables, as well as introduce the
necessary terminology.

The most commonly used CIMs is the noisy-OR, pioneered by Good (1961) and pop-
ularized by Pearl (1986). Henrion (1989) generalized noisy-OR to multi-valued variables
and Diez (1993) explicitly defined these CIMs, known as noisy-MAX, to be overgraded
(essentially ordinal) variables. The rationales to require graded variables include (1) the
interpretation of multiple values as presence of an entity with degrees of intensity, and (2) the
allowance of expression of probabilityP (e 6 ej |...), wheree is an effect variable andej is
a degree of its intensity. The requirement of graded variables limits application of noisy-OR,
noisy-MAX, and related CIMs to ordinal variables, and exclude nominal variables that also
exist in general BNs. Below, we extend semantics of NAT models in Xiang (2012b) to relax
the requirement for graded variables. Since NAT models generalize noisy-MAX (Xiang and
Jin (2016)), the extended semantics also applies to noisy-OR, and noisy-MAX.

NAT models deal with uncertain causes. A cause isuncertainif it can render the effect
but does not always do so. Smoking is a uncertain cause of lung cancer. We represent the
effect and causes bycausal variablesdefined below.



NAT M ODEL BASEDCOMPRESSION OFBAYESIAN NETWORK CPTS OVERMULTI -VALUED VARIABLES1 3

Definition 1 (Causal variable): A variablex that can be eitherinactiveor beactivepossibly
in multiple ways, and is involved in a causal relation, is acausal variableif when all causes
of the effect are inactive, the effect is inactive with certainty.

Note thatx may be either a cause or the effect in the relation. Whetherx qualifies as a
causal variable cannot be determined individually. According to Def. 1,x is deemed a causal
variable when all variables in the relation are causal variables. For example, consider the
cause of owning a pet (op) and the effect of fewer doctor visits (fv) (a well-known health
benefit to pet owners), where

op ∈ {none, dog, cat, rodent, fish, bird, horse, other},

fv ∈ {none, 1 ∼ 4%, 5 ∼ 8%, 9 ∼ 12%, 13%+}.
For both variables,none is the inactive value. Whenop = none and all other causes offv
are also inactive, we havefv = none with certainty. A causal variable can be either ordinal,
e.g.,fv, or nominal, e.g.,op. Note thatop is not a graded variable.

We index the inactive value of a causal variablee ase0, and its active values arbitrarily.
For variableop, we can index its valuesnone, dog, ..., other asop0, op1, ..., op7, respec-
tively, and will use this indexing below. In practice, some orders of indexing on active
values are preferred over others. However, the semantics of NAT models does not impose
constraints on such orders. For variablefv, it’s preferable to index its valuesnone, 1 ∼
4%, 5 ∼ 8%, 9 ∼ 12%, 13%+ asfv0, fv1, fv2, fv3, fv4, respectively, and we will use this
indexing below. But indexing them asfv0, fv4, fv3, fv2, fv1 is just as valid.

In general, we denote an effect bye and the set of all causes ofe by C = {c1, ..., cn},
wheree and allci are causal variables. The domain ofe is De = {e0, ..., eη} (η > 0) and the
domain ofci is Di = {c0

i , ..., c
mi
i } (mi > 0). An active value may be written ase+ or c+

i .
A causal event is asuccessor failure depending on whethere is rendered active at a

certain range of values, issingle-causalor multi-causaldepending on the number of active
causes, and issimpleor congregatedepending on the range of effect values.

A simple single-causal successis an event that a causeci with valuec
j
i (j > 0) caused

the effecte to occur at a valueek (k > 0), when every other cause is inactive. We denote
the probability of the event asP (ek ← cj

i ) = P (ek |cj
i , c

0
z : ∀z 6= i) (j > 0). For example,

P (fv3 ← op2) is the probability of9 ∼ 12% fewer doctor visits given that the only health
inducing activity of the person is owning a cat.

A multi-causal success involves a setX = {c1, ..., cq} (q > 1) of active causes, where
eachci ∈ X has a valuecj

i (j > 0), when every other causecm ∈ C \ X is inactive. A
congregate multi-causal successis an event that causes inX collectively caused the effect
to occur at a valueek (k > 0) or of a higher index, when every other cause is inactive. We
denote the probability of the event as

P (e > ek ← c
j1
1 , ..., c

jq
q ) = P (e > ek |cj1

1 , ..., c
jq
q , c0

z : cz ∈ C \X) (j > 0),

whereX = {c1, ..., cq} (q > 1). It is also denoted byP (e > ek ← x+).
A congregate single-causal failurerefers to an event wheree < ek (k > 0) when a cause

ci has a valuecj
i (j > 0) and every other cause is inactive. It is a failure in the sense thatci

fails to produce the effect with a valueek or of a higher index. We denote the probability of
the event as

P (e < ek ← c
j
i ) = P (e < ek |cj

i , c
0
z : ∀z 6= i) (j > 0).

For example,P (fv < fv3 ← op1) is the probability of less than 9% fewer doctor visits
given that the only health inducing activity of the person is owning a dog.

Note that both success and failure events are based on value indexing of causal variables.
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They generally do not have implications on intensity, except that inactive effect is impossible
in a congregate success and is always possible in a congregate failure.
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FIGURE 1. (a) A direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

A NAT consists of two types of NIN-AND gates, each over disjoint sets of causes
W1, ..., Wq. An input event of adirect gate (Fig. 1 (a)) ise > ek ← w+

i and the output
event ise > ek ← w+

1 , ..., w+
q . An input of adual gate (Fig. 1 (b)) ise < ek ← w+

i and
the output event ise < ek ← w+

1 , ..., w+
q . The probability of the output event of a gate is the

product of probabilities of its input events.
Interactions among causes may be reinforcing or undermining as defined below.

Definition 2 (Reinforcing & undermining): Letek be an active effect value,R = {W1, ...}
be a partition of a setX ⊆ C of causes,R′ ⊂ R, andY = ∪Wi∈R′Wi. Sets of causes inR
reinforceeach other relative toek, iff ∀R′ P (e > ek ← y+) 6 P (e > ek ← x+). They
undermineeach other relative toek , iff ∀R′ P (e > ek ← y+) > P (e > ek ← x+).

Intuitively, when causes are reinforcing, more active causes render active effects more likely.
When causes are undermining, more active causes render active effects less likely. Def. 2
defines causal interactions among both causes (when eachWi is a singleton) and groups of
causes (when eachWi is a general set). It captures situations where causes within a group
are reinforcing, but the groups undermine each other.

A direct gate models undermining and a dual gate models reinforcing. A NAT organizes
multiple gates into a tree and expresses mixtures of reinforcing and undermining recursively.
As an example, consider surface enhancer sprays. Acidic enhancersh1 and h2 are more
effective when both are applied. Basic enhancersb1 andb2 work similarly. However, when
enhancers from both groups are combined, the effectiveness is reduced. The NAT in Fig. 1
(c) expresses their causal interactions, whereC = {h1, h2, b1, b2} and the small ovals negate
incoming events.

A NAT specifies the interaction between each pair ofci andcj , denoted by thePCI bit
pci(ci, cj) ∈ {u, r}, whereu stands for undermining andr for reinforcing. The collection of
PCI bits is thePCI patternof the NAT. The PCI pattern for the NAT in Fig. 1 (c) is

{pci(h1, h2) = r, pci(h1, b1) = u, pci(h1, b2) = u,

pci(h2, b1) = u, pci(h2, b2) = u, pci(b1, b2) = r}.
A NAT can be uniquely identified by its PCI pattern (Xiang and Truong (2014)).

Given the NAT in Fig. 1 (c) and probabilities of its input events, calledsingle-causals,
P (e > e1 ← h1

1, h
1
2, b

1
1, b

1
2) can be obtained. From the single-causals and all derivable NATs

(Xiang (2010)), the CPTP (e|h1, h2, b1, b2) is uniquely defined (Xiang (2012b)).
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3. EXTRACTING PCI PATTERNS FROM GENERAL CPTS

In this work, we extend the framework for compressing CPTs over binary variables
(Xiang and Liu (2014)) to target CPTs over multi-valued causal variables. The compression
consists of the following steps.

(1) Extract one or more PCI patterns from the target CPT.
(2) Retrieve NAT structures that are compatible with the PCI patterns.
(3) Search for numerical parameters for each NAT structure.
(4) Return the NAT structure and its parameters that best approximate the target CPT.

This section focuses on step (1) and the next section on step (3). Details on step (2) can be
found in the above reference.

To compress a target CPT overe and C into a NAT model, we need to determine
candidate NATs overC. This can be achieved by searching for a PCI pattern relative to
each activeek and determine the NAT by the best pattern over allk > 0. By Def. 2, givenci

andcj , pci(ci, cj) is well definedrelative toek when one of the following conditions holds
for all active values ofci andcj.

pci(ci, cj) =
{

u : P (e > ek ← c+
i , c+

j ) < min(P (e > ek ← c+
i ), P (e > ek ← c+

j )),
r : P (e > ek ← c+

i , c+
j ) > max(P (e > ek ← c+

i ), P (e > ek ← c+
j )).

(1)

As shown experimentally (Section 6.1), in a general CPT, neither condition may hold
for a significant number of cause pairs. For such a CPT, very few PCI bits are well defined,
resulting in apartial PCI pattern. A partial pattern of a few bits is compatible with many can-
didate NATs, making the subsequent parameter search costly. Below, we develop a scheme
to overcome the difficulty where too few bits are well defined in PCI patterns for allk.

We aim to extract a partial PCI pattern that approximates causal interactions in a target
CPT. For a partial pattern, PCI bit of a given cause pair may beu, r, or undefined. For
uniformity, we expand the domain of a PCI bit into{u, r, null}with null for unclassified.

For a well-defined bit, one condition in Eqn. (1) must hold for all active cause value pairs.
Consider the interaction between one value pair first. To indicate theek value, we denote
the interaction aspci(ek, c+

i , c+
j ) ∈ {u, r, null}, and refer to it as avalue-pair interaction

relative toek . To simplify the notation, we denote

P (e > ek ← c+
i ), P (e > ek ← c+

j ), andP (e > ek ← c+
i , c+

j )

asp, q, andt, respectively. The rule below extracts a well-defined value-pair interaction.

Rule 1 (Well-defined): Ift 6∈ [min(p, q), max(p, q)], then

pci(ek, c+
i , c+

j ) =
{

u : t < min(p, q),
r : t > max(p, q).

A well-defined interaction satisfiest 6∈ [min(p, q), max(p, q)]. Rules below relax this
requirement. Whent ∈ [min(p, q), max(p, q)],pci(ek, c+

i , c+
j ) is deemednull only if |p−q|

is too small, e.g., less than a thresholdτ0 = 0.2.

Rule 2 (Tight enclosure): Ift ∈ [min(p, q), max(p, q)] and|p− q| 6 τ0, whereτ0 ∈ (0, 1)
is a given threshold, thenpci(ek, c+

i , c+
j ) = null.

The rational of Rule 2 is the following. Under tight enclosure, bothu andr may well
approximate interaction betweenci andcj . Hence, NATs compatible with either should be
included in the candidate set, which is what the valuenull entails.
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We refer to the conditiont ∈ [min(p, q), max(p, q)]and|p−q| > τ0 asloose enclosure,
where we compute the ratioR = t−0.5(p+q)

|p−q| . Ratio R ∈ [−0.5, 0.5] and the bounds are
reached whent equalsp or q. WhenR < 0, t is closer tomin(p, q). WhenR > 0, t is closer
to max(p, q). WhenR = 0, t is equally distant fromp andq. We refer toR asnormalized
deviationand specify the interaction as follows, where a possible value forτ1 may be 0.4.
Its rational follows from the above analysis.

Rule 3 (Sided loose enclosure): Ift ∈ [min(p, q), max(p, q)] and|p− q| > τ0, then

pci(ek, c+
i , c+

j ) =

{
null : |R| 6 τ1,

u : R < −τ1,
r : R > τ1,

whereτ0 ∈ (0, 1) andτ1 ∈ (0, 0.5) are given thresholds.

Proposition 1 shows that the above rules are complete for deciding the interaction be-
tween a value pair.

Proposition 1 (Completeness): For any value combination ofek , c+
i , c+

j , τ0, τ1 wherek > 0,

exactly one of Rules 1, 2 and 3 applies, which assignspci(ek, c+
i , c+

j ) uniquely.

Proof. The preconditions of Rules 1, 2 and 3 are mutually exclusive and exhaustive. Hence,
for any value combination, exactly one rule fires.

The two cases of Rule 1 are mutually exclusive and exhaustive given its precondition.
Hence, if Rule 1 fires,u or r is assigned topci(ek, c+

i , c+
j ). If Rule 2 fires,null is assigned

to pci(ek, c+
i , c+

j ). The three cases of Rule 3 are mutually exclusive and exhaustive given its
precondition. Hence, if Rule 3 fires,pci(ek, c+

i , c+
j ) is assignedu, r, or null.

Proposition 2 shows that the above rules selectu or r whenever one type of causal
interaction is more likely than the other.

Proposition 2 (Soundness): Letτ0 andτ1 be reduced continuously. In the limit,pci(ek, c+
i , c+

j )
can only be assignednull, if one of the following holds.

(1) p = q = t
(2) p 6= q andt = 0.5(p + q)

Proof. Assigningnull to pci(ek, c+
i , c+

j ) can only occur if Rule 2 or 3 is fired. Ifτ0 is
reduced continuously, the only situation where Rule 2 can fire is whenp = q = t.

Suppose that Rule 3 is fired. Thenp 6= q andt ∈ [min(p, q), max(p, q)]. If τ1 is reduced
continuously, the only situation wherepci(ek, c+

i , c+
j ) is assignednull is whent = 0.5(p+q)

andR = 0.

Givenek, the above determinespci(ek, c+
i , c+

j ) for a pairc+
i andc+

j . If each cause has
m + 1 values, there arem2 pairs of active values forci andcj . The next rule determines the
PCI bitpci(ek, ci, cj) by majority of value based interactions. Its lower bound ofτ2 ensures
that the first two cases cannot both be true. A possible value for thresholdτ2 may be 0.51.

Rule 4 (Majority Value Pairs): LetM be the number of active cause value pairs(c+
i , c+

j ),
Mu be the number of interactions wherepci(ek, c+

i , c+
j ) = u, andMr be the number of
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interactions wherepci(ek, c+
i , c+

j ) = r. For a given thresholdτ2 ∈ (0.5, 1),

pci(ek, ci, cj) =

{
u : Mu > τ2 M,
r : Mr > τ2 M,

null : Otherwise.

After PCI bit pci(ek, ci, cj) is extracted for each pair(ci, cj), a setpci(ek) of PCI bits
relative toek is defined. Fromη such sets, the next rule selects one with the most bits as the
PCI pattern.

Rule 5 (Partial PCI pattern): Letn be the number of causes ofe, the set of PCI bits relative
to ek (k > 0) bepci(ek) = {pci(ek, ci, cj) | ∀i,j ci 6= cj}, andNk be the number of PCI bits
in pci(ek) such thatpci(ek, ci, cj) 6= null.

Then selectpci(ex) as the partial PCI pattern ifNx = maxk Nk.

The value ofNx is between 0 andC(n, 2) in general. IfNx is too close toC(n, 2), there
are very few candidate NATs, which reduces the space for subsequent parameter search, and
can ultimately reduce the accuracy of compression. IfNx is too far fromC(n, 2), there are
many candidate NATs, which renders the subsequent parameter search costly. The value of
Nx for a given target CPT depends on the setting ofτ0 throughτ2. If the thresholds are too
relaxed, fewernull PCI bits will be assigned andNx will be closer toC(n, 2). To avoid such
situations, initial threshold values should be tight. If the resultantNx is too small, relax the
thresholds to increase theNx value.

To implement the above dynamic control, we uses an additional thresholdτ3 ∈ (0, 1)
and tight initial values forτ0 throughτ2. If Nx > τ3 C(n, 2), the PCI pattern from Rule 5 is
accepted. Otherwise,τ0 throughτ2 are relaxed and search is repeated, untilNx > τ3 C(n, 2).
The effectiveness of the procedure is experimentally validated in Section 6.

4. PARAMETER ESTIMATION WITH CONSTRAINED GRADIENT DESCENT

Once a partial PCI pattern is extracted, the set of candidate NATs compatible with the
pattern can be determined (Xiang and Truong (2014)). For each candidate NAT, single-
causals can be estimated from target CPT through a gradient descent. From resultant NAT
models, the best NAT model can be selected. These steps parallel those for compression of
binary CPTs into binary NAT models (Xiang and Liu (2014)). In this section, we extend the
gradient descent for compression of multi-valued CPTs.

Our objective is to approximate a target CPTPT with a NAT modelM . M consists of a
NAT and a set of single-causals, which defines a CPTPM . PT consists of a set of conditional
probability distributions (CPDs),P (e|c), wherec is an instantiation ofC. We index the CPDs
asPT (0), ..., PT(Z − 1), wherePT (0) has the conditionc = (c0

1, ..., c
0
n), andZ counts the

CPDs.A CPT over an effect and ten binary causes has 1024 CPDs.
We measure the similarity ofPM from PT by the average Kullback−Leibler divergence,

KL(PT , PM) =
1
Z

Z−1∑

i=0

∑

j

PT (i, j)log
PT (i, j)
PM(i, j)

, (2)

wherei indexes CPDs inPT andPM , andj indexes probabilities in each CPD. Gradient
descent estimates the set of single-causals ofM such thatKL(PT , PM) is minimized. In the
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experimental study (Section 6), the average Euclidean distance

ED(PT , PM) =

√√√√ 1
K

Z−1∑

i=0

∑

j

(PT (i, j)− PM (i, j))2

is also obtained, whereK counts probabilities inPT .
During descent, the point descending the multi-dimensional surface is a vector of single-

causals. For a binary NAT model withn causes, the vector hasn parameters and each can be
specified independently. For multi-valuedNAT models, where|De| = η+1 and|Di| = m+1
for i = 1, ..., n, the descent point is aηmn vector. Each parameter is aP (e+ ← c+

i ). Unlike
the binary case, theηmn parameters are not independent.We consider below constraints that
they must observe during descent.

First, each parameterP (e+ ← c+
i ) > 0. That is, each parameter is lower bounded by 0,

but cannot reach the bound since otherwisec+
i no longer causese+.

Second, in the binary case, each parameter is upper bounded by 1, but cannot reach
the bound since otherwiseci is no longer an uncertain cause. In the multi-valued case, this
constraint is replaced by a more strict alternative. For eachc+

i ,
∑η

j=1 P (ej ← c+
i ) < 1 must

hold. If violated, the parametersP (e1 ← c+
i ), ..., P (eη← c+

i ) are not valid single-causals of
an uncertain cause. This amounts tomn constraints, each governingη parameters. To satisfy
these constraints, we extend gradient descent for binary NAT models as presented below.

At the start of each round of descent, each group ofη single-causals under the same
constraint are initialized together as follows. Letδ and γ be small constants close to 0.
Generateη + 1 random numbers in(0, 1), normalize them, scale each by1− γ, and replace
those< δ by δ. If the sum> 1 due to replacement, repeat the above until no replacement
occurs after the scaling. Drop one arbitrarily and assign the remaining as initial single-
causals. Lemma 1 summarizes properties of the initialization.

LEMMA 1 (Initialization): LetP (e1 ← c+
i ), ..., P (eη ← c+

i ) be initial values of parame-
ters with the same active cause valuec+

i . The following hold.

(1) For each parameter,P (ej ← c+
i ) > δ, j = 1, ..., η.

(2) For the subset of parameters,
∑η

k=1 P (ek ← c+
i ) 6 1− γ.

Proof. The condition (1) holds due to the replacement. After normalization and scaling, if
no replacement occurs, theη + 1 numbers sum to1− γ. Hence, the condition (2) holds.

Each step of gradient descent updates theηmn parameters in sequence. To ensure that
both conditions of Lemma 1 continue to hold, we constrain the descent as follows. For each
P (ej ← c+

i ), after it is updated, check whetherP (ej ← c+
i ) < δ. If so, setP (ej ← c+

i ) = δ

and stop it from further descent. Otherwise, check ifS =
∑η

k=1 P (ek ← c+
i ) > 1 − γ.

If so, setP (ej ← c+
i ) to P (ej ← c+

i ) − (S − (1 − γ)) and stop it from further descent.
If P (ej ← c+

i ) passes both tests, commit to the value and continue its descent. Theorem 1
summarizes properties of the method.

THEOREM 1 (Descent): LetP (e1 ← c+
i ), ..., P (eη← c+

i ) be current values of a subset of
parameters with the same active cause valuec+

i , such that the following hold.

(1) For each parameter,P (ej ← c+
i ) > δ, j = 1, ..., η.

(2) For the subset of parameters,
∑η

k=1 P (ek ← c+
i ) 6 1− γ.

After eachP (ej ← c+
i ) is updated during descent, the above conditions still hold.
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Proof. SupposeP (ej ← c+
i ) is just updated fromP ′(ej ← c+

i ). If P (ej ← c+
i ) passes both

tests, both conditions holds. If it fails the 1st test, it is modified and the 2nd test is not run
(Case 1). If it passes the 1st and fails the 2nd, it is also modified (Case 2). Below, we show
that, in either case, both conditions hold.

[Case 1] Failure of the 1st test setsP (ej ← c+
i ) to δ and renders the condition (1). By

assumption, both conditions hold beforeP (ej ← c+
i ) is updated fromP ′(ej ← c+

i ). If the
1st test fails, we haveP (ej ← c+

i ) < δ 6 P ′(ej ← c+
i ). After P (ej ← c+

i ) is raised toδ,
we haveP (ej ← c+

i ) 6 P ′(ej ← c+
i ), and the condition (2) continues to hold.

[Case 2] Denote the sum before and after the update byS ′ andS. By assumption, the
condition (2) holds beforeP (ej ← c+

i ) is updated fromP ′(ej ← c+
i ). Hence, the violation

is due to the increaseP (ej ← c+
i ) > P ′(ej ← c+

i ). We claim that the increase must satisfy
P (ej ← c+

i )− P ′(ej ← c+
i ) > S − (1− γ).

Assume that it is false andP (ej ← c+
i ) − P ′(ej ← c+

i ) < S − (1 − γ). Before the
update, we haveS ′ 6 1− γ. Combining the two inequalities, we have

S = S ′ − P ′(ej ← c+
i ) + P (ej ← c+

i ) < 1− γ + S − (1− γ) = S,

which is a contradiction. Therefore, our claim holds, which implies that the modified value
satisfiesP (ej ← c+

i )− (S − (1− γ)) > P ′(ej ← c+
i ) > δ. Hence, the condition (1) holds

after the modification.
Furthermore, after the modification, we have the new sum

S − P (ej ← c+
i ) + [P (ej ← c+

i )− (S − (1− γ))] = 1− γ,

and the condition (2) also holds.

By Lemma 1, each round of descent starts with valid single-causals. By Theorem 1, for
each step of descent, after each parameter is updated, the entire set of single-causals is still
valid. Hence, the constrained gradient descent terminates with valid single-causals.

Once the parameters for each candidate NAT are determined, a candidate NAT model
(the NAT and its parameters) is fully specified. The NAT model with the smallest average
KL distance is the compressed model of the target CPT.

5. PCI PATTERN EXTRACTION WITH PERSISTENT LEAKY CAUSES

5.1. The Challenge
A leaky cause in a causal model represents all causes that are not explicitly named.

We denote the leaky cause byc0 and other causes byc1, ..., cn. Thec0 may or may not be
persistent. Anon-persistentc0 is not always active, and can be modeled in the same way
as other causes. A target CPT with a non-persistent leaky cause hasP (e|c0, c1, ..., cn) fully
specified whereP (e0|c0

0, c
0
1, ..., c

0
n) = 1 andP (ek |c0

0, c
0
1, ..., c

0
n) = 0 for k > 0.

A PLC is always active. We modelc0 ∈ {c0
0, c

1
0}, andc0 = c1

0 always holds. Hence,
a target CPT has the formP (e|c1

0, c1, ..., cn). This has two implications. First, parameters
P (e|c0

0, c1, ..., cn) are not empirically available, since conditions(c0
0, c1, ..., cn) never hold.

Second, sincec0 is a persistent, uncertain cause, we have0 < P (e|c1
0, c

0
1, ..., c

0
n) < 1.

PLC raises an issue to CPT compression. SinceP (e|c0
0, c1, ..., cn) is undefined, the

target CPT takes the formP ′(e|c1, ..., cn) (only n causes)= P (e|c1
0, c1, ..., cn). One may

be misled by the formP ′(e|c1, ..., cn) and not modelc0 explicitly. This choice, however,
suffers from several limitations. First, the resultant NAT model is incapable of express-
ing causal interactions betweenc0 and other causes, and adjusting parameters accordingly.
Second, the NAT modelM incurs systematic errorPM (ek|c0

1, ..., c
0
n) = 0 for k > 0 as

required by Def. 1. Third, the search for parameters cannot be based on the average KL
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distance as defined in Section 4. Each term of the distance from a target CPTPT is formed
PT (i, j) log(PT(i, j)/PM(i, j)), wherei indexes CPDs andj indexes probabilities. Since
PM(ek|c0

1, ..., c
0
n) = 0 (k > 0) while PT (ek|c0

1, ..., c
0
n) > 0 due to PLC, the corresponding

terms for the distance are undefined (infinity).
To avoid these limitations, one may choose to modelc0 explicitly in the compressed

NAT model. This, however, encounters the following difficulty. To determine a value-pair
interactionpci(ek, c1

0, c
w
j ) by Def. 2, we need to compare

P (e > ek ← c1
0), P (e > ek ← cw

j ), andP (e > ek ← c1
0, c

w
j ),

wherej, k, w > 0. However,P (e > ek ← cw
j ) is unavailable sincec0 is a PLC. Furthermore,

to determinepci(ek, cv
i , c

w
j ), wherei, j, k, v,w > 0, we need to compareP (e > ek ← cv

i ),
P (e > ek ← cw

j ), andP (e > ek ← cv
i , c

w
j ), but none is available for the same reason.

To overcome the unavailability, it is plausible to compare instead the available

P (e > ek ← c1
0, c

v
i ), P (e > ek ← c1

0, c
w
j ), andP (e > ek ← c1

0, c
v
i , c

w
j ).

We show below that the value-pair interactionpci(ek, cv
i , c

w
j ) cannot be uniquely determined

by the comparison. In particular, we show that the following conditions can coexist.

P (e > ek ← cv
i , c

w
j ) > max(P (e > ek ← cv

i ), P (e > ek ← cw
j )) (3)

P (e > ek ← c1
0, c

v
i , c

w
j ) < min(P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j )) (4)

Similarly, the following conditions can also coexist.

P (e > ek ← cv
i , c

w
j ) < min(P (e > ek ← cv

i ), P (e > ek ← cw
j )) (5)

P (e > ek ← c1
0, c

v
i , c

w
j ) > max(P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j )) (6)

Proposition 3 (Reinforce): Letc0, ci, cj be causes whereci and cj are reinforcing. There
exist NAT models amongc0, ci, cj, whereP (e > ek ← c1

0, c
v
i , c

w
j ) > P (e > ek ← c1

0, c
v
i ),

as well as NAT models where the opposite holds.

Proof. Fig. 2 shows NATsTa andTd over c0, ci, cj, whereci andcj are reinforcing, and
labels of output events are omitted. InTa, sincecj reinforcesc0 andci, we have comparison

e<ek c0
1

e<ek c i
v

e<ek c j
w

e  ek c0
1

e  ek cj
w

e<ek c i
v

Ta Td

FIGURE 2. (Sub)NATs whereci andcj are reinforcing

P (e > ek ← c1
0, c

v
i , c

w
j ) > P (e > ek ← c1

0, c
v
i ). Note that although Def. 2 allows equality

between causal probabilities in the reinforcing case, the equality never occurs to probabilities
associated with NIN-AND gates due to product of factors in(0, 1).

In Td, c0 and ci are reinforcing, andc0 is undermined bycj at the top gate. Hence,
P (e > ek ← c1

0, c
v
i , c

w
j ) < P (e > ek ← c1

0, c
v
i ).

Proposition 3 shows that, whenci andcj are reinforcing (pci(ek, cv
i , c

w
j ) = r) and hence
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Eqn (3) holds, there is no guarantee for

P (e > ek ← c1
0, c

v
i , c

w
j ) > max(P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j )).

Proposition 4 (Undermine): Letc0, ci, cj be causes whereci andcj are undermining. There
exist NAT models amongc0, ci, cj, whereP (e < ek ← c1

0, c
v
i , c

w
j ) > P (e < ek ← c1

0, c
v
i ),

as well as NAT models where the opposite holds.

Proof. Fig. 3 shows NATsTe andTh overc0, ci, cj, whereci andcj are undermining. InTe,

e  ek c0
1

e  ek ci
v

e  ek cj
w

e<ek c0
1

e<ek c j
w

e  ek ci
v

e hT T

FIGURE 3. (Sub)NATs whereci andcj are undermining

cj underminesc0 andci, we haveP (e > ek ← c1
0, c

v
i , c

w
j ) < P (e > ek ← c1

0, c
v
i ). That is,

P (e < ek ← c1
0, c

v
i , c

w
j ) > P (e < ek ← c1

0, c
v
i ). In Th, c0 andci are undermining, andc0

is reinforced bycj at the top gate. Hence,P (e > ek ← c1
0, c

v
i , c

w
j ) > P (e > ek ← c1

0, c
v
i ).

That is,P (e < ek ← c1
0, c

v
i , c

w
j ) < P (e < ek ← c1

0, c
v
i ).

Proposition 4 shows that whenci and cj are undermining (pci(ek, cv
i , c

w
j ) = u) and

hence Eqn (5) holds, there is no guarantee for

P (e > ek ← c1
0, c

v
i , c

w
j ) < min(P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j )).

From Propositions 3 and 4, it follows thatpci(ek, cv
i , c

w
j ) cannot be determined soly based

on comparing

P (e > ek ← c1
0, c

v
i ), P (e > ek ← c1

0, c
w
j ), andP (e > ek ← c1

0, c
v
i , c

w
j ).

Although Propositions 3 and 4 involvec0, their proofs do not depend onc0 being a PLC.
Hence, both propositions apply to any distinct causesc, ci andcj . It then also follows that
simple comparison of multi-causal probabilities from NATs with additional causes beyond
ci andcj cannot help determinepci(ek, cv

i , c
w
j ).

Below, we present a solution to meet the challenge.

5.2. Determine PCI Bits by SubNAT Differentiation
We observe that the above extraction ofpci(ek, cv

i , c
w
j ) focuses onci andcj only. It fails

since the existence of PLCc0 deprives us of the necessary target probabilities. To overcome
this difficulty, we expand our focus to includec0. That is, instead of trying to estimate the
causal interaction betweenci andcj , we estimate the causal interactions amongc0, ci and
cj. The inclusion of PLCc0 implies that we are now able to conduct the analysis based on
the following available target probabilities over onlyc0, ci andcj :

P (e > ek ← c1
0), P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j ), andP (e > ek ← c1

0, c
v
i , c

w
j ).

Fig. 4 enumerates (sub)NAT models for the value tuple(c1
0, c

v
i , c

w
j , ek). For each NAT, value-

pair interactions relative toek are summarized in Table 1. Given a target CPT, if we can



12 COMPUTATIONAL INTELLIGENCE

e  ek c0
1 e  ek c0

1

e  ek ci
v

e<ek c i
v

e<ek c j
w

e<ek c j
w

e  ek cj
w

e<ek c i
v

e<ek c0
1

e<ek c i
v

e<ek c j
w

e  ek c0
1

e  ek c0
1

e  ek ci
v

e  ek cj
w

e  ek ci
v

e  ek cj
w e<ek c i

v

e  ek cj
w

e<ek c0
1

e<ek c j
w

e  ek ci
ve<ek c0

1

T T T Te f g h

T T T Ta b c d

e<ek c 0
1

FIGURE 4. (Sub)NATs overc0, ci andcj

TABLE 1. Value-pair interactions of NAT models

Ta Tb Tc Td Te Tf Tg Th

pci(ek, c1
0, c

v
i ) r u u r u r r u

pci(ek, c1
0, c

w
j ) r u r u u r u r

pci(ek, cv
i , c

w
j ) r r r r u u u u

identify which NAT in Fig. 4 characterizes the underlying causal interactions, we can obtain
the three corresponding value-pair interactions from Table 1.

To this end, we analyze the six pair-wise comparisons of the four available target proba-
bilities. The result is summarized in Proposition 5 and Table 2.

Proposition 5 (Comparison): LetTa throughTh be NAT models over causesc0, ci, andcj .
Pair-wise comparisons amongP (e > ek ← c1

0), P (e > ek ← c1
0, c

v
i ), P (e > ek ← c1

0, c
w
j ),

andP (e > ek ← c1
0, c

v
i , c

w
j ) hold as Table 2.

TABLE 2. Pairwise causal probability comparison by NAT models

Row Ta Tb Te Tf Td Tg Tc Th

P (e > ek ← c1
0, c

v
i , c

w
j )

1 −P (e > ek ← c1
0, c

v
i ) + + − − − − + +

P (e > ek ← c1
0, c

v
i , c

w
j )

2 −P (e > ek ← c1
0, c

w
j ) + + − − + + − −

P (e > ek ← c1
0, c

v
i , c

w
j )

3 −P (e > ek ← c1
0) + − − + +/− +/− +/− +/−

P (e > ek ← c1
0, c

v
i )

4 −P (e > ek ← c1
0, c

w
j ) +/− +/− +/− +/− + + − −

P (e > ek ← c1
0, c

v
i )

5 −P (e > ek ← c1
0) + − − + + + − −

P (e > ek ← c1
0, c

w
j )

6 −P (e > ek ← c1
0) + − − + − − + +
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Proof. From Fig. 4,cj reinforces the other two causes inTa and Tc. In Tb and Th, cj

reinforces another cause at the top gate. The result is+ in row 1 of Table 2 for these NATs.
In Te andTg, cj undermines the other two causes. InTf andTd, cj undermines another cause
at the top gate. The result is− in row 1 for these NATs. Hence, we have row 1.

Causeci reinforces the other two causes inTa andTd, and reinforces another cause at
the top gate inTb andTg. It undermines the other two causes inTe andTh, and undermines
another cause at the top gate inTc andTf . Hence, we have row 2.

Causesci andcj as a group reinforcec0 in Ta andTf , but underminec0 in Tb andTe.
Hence, we have the corresponding results in row 3 for these NATs. In the other NATs, one of
ci andcj reinforcesc0 and the other one underminesc0. The comparison result can go either
way, depending on the relative causal strength ofci andcj . Hence, we have row 3.

Row 4 compares two double-causal probabilities, withci being inactive in one andcj

being inactive in the other. InTa andTf , bothci andcj reinforcesc0. Which double-causal
probability is larger depends on their relative causal strength. InTb andTe, bothci andcj

underminesc0. The similar applies.
In Td andTg, ci reinforcesc0 andcj underminesc0. Hence, the comparison result is+.

In Tc andTh, ci underminesc0 andcj reinforcesc0. Hence, the result is−.
Row 5 is implied bypci(ek, c1

0, c
v
i ) in Table 1, and row 6 bypci(ek, c1

0, c
w
j ).

From Proposition 5, it follows thatTa, Tb, Te, andTf can be uniquely identified based
on comparisons in the first three rows.Td and Tg as a group can be identified based on
comparisons in the first two rows, and so canTc and Th as a group. However, the two
members in each group cannot be differentiated by the comparisons (a partial solution).
Below, we explore a novel idea to extend the partial solution into a complete solution.

5.3. NAT Group Member Differentiation
The technique described above on average allows unique identification of 50% (4 out of

8) of the NAT models overc0, ci andcj . From Table 1, this means that 50% of value-pair
interactionspci(ek, cv

i , c
w
j ), wherei, j > 0, can be identified.

From the last two rows of Table 2, both members of group{Td, Tg} have the same value-
pair interactionspci(ek, c1

0, c
v
i ) andpci(ek, c1

0, c
w
j ). The same is true for the group{Tc, Th}.

Hence,pci(ek, c1
0, c

v
i ) and pci(ek, c1

0, c
w
j ) can always be uniquely identified, even though

the underlying NAT cannot be. This means that allpci(ek, c1
0, c

v
i ) andpci(ek, c1

0, c
w
j ) can be

identified uniquely.
On the other hand, from the last column of Table 1, we observe thatpci(ek, cv

i , c
w
j ) differs

betweenTd andTg, and so does betweenTc andTh. This implies that 50% ofpci(ek, cv
i , c

w
j ),

wherei, j, k > 0, cannot be identified, which renders the corresponding PCI bitpci(ci, cj)
unspecified. Since the number of candidate NATs grow exponentially on the number of
unspecified PCI bits, presence of many such bits has a significant consequence on the cost
of subsequent parameter search.

To resolve the difficulty, we explore a novel idea. ConsiderP (e > ek ← c1
0, c

v
i ). If c0

andci are undermining, we haveP (e > ek ← c1
0, c

v
i ) = P (e > ek ← c1

0)P (e > ek ← cv
i ).

The parameterP (e > ek ← cv
i ) is unavailable, but we can estimate from the available by

P (e > ek ← cv
i ) = P (e > ek ← c1

0, c
v
i )/P (e > ek ← c1

0).

If c0 andci are reinforcing,P (e < ek ← c1
0, c

v
i ) = P (e < ek ← c1

0)P (e < ek ← cv
i ), and

we can estimateP (e < ek ← cv
i ) = P (e < ek ← c1

0, c
v
i )/P (e < ek ← c1

0).
For both members of the group{Td, Tg}, c0 andci are reinforcing, andc0 andcj are
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undermining. If we can estimate single-causalsP (e > ek ← cv
i ) andP (e > ek ← cw

j )
accordingly from the available parameters

P (e > ek ← c1
0, c

v
i ), P (e > ek ← c1

0, c
w
j ), andP (e > ek ← c1

0),

we can then plug in the two single-causals andP (e > ek ← c1
0) to Td andTg, and obtain

the multi-causalsPd(e > ek ← c1
0, c

v
i , c

w
j ) andPg(e > ek ← c1

0, c
v
i , c

w
j ). The NAT whose

multi-causal is closer toP (e > ek ← c1
0, c

v
i , c

w
j ) from the target CPT will be chosen since it

better models interactions amongc0, ci andcj .
For the group{Tc, Th}, c0 and ci are undermining in both NATs, andc0 and cj are

reinforcing. The similar method can be applied to differentiate the two members.
Although the idea seems to have resolved the above difficulty, it is not always applicable.

As an example, we observed a target CPT where

P (e > ek ← c1
0, c

v
i , c

w
j ) = 0.574, P (e > ek ← c1

0, c
v
i ) = 0.283,

P (e > ek ← c1
0, c

w
j ) = 0.651, andP (e > ek ← c1

0) = 0.845.

Applying comparisons in rows 1 and 2 of Table 2, it fits the group{Tc, Th} with (+,−).
However, sinceP (e > ek ← c1

0, c
w
j ) < P (e > ek ← c1

0), c0 andcj do not reinforce as
Tc andTh expected. As the result, estimation ofP (e > ek ← cw

j ) by reinforcement is not
applicable.

Applying comparisons in rows 5 and 6 of Table 2, the above example has the compar-
isons(−,−). They do not match those ofTc andTh, and that is the source of failure to the
above attempt. This observation suggests that the above idea works only when comparisons
in rows 5 and 6 have the right match. It also suggests that when the comparisons mismatch,
comparisons in rows 5 and 6 can be used for identifying NATs.

Following this hint and using comparisons(−,−) in rows 5 and 6, we obtain the new
NAT group{Tb, Te} with the matching comparisons. Since comparisons(+,−) in rows 1
and 2 differ fromTb andTe (each by one comparison), we need to break the tie betweenTb

andTe. This can be done by estimating single-causalsP (e > ek ← cv
i ) andP (e > ek ← cw

j )
assuming undermining, which will now succeed. We then estimateP (e > ek ← c1

0, c
v
i , c

w
j )

for Tb andTe, and use the multi-causal that is closer to the target CPT to select one.
As another example, we also observed a target CPT where

P (e > ek ← c1
0, c

v
i , c

w
j ) = 0.960, P (e > ek ← c1

0, c
v
i ) = 0.970,

P (e > ek ← c1
0, c

w
j ) = 0.929, andP (e > ek ← c1

0) = 0.733.

Applying comparisons in rows 1 and 2 of Table 2, it fits the group{Td, Tg} with (−, +). The
comparisons in rows 5 and 6 are(+, +), making estimation ofP (e > ek ← cw

j ) by under-
mining inapplicable. In response, we apply the similar procedure as above to differentiate
instead betweenTa andTf .

In summary, from the target probabilities

P (e > ek ← c1
0), P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j ), andP (e > ek ← c1

0, c
v
i , c

w
j ),

we first use comparisons in rows 1, 2 and 3 (breaking ties arbitrarily) to identify the subNAT.
If this leads to a group of two subNATs, we estimate the single-causals, compute the implied
multi-causals, and differentiate between the group members. If the single-causal estimation
is not applicable for the group, we use comparisons in rows 5 and 6 to find an alternative
group of two subNATs. We then estimate the single-causals, compute the implied multi-
causals, and differentiate between group members. This is elaborated in Algorithm 1, where
we denote the above target probabilities byq, r, s and t, respectively. In Algorithm 1, ties
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may occur in sign computation and difference comparison. Such cases rarely occur, and we
break ties arbitrarily for simplicity.

Algorithm 1: (Input:q, r, s andt)

1 compute sign patternpat1 = (sign(t− r), sign(t− s), sign(t− q));
2 if pat1 matches that ofTa, Tb, Te, or Tf , return the matching NAT;
3 compute sign patternpat2 = (sign(r− q), sign(s− q));
4 if pat2 matches that of{Td, Tg} or {Tc, Th}, do
5 estimatex ≡ P (e > ek ← cv

i ) andy ≡ P (e > ek ← cw
j ) by matching group;

6 for each member NATTβ of the matching group, do
7 compute multi-causalz ≡ P (e > ek ← c1

0, c
v
i , c

w
j ) fromq, x, y and NATTβ;

8 compute difference|t− z|;
9 return the NAT with the smaller difference;
10 matchpat2 against that of{Ta, Tf} or {Tb, Te};
11 estimatex′ ≡ P (e > ek ← cv

i ) andy′ ≡ P (e > ek ← cw
j ) by the matching group;

12 for each memberT ′
β of the matching group, do

13 computez′ ≡ P (e > ek ← c1
0, c

v
i , c

w
j ) fromq, x′, y′ andT ′

β;
14 compute difference|t − z′|;
15 return the NAT with the smaller difference;

Theorem 2 establishes the most important property of Algorithm 1.

THEOREM 2 (Soundness): For any target probabilities

P (e > ek ← c1
0), P (e > ek ← c1

0, c
v
i ), P (e > ek ← c1

0, c
w
j ), andP (e > ek ← c1

0, c
v
i , c

w
j ),

Algorithm 1 returns a unique NAT amongTa throughTh, subject to arbitrary tie-breaking.

Proof. Assume that no ties are involved in sign computation and difference comparison. If
pat1 matches rows 1, 2, and 3 of Table 2, one ofTa, Tb, Te, orTf will be returned by line 2.
Otherwise,pat2 is computed (line 3), with four possible outcomes.

If the outcome is(+,−) or (−, +), lines 4 to 9 will be executed. Ifpat2 = (+,−), line
4 matches the group{Td, Tg}. Line 5 estimatesx, according to reinforcingc0 andci, and
estimatesy, according to underminingc0 andcj . The valuesz and|t−z|will be computed for
bothTd andTg in lines 6 to 8. One ofTd andTg will be returned in line 9. Ifpat2 = (−, +),
the process is similar, but returns one ofTc andTh.

If pat2 = (+, +) or (−,−), the group{Ta, Tf} or{Tb, Te}will be processed in a similar
fashion by lines 10 to 15, and a unique NAT will be returned.

Given a value-tuple(ek, c1
0, c

v
i , c

w
j ), once the NAT model is identified, the three value-

pair interactions can be found from Table 1. Hence, Theorem 2 implies that the causal
interactionpci(ek, cv

i , c
w
j ) for anyk, i, j values can be extracted.

However, pci(ek, cv
i , c

w
j ) from a general target CPT may differ for differentk, v, w

values (not so for a NAT model). Hence, for a given combination ofk, i, j, Rule 4 must
be applied to determinepci(ek, ci, cj). Since a null outcome is possible, the resultant PCI
pattern forek is partial in general. Furthermore, the PCI patterns for differentek may differ,
in which case, we apply all of them to generation of candidate NATs.
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6. EXPERIMENTS

To validate the framework for compression of general CPTs into multi-valuedNAT mod-
els and the techniques presented above, several experiments are conducted. In the following,
we report the objective, the setup, and the result for each experiment.

6.1. Necessity of Flexible PCI Extraction
This experiment reveals the difference between general CPTs and NAT CPTs, to justify

the need for flexible PCI extraction. Two batches of CPTs are simulated each overn = 5
causes with domain sizes of all variables beingk = 4. The 1st batch consists of 100 random
CPTs(without local structure) and the 2nd 100 NAT CPTs (of randomly selected NATs
and single-causals).

Given a target CPT, for each pair of causes, Eqn. (1) is applied relative to each ofe1, e2,
ande3. With n = 5, there areC(5, 2) = 10 cause pairs. For each pair, there are3 ∗ 3 = 9
active value pairs. For each pair, the PCI bit is well-defined if and only if one condition of
Eqn. (1) holds for all 9 value pairs. A target CPT has between 0 and 10 well-defined PCI
bits.

For the 1st batch, 0 well-defined PCI bit are extracted from 97 CPTs. For each of the 3
remaining CPTs, one well-defined PCI bit is extracted relative toe1, one relative toe2, and
one relative toe3. Hence, the extraction rate of well-defined PCI bits is9/3000 = 0.003. In
the 2nd batch, 10 well-defined PCI bits are extracted from each CPT. This shows that general
CPTs and NAT CPTs differ significantly and the flexible PCI pattern extraction presented in
Section 3 is necessary.

6.2. Compression Accuracy Relative to the Optimal
In this experiment, we evaluate the effectiveness of our PIC extraction techniques. The

techniques reduce the number of candidate NATs to a small subset in the search space
(exponential onn). It is important to assess whether such reduction retains good candi-
date NATs. To this end, we compare our methods with exhaustively evaluating all NATs
(optimal). We refer to our compression method without PLC modeling as NPLC-Comp, and
the corresponding optimal method as NPLC-Opt. The methods with explicit PLC modeling
are referred to as PLC-Comp and PLC-Opt, respectively. Since the optimal methods are
intractable, smallern values are used. We denote the maximum domain size of variables in
each target CPT byk.

To evaluate NPLC-Comp, 100 random CPTs are generated without PLC, wheren = 4
andk = 4. Table 3 shows the experiment result where ED, KL, SR, and RT refer to Euclidean
distance, KL distance, space reduction, and runtime (in seconds), respectively.

TABLE 3. Experimental comparison of NPLC-Comp and NPLC-Opt on random CPTs without PLC

NPLC-Comp NPLC-Opt

Mean Stdev Mean Stdev

ED 0.1928 0.0378 0.1869 0.0356
KL 0.1778 0.0743 0.1636 0.0587
SR 14.67 6.91 14.67 6.91
RT 7.84 6.31 49.96 37.95

NPLC-Comp runs about 6 times faster as NPLC-Opt, and incurred only slightly larger
compression errors. We conducted a single-sided t-test based on KL distance with the null
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hypothesisH0: NPLC-Comp has the same compression error as NPLC-Opt. The null hy-
pothesis is accepted at the level of significanceα = 0.025 and is rejected atα = 0.05.

To evaluate PLC-Comp, random CPTs are generated with PLCs andk = 4. The first 100
CPTs haven = 3 and the second 100 CPTs haven = 4. Hence, compressed NAT models
haven = 4 andn = 5, respectively. Tables 4 and 5 show the experiment results.

TABLE 4. Experimental comparison of PLC-Comp and PLC-Opt where target CPTs haven = 3

PLC-Comp PLC-Opt

Mean Stdev Mean Stdev

ED 0.1572 0.0428 0.1538 0.0421
KL 0.1021 0.0348 0.0976 0.0329
SR 6.53 2.55 6.53 2.55
RT 11.92 7.50 56.85 40.35

TABLE 5. Experimental comparison of PLC-Comp and PLC-Opt where target CPTs haven = 4

PLC-Comp PLC-Opt

Mean Stdev Mean Stdev

ED 0.1802 0.0385 0.1701 0.0369
KL 0.1495 0.0514 0.1294 0.0365
SR 13.83 6.12 13.83 6.12
RT 23.99 18.47 1026.99 495.50

For target CPTs withn = 3, PLC-Comp is about 5 times faster than PLC-Opt. The
single-sided t-test accepted the null hypothesis atα = 0.05. For target CPTs withn = 4,
PLC-Comp is about 43 times faster. The KL-distance of PLC-Opt is at 0.1294 while that of
PLC-Comp is at 0.1495. As the result, the null hypothesis is rejected atα = 0.005.

In summary, the experimental results demonstrate that our PCI extraction techniques
(with and without PLCs) reduce NAT search space effectively while retaining good candidate
NATs.

6.3. Compressions of Random CPTs
In this experiment, we evaluate both accuracy and efficiency of NAT compression as the

numbern of causes grows. As a base-line, we compare our methods, NPLC-Comp and PLC-
Comp, with the popular noisy-MAX, denoted NMAX below. NMAX uses a fixed structure
and hence only parameter search is involved.

For target CPTs without PLC, we generated 100 random CPTs withn = 4, another 100
CPTs withn = 5, and a third 100 CPTs withn = 6, wherek = 4 for all. Parameters in each
CPT are non-extreme, exceptP (e|c0

1, ..., c
0
n). The compression results by NPLC-Comp and

NMAX are shown in Table 6.
As n grows from 4 to 6, both NAT models and noisy-MAX have space reduction in-

creased from 14.67 to 89.96. Whenn = 6, NMAX runs 22 times faster than NPLC-Comp,
as it only parameterizes a single structure. On the other hand, the KL-distance of NAT models
is about 37% of noisy-MAX. The Euclidean distance of NAT models is reasonable at about
0.28. We conducted single-sided t-tests based on KL distance withH0: NPLC-Comp has the
same compression error as NMAX. It is rejected atα = 0.0005 for all n values.

For target CPTs with PLC, we generated 100 random CPTs for each ofn = 4, 5, 6,
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TABLE 6. Experimental comparison of NPLC-Comp and NMAX on random CPTs without PLC

NPLC-Comp NMAX

n Mean Stdev Mean Stdev

4 ED 0.1928 0.0378 0.2296 0.0639
KL 0.1778 0.0743 0.3205 0.2748
SR 14.67 6.91 14.67 6.91
RT 7.84 6.31 0.54 0.38

5 ED 0.2353 0.0547 0.3556 0.1042
KL 0.2940 0.1353 0.8536 0.4082
SR 36.60 20.73 36.60 20.73
RT 25.62 25.81 2.12 1.98

6 ED 0.2835 0.0663 0.4425 0.0601
KL 0.4361 0.1409 1.1683 0.1354
SR 89.96 53.32 89.96 53.32
RT 102.81 147.78 4.74 3.77

wherek = 4. Parameters in each CPT are non-extreme. They are compressed by PLC-Comp,
NPLC-Comp and NMAX. When NPLC-Comp is applied to target CPTs with PLCs, the
average KL distance in Eqn. (2) is undefined, as explained in Section 5.1. For performance
comparison,we apply to NPLC-Comp theglorified average KL distance, where CPDsPT (0)
andPM (0), corresponding to the conditionc = (c0

1, ..., c
0
n), are excluded from Eqn. (2) and

the CPD countZ is reduced by one. The experimental results are shown in Table 7.

TABLE 7. Comparison of PLC-Comp, NPLC-Comp and NMAX on random CPTs with PLCs

PLC-Comp NPLC-Comp NMAX

n Mean Stdev Mean Stdev Mean Stdev

3 ED 0.1572 0.0428 0.1980 0.0356 0.2204 0.0407
KL 0.1021 0.0348 0.1120 0.0374 0.1523 0.0363
SR 6.53 2.55 6.94 2.77 6.94 2.77
RT 11.92 7.50 3.22 2.48 0.50 0.26

4 ED 0.1802 0.0385 0.2029 0.0352 0.2402 0.0609
KL 0.1495 0.0514 0.1687 0.0681 0.3228 0.2771
SR 13.83 6.12 14.94 6.50 14.94 6.50
RT 23.99 18.47 8.23 7.64 0.60 0.35

5 ED 0.2166 0.0608 0.2388 0.0540 0.3680 0.0889
KL 0.2471 0.1165 0.3193 0.1492 0.9319 0.3587
SR 31.94 15.46 34.38 16.48 34.38 16.48
RT 56.63 65.62 19.19 19.80 1.37 1.07

As n grows from3 to 5, space reduction rate grows from about 7 to about 32. NPLC-
Comp and NMAX have the same space reduction, while PLC-Comp is slightly less due
to encoding of the PLC. The runtime of PLC-Comp is about 3 times as that of NPLC-
Comp, as each candidate NAT model is more complex (n value is large). As for compression
accuracy, both PLC-Comp and NPLC-Comp are more accurate than NMAX. PLC-Comp has
the lowest KL-distance from the target, even though the KL-distance used for NPLC-Comp
is glorified. We performed single-sided t-tests for each pair of methods. For PLC-Comp vs.
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NPLC-Comp, the null hypothesis is rejected forn = 3 andn = 5 atα = 0.0005. Forn = 4,
it is accepted atα = 0.0005, but rejected atα = 0.001. For the pair PLC-Comp vs. NMAX
and NPLC-Comp vs. NMAX, the null hypothesis is rejected atα = 0.0005 for all n values.

In summary, compression into NAT models has superior accuracy than noisy-MAX, and
explicit PLC modeling significantly further improves accuracy when PLCs exist.

6.4. Compressions of Real BN CPTs
In this experiment, we evaluate the effectiveness of NAT compression in real world

CPTs. A total of 11 real world BNs are retrieved from a book website (Nagarajan et al.
(2013)), where the maximum domain size of variablesk > 3 and the maximum number of
parents per node> 3. From these BNs, we selected 362 target CPTs (see Table 8), where the
number of parentsn > 3 and the majority of parameter values are not extreme (uncertain
causes). Among these CPTs, 57 of them involve PLCs and the remaining 305 CPTs do not.
The domain sizes of variables range between 2 and 63. Due to the generalization of NAT
models beyond graded variables (Def. 1), we are able to conduct the compression without
having to ascertain whether each variable is graded.

TABLE 8. Summary of Target CPTs from real world Bayesian networks

BN # CPTs selected Max # parents/node

Alarm 3 4
Barley 13 4

Hailfinder 6 4
Heaper2 12 6
Water 5 5
Sachs 1 3

Insurance 5 3
Mildew 9 3

Pathfinder 24 5
Munin 48 3
Link 236 3

The compression results for NPLC-Comp and NMAX on target CPTs without PLC are
shown in Table 9. A t-test based on KL-distance rejected the null hypothesis that NPLC-
Comp and NMAX have the same compression accuracy (α = 0.0005). The commpression
error of NPLC-Comp by either distance measure is comparable with that for random CPTs
(larger than those forn = 4 and 5 in Table 6, and smaller than that forn = 6). We
identify an extra source of error in the real world target CPTs. A NAT model CPT has non-
extreme parameters, except those inP (e|c0

1, ..., c
0
n). It is also the case for random target

CPTs used in Section 6.3, but not so for many real world BN CPTs in the experiment. The
extreme parameters in the target CPT cause distribution of probability mass to the remaining
parameters that cannot not be perfectly matched by non-extreme parameters in the NAT CPT.
This is also true for the following compression.

The compression results for PLC-Comp, NPLC-Comp and NMAX on target CPTs with
PLCs are shown in Table 10. Based on the Euclidean distance (the KL-distance for NPLC-
Comp is glorified), compressions into NAT models are more accurate than noisy-MAX with
PLC-Comp being the most accurate. The accuracy of PLC-Comp is comparable with that
for random CPTs (Table 7).

In Zagorecki and Druzdzel (2013), a weighted KL-distance is used, where the KL-
distance for each CPD is weighted by the probability of its configuration, before sum-
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TABLE 9. Experimental comparison of NPLC-Comp and NMAX on real world CPTs without PLC

NPLC-Comp NMAX
Mean Stdev Mean Stdev

ED 0.2640 0.0423 0.3117 0.0662
KL 0.3653 0.1576 0.5002 0.9260
SR 7.19 5.39 7.19 5.39
RT 78.57 324.91 1.94 6.98

TABLE 10. Comparison of PLC-Comp, NPLC-Comp and NMAX on real world CPTs with PLCs

PLC-Com NPLC-Com NMAX
Mean Stdev Mean Stdev Mean Stdev

ED 0.1778 0.0904 0.2056 0.0703 0.2293 0.0797
KL 0.5312 0.4546 0.5243 0.4340 0.6742 0.5243
SR 19.25 311.67 19.95 32.58 19.95 32.58
RT 402.14 1498.11 226.414 751.51 15.63 38.71

ming into the overall KL-distance for the CPT. Hence, the overall KL-distance is con-
ditioned on the particular BN which provides the probability for each parent con-
figuration. The weighting may suppress a large KL-distance for a CPD if its parent
configuration has a close-to-zero probability. The average KL-distance used in this
work (Section 4) is equivalent to weighted KL-distance with uniform weights, and offers
an unbiased distance measure.

7. CONCLUSION

The main contributions of this work are the following. We extended the scope of NAT
models from graded variables (ordinal) to causal variables (Def. 1) that can be either ordinal
or nominal. We developed a flexible PCI pattern extraction to reduce the NAT search space
while retaining good candidate NATs. We presented a constrained gradient descent for pa-
rameter search given a NAT structure. We also proposed subNAT based differentiation for
PCI pattern extraction when persistent leaky causes exist. The effectiveness the framework
for compressing general CPTs into NAT models, coupled with the above techniques, is
validated by experimental study with both randomly generated and real world CPTs.

Since NAT-modeled BNs significantly reduce the space and time complexity during
inference (Xiang and Jin (2016)), the above contributions are a step forward to significantly
improving inference efficiency for BNs. They also provide guiding insight for learning
tractable BNs directly from data, which we will pursue as future work. We have measured
compression accuracy by comparing the resultant NAT CPT with the target CPT. This is
based on the assumption that if the compressed NAT CPTs are reasonably accurate, rela-
tive to target CPTs, then inference performed on a so-compressed BN will be reasonably
accurate, relative to the original BN. As a future work, the assumption will be verified by
assessing accuracy of posteriors resultant from inference with the compressed BNs.

A technique closely related to NAT compression is the rank-one tensor decomposition
(Savicky and Vomlel (2007)). It was shown that a CPT overm binary causes and their
additive effect of domain sizem + 1 can be decomposed into the sum ofm + 1 rank-
one tensors, each of which is the outer product ofm + 1 vectors. Hence, the rank-one
tensor decomposition reduces the number of parameters(m + 1)2m of a general CPT to
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3m2+4m+1. If the CPT is overm uncertain causes of the above domain sizes for variables,
a NAT model requires the specification ofm2 parameters. Hence, NAT compression is
more compact than rank-one tensor decomposition. For accuracy, although rank-one tensor
decomposition has more parameters, which may lead to better accuracy, a NAT model can
select its NAT topology from a super-exponential space. More study is needed to evaluate
the relative accuracy between NAT compression and tensor decomposition.
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