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Non-Impeding Noisy-AND (NIN-AND) Tree (NAT) models offer a highly expressive approximate repre-
sentation for significantly reducing the space of Bayesian Networks (BNs). They also improve efficiency of BN
inference significantly. To enable these advantages for general BNs, several technical advancements are made in this
work to compress target BN Conditional Probability Tables (CPTs) over multi-valued variables into NAT models.
We extend the semantics of NAT models beyond graded variables that causal independence models commonly
adhered to, and allow NAT modeling in nominal causal variables. We overcome the limitation of well-defined
Pairwise Causal Interaction (PCI) bits and present a flexible PCI pattern extraction from target CPTs. We extend
parameter estimation for binary NAT models to constrained gradient descent for compressing target CPTs over
multi-valued variables. We reveal challenges associated with persistent leaky causes (PLCs) and develop a novel
framework for PCI pattern extraction when PLCs exist. The effectiveness of the CPT compression is validated
experimentally.

Key words:Knowledge representation; Bayesian networks; causal independence models.

1. INTRODUCTION

When directions of links are (loosely) causally interpreted, aliscrete BN quantifies
causal strength between each effect anaitsauses by a CPT whose number of parameters
is exponential om. Common Causal Independence Models (CIMs), e.g., noisy-OR (Pearl
(1986)), reduce the number to being linear an but are limited in expressiveness. As
members of CIM family, NAT models (Xiang (2012b,a); Xiang and Truong (2014); Xiang
and Liu (2014)) express both reinforcing and undermining as well as their recursive mixture
using only a linear number of parameters. Thus, NAT models offer a highly expressive
approximate representation for significantly reducing the space of BNs.

CIMs are not directly operable by common BN inference algorithms, e.g., the cluster
tree method (Jensen et al. (1990)). A number of techniques have been proposed to over-
come the difficulty (Zhang and Poole (1996); Madsen and D’Ambrosio (2000); Takikawa
and D’Ambrosio (1999); Savicky and Vomlel (2007)). By multiplicatively factorizing NAT
models and compiling NAT modeled BNs for lazy propagation (Madsen and Jensen (1999)),
it has been shown that efficiency of exact inference with BNs can also be improved signifi-
cantly (Xiang (2012a); Xiang and Jin (2016)).

The above efficiency gain is applicable to NAT modeled BNs (each CPT is a NAT
model), or BNs over binary variables where each CPT must be compressed first into a NAT
model (Xiang and Liu (2014)). It is not yet applicable to general BNs over multi-valued
variables. The goal of this research is to achieve the efficiency gain for inference with general
BNs by compressing their CPTs into multi-valued NAT models (Xiang (2012b)). Advancing
compression from binary to multi-valued NAT models encounters several challenges. In this
work, we investigate the following.

IThis article significantly extends Xiang and Jiang (2016).
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First, a general discrete BN can contain both ordinal variables, often referredtaded
variables (Diez (1993)), and nominal variables. CIMs are commonly limited to ordinal vari-
ables, e.g., (Zagorecki and Druzdzel (2013)). In this work, we generalize the semantics of
NAT models to allow NAT models over nominal causal variables as well. This advancement,
coupled with that on PLCs (below), enables NAT modeling on any discrete variables in a
general BN.

Second, to gain efficiency with both space and inference time through NAT modeling,
eachtarget BN CPT is approximated (compressed) into a NAT model. The first stepis to find
a small set of candidate NAT structures to focus subsequent parameter search. A NAT can
be uniquely identified by a function that specifies interactions between each pair of causes,
termed a PCI pattern (Xiang et al. (2009)). Therefore, we extract a PCI pattern from the target
CPT, whichyields the candidate NATs. Since atarget CPT is generally nota NAT model, how
to extract a PCI pattern that provides good approximation of its causal interaction structure
is a challenge. The second contribution is a scheme that meets this challenge.

Third, once candidate NATs are obtained, probability parameters of the corresponding
NAT models must be assessed. The third contribution of this work is to extend the framework
for doing so with binary NAT models to multi-valued NAT models. We present a constrained
gradient descent as the key component of the extension. Although the general idea of con-
strained gradient descent already exists, this contribution investigates specific constraints for
compressing multi-valued CPTs.

Fourth, CIMs allow both explicit causes and implicit causes, termed leaky causes. Leaky
causes may be persistent (PLCs) or non-persistent. We show that existence of PLCs raises
another challenge. The fourth contribution is a framework for PCI pattern extraction with
PLCs.

The remainder is organized as follows. Section 2 introduces the terminology and extends
the semantics for NAT models beyond graded variables. How to extract PCI patterns from
general target CPTs is presented in Section 3. Section 4 deals with constrained gradient
descent for parameter estimation. PCI pattern extraction under the condition of PLCs is
developed in Section 5. Experimental validations of the proposed techniques are reported
in Section 6. We draw conclusions and discuss future work in Section 7.

2. EXTENDED SEMANTICS OF NAT MODELS

In this section, we extend the semantics for NAT models over multi-valued variables
(Xiang (2012b)) beyond the commonly required graded variables, as well as introduce the
necessary terminology.

The most commonly used CIMs is the noisy-OR, pioneered by Good (1961) and pop-
ularized by Pearl (1986). Henrion (1989) generalized noisy-OR to multi-valued variables
and Diez (1993) explicitly defined these CIMs, known as noisy-MAX, to be ayaded
(essentially ordinal) variables. The rationales to require graded variables include (1) the
interpretation of multiple values as presence of an entity with degrees of intensity, and (2) the
allowance of expression of probabilitf(e < €’]...), wheree is an effect variable and’ is
a degree of its intensity. The requirement of graded variables limits application of noisy-OR,
noisy-MAX, and related CIMs to ordinal variables, and exclude nominal variables that also
exist in general BNs. Below, we extend semantics of NAT models in Xiang (2012b) to relax
the requirement for graded variables. Since NAT models generalize noisy-MAX (Xiang and
Jin (2016)), the extended semantics also applies to noisy-OR, and noisy-MAX.

NAT models deal with uncertain causes. A causangertainif it can render the effect
but does not always do so. Smoking is a uncertain cause of lung cancer. We represent the
effect and causes byausal variableglefined below.
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Definition 1 (Causal variable): A variablethat can be eitheinactiveor beactivepossibly
in multiple ways, and is involved in a causal relation, isausal variablef when all causes
of the effect are inactive, the effect is inactive with certainty.

Note thatx may be either a cause or the effect in the relation. Whethegualifies as a
causal variable cannot be determined individually. According to Det. is,deemed a causal
variable when all variables in the relation are causal variables. For example, consider the
cause of owning a pebp) and the effect of fewer doctor visitsf{)) (a well-known health
benefit to pet owners), where

op € {none, dog, cat, rodent, fish, bird, horse, other},

fv e {none, 1 ~ 4%,5 ~ 8%,9 ~ 12%, 13%+}.

For both variablespone is the inactive value. Wheop = none and all other causes g¢fv
are also inactive, we havfv = none with certainty. A causal variable can be either ordinal,
e.g.,fv, or nominal, e.g.gp. Note thatop is not a graded variable.

We index the inactive value of a causal variablase, and its active values arbitrarily.
For variableop, we can index its valuesone, dog, ..., other asop?, op, ..., op”, respec-
tively, and will use this indexing below. In practice, some orders of indexing on active
values are preferred over others. However, the semantics of NAT models does not impose
constraints on such orders. For variahfle, it's preferable to index its valuegone, 1 ~
4%,5 ~ 8%, 9 ~ 12%, 13%+ as fv°, fvl, fv?, fu3, fv*, respectively, and we will use this
indexing below. But indexing them ag&", fv?, fv3, fv?, fv'is just as valid.

In general, we denote an effect layand the set of all causes efby C' = {c1, ..., ¢,,},
wheree and all¢; are causal variables. The domainait D, = {¢?, ..., ¢} (n > 0) and the
domain ofc; is D; = {cY, ..., ¢;"*} (m; > 0). An active value may be written as" or ¢;".

A causal event is aucces®r failure depending on whethet is rendered active at a
certain range of values, single-causabr multi-causaldepending on the number of active
causes, and isimpleor congregatedepending on the range of effect values.

A simple single-causal succeissan event that a causg with valuecg (j > 0) caused
the effecte to occur at a value® (k > 0), when every other cause is inactive. We denote
the probability of the event a®(e* — ¢/) = P(e¥|c!, &2 : Vz # i) (j > 0). For example,
P(fv® « op?) is the probability ofd ~ 12% fewer doctor visits given that the only health

inducing activity of the person is owning a cat.
A multi-causal success involves a s€t= {ci, ..., ¢,} (¢ > 1) of active causes, where

eachc; € X has a value] (j > 0), when every other causs, € C' \ X is inactive. A
congregate multi-causal succeissan event that causes iXi collectively caused the effect
to occur at a value” (k > 0) or of a higher index, when every other cause is inactive. We
denote the probability of the event as

Ple > e* — c{l, ...,cff) = Ple > ek|c{1, ...,cgq,cg cc, € C\X) (7>0),
whereX = {c1, ..., c,} (g > 1). Itis also denoted byP(e > ek — z+).
A congregate single-causal failurefers to an event wheke< ek (k > 0) when a cause
¢; has a value: (j > 0) and every other cause is inactive. It is a failure in the sensedhat

fails to produce the effect with a valué or of a higher index. We denote the probability of
the event as

Ple < e* — cf) = Ple < ek|cg,cg :Vz#1) (j>0).
For example,P(fv < fv? « op') is the probability of less than 9% fewer doctor visits
given that the only health inducing activity of the person is owning a dog.

Note that both success and failure events are based on value indexing of causal variables.
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They generally do not have implications on intensity, except that inactive effect is impossible
in a congregate success and is always possible in a congregate failure.

exefe—crp exefe—cr| ecefe—cl e<efe—cl| e<elehi e<el«—h} e<el«-Dbi e<ele b}
patil I R B
L L _ e<el-— h}, h} e<el-— bi, b}
exek-—ch,...cr  (@|e<ek~—ch,..c; ()| exel~hi hi, bt bl @ (0

FIGURE 1. (a) A direct NIN-AND gate. (b) A dual NIN-AND gate. (c) A NAT.

A NAT consists of two types of NIN-AND gates, each over disjoint sets of causes
Wi, ..., W,. An input event of adirect gate (Fig. 1 (a)) i > ¥ « w; and the output
eventise > e* — w, ..., w . Aninput of adual gate (Fig. 1 (b)) is < " «— w; and
the output event ig < e* — wi, .., w}f The probability of the output event of a gate is the
product of probabilities of its input events.

Interactions among causes may be reinforcing or undermining as defined below.

Definition 2 (Reinforcing & undermining): Let* be an active effect valug? = {1, ...}
be a partition of a seX C C of causesR’ C R, andY = Uy, p/W;. Sets of causes iR

reinforceeach other relative te, iff VR’ P(e > ¢ — y™) < P(e > €F « 2T). They
underminesach other relative te*, iff VR’ P(e > e* — y*) > P(e > " «— z™).

Intuitively, when causes are reinforcing, more active causes render active effects more likely.
When causes are undermining, more active causes render active effects less likely. Def. 2
defines causal interactions among both causes (when Badh a singleton) and groups of
causes (when eadl; is a general set). It captures situations where causes within a group
are reinforcing, but the groups undermine each other.

A direct gate models undermining and a dual gate models reinforcing. A NAT organizes
multiple gates into a tree and expresses mixtures of reinforcing and undermining recursively.
As an example, consider surface enhancer sprays. Acidic enhah¢eand h, are more
effective when both are applied. Basic enhandgrandb, work similarly. However, when
enhancers from both groups are combined, the effectiveness is reduced. The NAT in Fig. 1
(c) expresses their causal interactions, wh@re: {h1, hs, b1, b2} and the small ovals negate
incoming events.

A NAT specifies the interaction between each pairpandc;, denoted by thé?Cl bit
pci(c;, ¢j) € {u, r}, whereu stands for undermining andfor reinforcing. The collection of
PCI bits is thePClI patternof the NAT. The PCI pattern for the NAT in Fig. 1 (c) is

{pci(hi, ho) = r,pci(hy, b1) = u, pci(hi, ba) = u,

pci(hg, b1) = u, pci(ha, ba) = u, pci(by, ba) = r}.

A NAT can be uniquely identified by its PCI pattern (Xiang and Truong (2014)).

Given the NAT in Fig. 1 (c) and probabilities of its input events, cal#dgle-causals
P(e > e! « hi, hi, bl, bl) can be obtained. From the single-causals and all derivable NATs
(Xiang (2010)), the CPTP(e|h1, ha, b1, b2) is uniquely defined (Xiang (2012b)).
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3. EXTRACTING PCI PATTERNS FROM GENERAL CPTS

In this work, we extend the framework for compressing CPTs over binary variables
(Xiang and Liu (2014)) to target CPTs over multi-valued causal variables. The compression
consists of the following steps.

(1) Extract one or more PCI patterns from the target CPT.

(2) Retrieve NAT structures that are compatible with the PCI patterns.

(3) Search for numerical parameters for each NAT structure.

(4) Return the NAT structure and its parameters that best approximate the target CPT.

This section focuses on step (1) and the next section on step (3). Details on step (2) can be
found in the above reference.

To compress a target CPT overand C' into a NAT model, we need to determine
candidate NATs ovelC. This can be achieved by searching for a PCI pattern relative to
each active* and determine the NAT by the best pattern overkalb 0. By Def. 2, givenc;
andc;, pci(c;, ¢;) is well definedrelative toe* when one of the following conditions holds
for all active values ot; andc;.

pci(cg, ¢j) =
u: Ple>el ¢, ;’) < min(Ple > ek «— ¢f), Ple > eF c;’)),
{ r: Plezeb—cfc ;’) > maz(Ple > ek — ¢f), Ple > ek c;’))
As shown experimentally (Section 6.1), in a general CPT, neither condition may hold
for a significant number of cause pairs. For such a CPT, very few PCI bits are well defined,
resulting in apartial PCI pattern. A partial pattern of a few bits is compatible with many can-
didate NATs, making the subsequent parameter search costly. Below, we develop a scheme
to overcome the difficulty where too few bits are well defined in PCI patterns fokt.all
We aim to extract a partial PCI pattern that approximates causal interactions in a target
CPT. For a partial pattern, PCI bit of a given cause pair may:pe, or undefined. For
uniformity, we expand the domain of a PCI bit infa, r, null} with null for unclassified.
For a well-defined bit, one conditionin Egn. (1) must hold for all active cause value pairs.
Consider the interaction between one value pair first. To indicate-thealue, we denote
the interaction agci(e®, ¢, ct) € {u,r, null}, and refer to it as aalue-pair interaction

R A ,7
relative toe”. To simplify the notation, we denote
Ple> el —cf), Ple>éF —cj 1), andP(e e'ﬂ—cj,cj)
asp, q, andt, respectively. The rule below extracts a well-defined value-pair interaction.

(1)

Rule 1 (Well-defined): It & [min(p, q), mazx(p,q)], then
kot +)_{u ot < man(

);

p,q
pci(e 1€ 0 € r : t > maz(p,q).
q)

A well-defined interaction satisfigs¢ [min(p, q) maz(p, q)]. Rules below relax this
requirement. When € [min(p, q), max(p, q)], pci(e, ¢ e ;’)IS deemedhull onlyif |p—q|
is too small, e.g., less than a threshajd= 0.2.

Rule 2 (Tight enclosure):  If € [min(p, q), max(p, q)] and|p — q| < 19, wherery € (0, 1)
is a given threshold, thepci(e®, ¢, ¢) = null.

7@7‘7

The rational of Rule 2 is the following. Under tight enclosure, batndr may well
approximate interaction between andc;. Hence, NATs compatible with either should be
included in the candidate set, which is what the valug! entails.
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We refer to the condition € [min(p, q), max(p, q¢)] and|p—q| > 7o asloose enclosure

where we compute the rati® = %. Ratio R € [-0.5,0.5] and the bounds are

reached whemn equals or q. WhenR < 0, t is closer tomin(p, ¢). WhenR > 0, t is closer
to maz(p, q). WhenR = 0, t is equally distant fronp andq. We refer toR asnormalized
deviationand specify the interaction as follows, where a possible value-fanay be 0.4.
Its rational follows from the above analysis.

Rule 3 (Sided loose enclosure): #fe [min(p, q), maz(p,q)] and|p — q| > 79, then

)
{null R < T,
ct +)

k )
pei(e”, ¢, ¢ u : R < —m,

r : R > T1,
wherer, € (0,1) andr; € (0,0.5) are given thresholds.

Proposition 1 shows that the above rules are complete for deciding the interaction be-
tween a value pair.

Proposition 1 (Completeness): For any value combinatiofot.’, ¢ ¢ *. 70, 71 Wherek > 0,
exactly one of Rules 1, 2 and 3 applies, which assignige”, ", ¢) uniquely.

Proof. The preconditions of Rules 1, 2 and 3 are mutually exclusive and exhaustive. Hence,
for any value combination, exactly one rule fires.

The two cases of Rule 1 are mutually exclusive and exhaustive given its precondition.
Hence, if Rule 1 firesy or = is assigned toci(e”, ¢, ¢I). If Rule 2 fires,null is assigned

7@7‘7

to pci(e®, ¢, ¢F). The three cases of Rule 3 are mutually exclusive and exhaustive given its

7@7‘7

precondition. Hence, if Rule 3 firep¢i(e*, ¢, cI) is assigned., r, or null. a

7@7‘7

Proposition 2 shows that the above rules seleair » whenever one type of causal
interaction is more likely than the other.

Proposition 2 (Soundness):  Lefandr; be reduced continuously. Inthe limit¢i(e*, ¢, ¢f)
can only be assigneaull, if one of the following holds.

D p=qg=t
(2) p # gandt = 0.5(p + q)

Proof. Assigningnull to pcz(e’f,cj,cj) can only occur if Rule 2 or 3 is fired. If; is
reduced continuously, the only situation where Rule 2 can fire is wheng = t.

Suppose that Rule 3 is fired. Then# g andt € [min(p, q), maz(p, q)]. If 71 is reduced
continuously, the only situation whegei (", ¢, ¢') is assignediull is whent = 0.5(p+q)
andR = 0. O

Givene*, the above determings:i(c*, ¢;", ¢;) for a pairc;” andc¢; . If each cause has
m + 1 values, there are:? pairs of active values for; andc;. The next rule determines the
PCI bitpci(e*, c;, ;) by majority of value based interactions. Its lower boundrefensures

that the first two cases cannot both be true. A possible value for threshoidy be 0.51.

Rule 4 (Majority Value Pairs): Lef/ be the number of active cause value pair§, c;)
M, be the number of interactions whegei(e*, ¢, cf') = u, and M, be the number of

7@7‘7
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interactions whereci(e”, ¢, ¢') = r. For a given threshold, € (0.5, 1),

u : My > 1 M,
pei(er, e, ¢j) = r o M, >1 M,
null : Otherwise.

After PCI bitpci(e®, ¢;, ¢;) is extracted for each paiic;, ¢;), a setpei(e*) of PCI bits
relative toe* is defined. Fromy such sets, the next rule selects one with the most bits as the
PCI pattern.

Rule 5 (Partial PCI pattern): Let be the number of causes ef the set of PCI bits relative
toe* (k > 0) bepci(e®) = {pci(e*, ci, ¢;) | Vij ci # ¢;}, and Ny, be the number of PCI bits
in pei(e®) such thapei(e*, ¢;, ¢;) # null.

Then selecpci(e®) as the partial PCI pattern ¥, = maxy Nk.

The value ofN,, is between 0 and’(n, 2) in general. IfN, is too close ta’(n, 2), there
are very few candidate NATs, which reduces the space for subsequent parameter search, and
can ultimately reduce the accuracy of compressionVfis too far fromC(n, 2), there are
many candidate NATs, which renders the subsequent parameter search costly. The value of
N, for a given target CPT depends on the settingpthroughr. If the thresholds are too
relaxed, fewernwull PCI bits will be assigned anlY,, will be closer toC(n, 2). To avoid such
situations, initial threshold values should be tight. If the resultsiptis too small, relax the
thresholds to increase thg, value.

To implement the above dynamic control, we uses an additional threshodd (0, 1)
and tight initial values for throughm. If N, > 3 C(n, 2), the PCI pattern from Rule 5 is
accepted. Otherwisey throughr, are relaxed and search is repeated, uitil> 75 C'(n, 2).
The effectiveness of the procedure is experimentally validated in Section 6.

4. PARAMETER ESTIMATION WITH CONSTRAINED GRADIENT DESCENT

Once a partial PCI pattern is extracted, the set of candidate NATs compatible with the
pattern can be determined (Xiang and Truong (2014)). For each candidate NAT, single-
causals can be estimated from target CPT through a gradient descent. From resultant NAT
models, the best NAT model can be selected. These steps parallel those for compression of
binary CPTs into binary NAT models (Xiang and Liu (2014)). In this section, we extend the
gradient descent for compression of multi-valued CPTs.

Our objective is to approximate a target CPF with a NAT modelM . M consists of a
NAT and a set of single-causals, which defines a GR{. Pr consists of a set of conditional
probability distributions (CPDs)?(¢e|c), wherec is an instantiation of”. We index the CPDs
asPr(0), ..., Pr(Z — 1), wherePr(0) has the conditior = (¢!, ..., %), andZ counts the
CPDs.A CPT over an effect and ten binary causes has 1024 CPDs.

We measure the similarity Py, from Pr by the average KullbackLeibler divergence,

2 Pr(i

-1 .
KL(Pr,Py) = % .Z% Z PT(i,j)ZOQWZ.:‘;)), (2
=0 j

wherei indexes CPDs inPr and Py, andj indexes probabilities in each CPD. Gradient
descent estimates the set of single-causalg/afuch thati L( Pr, Pyy) is minimized. In the
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experimental study (Section 6), the average Euclidean distance

Z—1
ED(Pr, Py) = % N (Pr(iy§) — P, §))?
=0 7

is also obtained, wher& counts probabilities irPr.

During descent, the point descending the multi-dimensional surface is a vector of single-
causals. For a binary NAT model witlhhcauses, the vector hasparameters and each can be
specified independently. For multi-valued NAT models, whibg| = n+1 and|D;| = m+1
fori = 1, ..., n, the descent point is@mnn vector. Each parameter isi(e* « ¢;). Unlike
the binary case, themn parameters are not independent. We consider below constraints that
they must observe during descent.

First, each parametd?(e™ cj) > 0. That is, each parameter is lower bounded by 0,
but cannot reach the bound since otherwigeno longer causes®.

Second, in the binary case, each parameter is upper bounded by 1, but cannot reach
the bound since otherwisg is no longer an uncertain cause. In the multi-valued case, this
constraintis replaced by a more strict alternative. For egcty 7, P(e/ — ¢) < 1 must

hold. If violated, the parameter3(e! « ¢;"), ..., P(e" « ¢;) are not valid single-causals of
an uncertain cause. This amountsita constraints, each governingparameters. To satisfy
these constraints, we extend gradient descent for binary NAT models as presented below.
At the start of each round of descent, each group;dfingle-causals under the same
constraint are initialized together as follows. L&t@and~ be small constants close to O.
Generate) + 1 random numbers if0, 1), normalize them, scale each by- ~, and replace
those< § by 4. If the sum> 1 due to replacement, repeat the above until no replacement
occurs after the scaling. Drop one arbitrarily and assign the remaining as initial single-

causals. Lemma 1 summarizes properties of the initialization.

LEMMA 1 (Initialization): LetP(e! « ¢), ..., P(e" + ¢;) be initial values of parame-

]

ters with the same active cause vattfe The following hold.

(1) For each parameteR(e/ « ¢) > 6,5 =1,...,n.
(2) For the subset of parametels, ;| P(e* «— cf) <1 —~.

Proof. The condition (1) holds due to the replacement. After normalization and scaling, if
no replacement occurs, the+ 1 numbers sum td — ~. Hence, the condition (2) holdsd

Each step of gradient descent updatess#hen parameters in sequence. To ensure that
both conditions of Lemma 1 continue to hold, we constrain the descent as follows. For each
P(e? — ¢f), after itis updated, check wheth&(e? «— ¢;) < 6. If so, setP(e/ « ¢) =4
and stop it from further descent. Otherwise, checl§it= >7_, P(e¥ «— ¢) > 1 — .

If so, setP(e/ « ¢f) to P(e/ « ¢f) — (S — (1 — «)) and stop it from further descent.

. %
If P(e? « ¢;) passes both tests, commit to the value and continue its descent. Theorem 1
summarizes properties of the method.

THEOREM 1 (Descent): LetP(e! « c), ..., P(e" < ¢;) be current values of a subset of

)

parameters with the same active cause va;tj,esuch that the following hold.

(1) For each parameteR(e/ « c¢) > 48,5 =1,...,1.

i

(2) For the subset of parametels,! ;| P(e* «— cf) <1 —~.

After eachP (e’ « c) is updated during descent, the above conditions still hold.
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Proof. Suppos@(e/ « ¢;) is just updated fron?’ (e/ « ;). If P(e/ «— ¢;) passes both
tests, both conditions holds. If it fails the 1st test, it is modified and the 2nd test is not run
(Case 1). If it passes the 1st and fails the 2nd, it is also modified (Case 2). Below, we show
that, in either case, both conditions hold.

[Case 1] Failure of the 1st test se§e’ « c; ) to 4 and renders the condition (1). By
assumption, both conditions hold befoR{e’ « ¢;") is updated fromP’(eJ «— ¢f). If the
1st test fails, we havr%.‘i’(eJ —cf) <6 < Pled « cf). After P(¢/ «— ) is ralsed to),
we haveP(e/ « ¢) < P'(e/ « ¢f), and the condltlon (2) continues to hold.

[Case 2] Denote the sum before and after the updat@bands By assumption, the
condition (2) holds beforé(e? «— ¢;") is updated fromP’(e/ « ¢;7). Hence, the violation
is due to the increasB(e’ «— c¢) > P'(e/ « ¢;). We claim that the increase must satisfy
P(ed —¢f) - P’(ej<—c)>S (1 —7).

Assume that it is false anff(e/ « ¢;") — P'(e/ «— c¢f) < S — (1 — ). Before the
update, we havé’ < 1 — ~. Combining the two inequalities, we have

S=8 Pl —ch)+ P —cf)<l—y+S—(1-7)=5,
which is a contradiction. Therefore, our claim holds which implies that the modified value
satisfiesP(e/ « ¢;) — (S — (1 — 7)) = P'(e/ «— ¢]") > 4. Hence, the condition (1) holds

after the modification.
Furthermore, after the modification, we have the new sum

S—P( —cf)+ [P —cf) = (S—(1-7)]=1-7,
and the condition (2) also holds. a

By Lemma 1, each round of descent starts with valid single-causals. By Theorem 1, for
each step of descent, after each parameter is updated, the entire set of single-causals is still
valid. Hence, the constrained gradient descent terminates with valid single-causals.

Once the parameters for each candidate NAT are determined, a candidate NAT model
(the NAT and its parameters) is fully specified. The NAT model with the smallest average
KL distance is the compressed model of the target CPT.

5. PCI PATTERN EXTRACTION WITH PERSISTENT LEAKY CAUSES

5.1. The Challenge

A leaky cause in a causal model represents all causes that are not explicitly named.
We denote the leaky cause lay and other causes by, ..., ¢,. Thecg may or may not be
persistent. Anon-persistent; is not always active, and can be modeled in the same way
as other causes. A target CPT with a non- persistent leaky cause(k@s), c1, ..., ¢,,) fully
specified where?(e®|c), ¢}, ..., ) = 1 and P(e ’f|c0, ..., =0fork > 0.

A PLC is always active. We model, € {cJ,¢}}, andcy = ¢ always holds. Hence,
a target CPT has the foriR(e|c}, c1, ..., ¢,). This has two implications. First, parameters
P(e|cy, c1, ..., ¢,) are not empirically available, since conditiofs), c1, ..., ¢,) never hold.
Second, since, is a persistent, uncertain cause, we have P(e|c}, ¢}, ..., %) < 1.

PLC raises an issue to CPT compression. Sif¢e|c), c1, ..., ¢,) is undefined, the
target CPT takes the for® (e|cy, ..., ¢,) (only n causes)= P(e|c}, c1, ..., ¢,). One may
be misled by the formP’(e|cy, ..., ¢,,) and not modek, explicitly. This choice, however,
suffers from several limitations. First, the resultant NAT model is incapable of express-
ing causal interactions betweep and other causes, and adjusting parameters accordingly.
Second, the NAT modeM incurs systematic erroPy, (e[, ...,c)) = 0 for k > 0 as
required by Def. 1. Third, the search for parameters cannot be based on the average KL
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distance as defined in Section 4. Each term of the distance from a targefzisIformed
Pr(i, ) log(Pr(i,7)/Pym(i, 5)), where: indexes CPDs andl indexes probabilities. Since
Pyr(eF|ed, ..., %) = 0 (k > 0) while Pr(e¥|c), ..., %) > 0 due to PLC, the corresponding
terms for the distance are undefined (infinity).

To avoid these limitations, one may choose to modgkxplicitly in the compressed
NAT model. This, however, encounters the following difficulty. To determine a value-pair
interactionpci(e®, ¢, cy’) by Def. 2, we need to compare

P(e}ek<—c(1])P(6>ek<—c)andP( ek <—CO,J)

wherej, k,w > 0. However,P(e > eF « c) is unavailable sincey is a PLC. Furthermore,
to determinepci(e®, ¢?, c¥), wherei, j, k,v,w > 0, we need to compar(e > e* — cv),

7@7‘7

Ple> el cf), andP(e > ek v » € ), but none is available for the same reason.
To overcome the unavailabilrty, it is plausible to compare instead the available

Ple>eb b c?), Ple=e? ¢}, e i), andP(e > ek b et i)

We show below that the value-pair interactipai(e*, c?, cj ) cannot be uniquely determined
by the comparison. In particular, we show that the foIIowrng conditions can coexist.
Ple > eF — ¢, cy) > max(P(e> e V), Ple> ek — i) (3)

Pe > ek — c(l], ciyey) < min(P(e > ek — c(l], c)), Pe > e — c(l], ci))  (4)

Similarly, the following conditions can also coexist.

Ple > et — cz,cJ W) < min(Pe > ef — ), P(e > ef — ¢¥)) (5)

Ple> ek —chcl,c) > max(Ple> e — ch,c),Ple> " —cb,c¥))  (6)
Proposition 3 (Reinforce). Lety, ¢;, c; be causes Where and c; are reinforcing There
exist NAT models among, c;, ¢;, whereP(e > ¥ — ¢f, ¢/, ¢¥) > P(e > eF — ¢j,cl),
as well as NAT models where the opposite holds

Proof. Fig. 2 shows NATY, and Ty over cy, ¢;, cj, Wherec; andc; are reinforcing, and
labels of output events are omitted. T, sincec; reinforcescy andc;, we have comparison

e<eke c} e>ekec}
"\
e<eke ! exeke !
Kk w
e<eke ¢
¢ ] . e<efe ¢!
° Ta py Td

FIGURE 2. (Sub)NATs where; andc; are reinforcing

Ple > e — cj,cf, ) > P(e > e — ¢f, ¢}). Note that although Def. 2 allows equality
between causal probabilities in the reinforcing case, the equality never occurs to probabilities
associated with NIN-AND gates due to product of factorgln1).
In Ty, ¢ andc; are reinforcing, andy is undermined byc; at the top gate. Hence,
Ple> ek «—cl,c i, cf) < Ple> ek — el cb). O
Proposition 3 shows that, whenandc; are reinforcing fci(e®, ¢?, ¢¥) = r) and hence

7@7‘7
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Eqgn (3) holds, there is no guarantee for

Ple> e — ¢l ¢, cj’) > max(P(e > e —cb, ), Ple>e" — ¢, ci'))-

Proposition 4 (Undermine): Lety, ¢;, c; be causes wher@ andcJ are undermining There
exist NAT models amongy, ¢;, ¢j, whereP(e < eF «— cj, ¢?, ¢¥) > P(e < e — ¢j, ¢}),
as well as NAT models where the opposite holds.

Proof. Fig. 3 shows NATE, andT}, overcy, ¢;, ¢j, wherec; andc; are undermining. I,

e>ekec} e<eke—c}
exeke—c! e<eke—cf
k W
> v
$ €2 o exefe—cf

FIGURE 3. (Sub)NATs where; andc; are undermining

cj undermmes:o andc;, we haveP( > b — ¢, ), c¥) < Ple > e — ¢j,c}). That s,
Ple < € — cf, ¢l c¥) > Ple < eF — ¢j,c). In T, cO andcZ are undermining, and,
is reinforced byc; at the top gate. Henc&(e > " — cj, ¢l c¥) > P(e > " — ¢, cf).

Thatis,P(e < e* <—c(1],cl,cj)<P(e<e — c}, ). O

Proposition 4 shows that when andc; are underminingjci(e, ¢¥, c¥) = u) and

y g ,7
hence Egn (5) holds, there is no guarantee for
Ple > e — ¢, ciscj) <min(P(e > e —ch ), Ple>eb —cf, ci'))-

From Propositions 3 and 4, it follows thati(e*, c?, cj %) cannot be determined soly based
on comparing

Ple>eb b c?), Ple=e? ¢l c i), andP(e > e Fech et e i)

Although Propositions 3 and 4 involvg, their proofs do not depend ary being a PLC.
Hence, both propositions apply to any distinct causes; andc;. It then also follows that
simple comparison of multi-causal probabilities from NATs with additional causes beyond
¢; andc; cannot help determingci(e¥, ¢, ¢).

Below, we present a solution to meet the challenge.

5.2. Determine PCI Bits by SubNAT Differentiation
We observe that the above extractionpef (¢, c?, c%) focuses on; andc; only. It fails

y g ,7
since the existence of PL&, deprives us of the necessary target probabilities. To overcome
this difficulty, we expand our focus to includg. That is, instead of trying to estimate the
causal interaction between andc;, we estimate the causal interactions amepgc; and
c;. The inclusion of PLCcy implies that we are now able to conduct the analysis based on
the following available target probabilities over only, c¢; andc;:
Plezeb —cl),Ple= e —cl,c)),Ple>e" — ¢, c 7), andP(e > b — c(l],cz,cJ ).
Fig. 4 enumerates (sub)NAT models for the value tupfg c?, c - ¢¥). For each NAT, value-

pair interactions relative te* are summarized in Table 1. Given a target CPT, if we can
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k 1 <eKe— Y >k 1 sk 1
e<e®« Cp e<e L i exe cho eze FkCo
'\ \", W
e<eke e<e’«—C; exe’«(Cj ex>e"« (;
k w
e<efe— Cj
¢ j o exekec} o e<efe ! o e<efe ]
IS Ta \6/ Th py Te \/ Td
e>eke c} exek " c! e<eke— Cj e<eke c}
)
e>eke ¢! H szetecf e<ete—ci e<e’«—c
k W
>efe— C;
® exen« g ﬁ e<eke—c} (] e>eke—cV [} e>eke—c!
. Te | o Tl 3 9| Th
FIGURE 4. (Sub)NATs overy, c; andc;
TABLE 1. Value-pair interactions of NAT models

T, T, T. Tay T. Ty T, T

pci(ef cd,e?) r u u r u r r u
pci(ek, c,e¥) r u r u u r u r
koev,ew)y r rorr r u u u u
identify which NAT in Flg. 4 characterizes the underlying causal interactions, we can obtain
the three corresponding value-pair interactions from Table 1.
To this end, we analyze the six pair-wise comparisons of the four available target proba-
bilities. The result is summarized in Proposition 5 and Table 2.

Proposition 5 (Comparison): L€, through7}, be NAT models over causes, c;, andc;.
Pair-wise comparisons amorfe > e — ¢p), Ple > " — ¢j,¢}), P(e = " — ¢5,c¥),
andP(e > e* — ¢j, ¢/, ¢¥) hold as Table 2.

TABLE 2. Pairwise causal probability comparison by NAT models
Row T, Ty T, Tf Ty Tg T, Ty,

Pe> ek <—c(%,cl, J)

1 —Plez ek —c},eY) + + — — — — + +
Ple>e" —cj, i, c¥)

2 —Plezeh —chcY) + + - - + + - -
PlezeF —c}, e, c ;”)

3 —Plezer—d}) + - - + /= /= /= /-
Ple=eb —ch e?)

4  —Pleze —cj,cy)  +/— +/—- +/- +/- + + - -
Ple>eF —ch,c)

5 —Pleze"—¢p) + - - + + + - -

Ple>eF ¢}, i)

6 —Plexe"—¢p) + - - + - - + +
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Proof. From Fig. 4.c; reinforces the other two causes ), andT.. In T, and T}, c
reinforces another cause at the top gate. The resuttiis row 1 of Table 2 for these NATSs.
In T, andT}, c; undermines the other two causeslpandly, c¢; undermines another cause
at the top gate. The result is in row 1 for these NATs. Hence, we have row 1.

Causec; reinforces the other two causesTy and7y, and reinforces another cause at
the top gate iril;, and7,. It undermines the other two causesiipandT}, and undermines
another cause at the top gatefihand7’;. Hence, we have row 2.

Causes:; andc; as a group reinforce, in 7, andT', but undermine in 73, andT..
Hence, we have the correspondingresults in row 3 for these NATSs. In the other NATs, one of
¢; andc; reinforcescy and the other one undermines The comparison result can go either
way, depending on the relative causal strength,aindc;. Hence, we have row 3.

Row 4 compares two double-causal probabilities, wiftbeing inactive in one and;
being inactive in the other. If, andT, bothc; andc; reinforcescy. Which double-causal
probability is larger depends on their relative causal strengtiiland e, bothc; andc;
undermineg,. The similar applies.

In Ty andTy, c; reinforcescy andc; undermines:. Hence, the comparison resultis
In T, andT}, c¢; undermines andc; reinforcescy. Hence, the result is-.

Row 5 is implied bypci(e”, ¢, c}) in Table 1, and row 6 byci(e”, cj, c¥). O

From Proposition 5, it follows thdlf7, T;, 1., andT; can be uniquely identified based
on comparisons in the first three rows,; and7, as a group can be identified based on
comparisons in the first two rows, and so canand7}, as a group. However, the two
members in each group cannot be differentiated by the comparisons (a partial solution).
Below, we explore a novel idea to extend the partial solution into a complete solution.

5.3. NAT Group Member Differentiation

The technique described above on average allows unique identification of 50% (4 out of
8) of the NAT models overy, c¢; andc;. From Table 1, this means that 50% of value-pair

interactiongpci(e, ¢?, ¢%), wherei, j > 0, can be identified.

7@7‘7

From the last two rows of Table 2, both members of gr¢ip, 7, } have the same value-
pair mteractlonggcz(e g, c?) andpcz(e gy e 4 ¥). The same is true for the groyd, 7}, }.
Hence,pci(e*, ¢}, ¢¥) and pci(e¥, ¢}, J) can always be uniquely identified, even though
the underlying NAT cannot be. This means thatzall(e*, cg, ¢}') andpci(e, ¢j, ¢¥') can be
identified uniquely.

On the other hand, from the last column of Table 1, we observeihiat®, cv, cv) differs

) Za J

betweeril; andT,, and so does betwedh andT},. This implies that 50% obei(er, ¢, cj Y,
wherei, j, k > 0, cannot be identified, which renders the corresponding PCpdaitc;, c;)
unspecified. Since the number of candidate NATs grow exponentially on the number of
unspecified PCI bits, presence of many such bits has a significant consequence on the cost
of subsequent parameter search.

To resolve the difficulty, we explore a novel idea. Consnﬂ%{e ek —cl,c Z) If co
andc; are undermining, we hav&(e > e* « ¢}, c?) = P(e > ¥ «— c})P(e = eF « ¢?).
The parameteP(e > ¥ « c¢?) is unavailable, but we can estimate from the available by

Ple> ¢f ) = Ple > &  cb,&})/Ple > o — d}).

If ¢o andc; are reinforcing,P(e < e* « ¢}, c?) = P(e < e « c})P(e < ¥ « ¢?), and

we can estimat®(e < e « ¢¥) = P(e < ek « ¢}, ¢?)/P(e < eF « c}).
For both members of the groufily, 7, }, co andc; are reinforcing, and, andc; are
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undermining. If we can estimate single-causBig > ¢* « c¢?) andP(e > eF «— cf)
accordingly from the available parameters

Pleze —cb ), Ple>e" — ¢, e 7), andP(e > e — ),

we can then plug in the two single-causals afte > eF «— cO) to Ty andT,, and obtain

the multi-causals’;(e > e* « c(l],cl,cj ) and Py(e > e — cf, ¢, éy). The NAT whose
multi-causal is closer t@(e > e* « cg e, e i c?) from the target CPT will be chosen since it
better models interactions among c; andc;.
For the group{T:, T}, co andc; are undermining in both NATs, anc) andc; are
reinforcing. The similar method can be applied to differentiate the two members.
Althoughthe idea seems to have resolved the above difficulty, it is not always applicable.
As an example, we observed a target CPT where

P(e}e'ﬂ—cé,cl,cj)—()574 Ple>ef — b, c¥) =0.283,

Pe > e —¢j,c¥') =0.651, andP(e > e* — ¢§) = 0.845.

Applying comparisons in rows 1 and 2 of Table 2, it fits the groufy, 73} with (4, —).

However, sinceP(e > ef «— ¢f,c¥) < Pe > e — c(l]) co andc; do not reinforce as

T, and T}, expected. As the result, estimation Bfe > eF « c) by reinforcement is not
applicable.

Applying comparisons in rows 5 and 6 of Table 2, the above example has the compar-
isons(—, —). They do not match those d. andT},, and that is the source of failure to the
above attempt. This observation suggests that the above idea works only when comparisons
in rows 5 and 6 have the right match. It also suggests that when the comparisons mismatch,
comparisonsin rows 5 and 6 can be used for identifying NATs.

Following this hint and using comparisois-, —) in rows 5 and 6, we obtain the new
NAT group {7, T.} with the matching comparisons. Since comparis¢#s—) in rows 1
and 2 differ fromT; andT, (each by one comparison), we need to break the tie betvgen
andT. This can be done by estimating single-cauga(s > " « ¢?) andP(e > eb )

assuming undermining, which will now succeed. We then estini{ie > ¢* «— cg ey e & W)
for T, andT,, and use the multi-causal that is closer to the target CPT to select one.
As another example, we also observed a target CPT where

P(e}e'ﬂ—cé,cl,cj)—()%() Ple>e® — ¢, ¢¥) =0.970,

Ple > e — ¢, c¥') =0.929, andP(e > e — ¢j) = 0.733.

Applying comparisonsin rows 1 and 2 of Table 2, it fits the grddp, g} with (—, +). The
comparisons in rows 5 and 6 afe-, +), making estimation of’(e > e* «— cf) by under-
mining inapplicable. In response, we apply the similar procedure as above to differentiate
instead betweeff, andTY.

In summary, from the target probabilities
Plezeb —cl),Ple= e —cl, ), Ple>e" — ¢, c 7), andP(e > > ek — c(l],cl,cJ )
we first use comparisonsin rows 1, 2 and 3 (breaking ties arbitrarily) to identify the SubNAT.
If this leads to a group of two subNATs, we estimate the single-causals, compute the implied
multi-causals, and differentiate between the group members. If the single-causal estimation
is not applicable for the group, we use comparisons in rows 5 and 6 to find an alternative
group of two subNATs. We then estimate the single-causals, compute the implied multi-
causals, and differentiate between group members. This is elaborated in Algorithm 1, where
we denote the above target probabilities iy, s andt, respectively. In Algorithm 1, ties
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may occur in sign computation and difference comparison. Such cases rarely occur, and we
break ties arbitrarily for simplicity.

Algorithm 1:  (Input:q, r, sandt)

compute sign patterpat; = (sign(t — r), sign(t — s), sign(t — q));
if pat; matches that of,, T, T, or T, return the matching NAT,;
compute sign patterpaty = (sign(r — q), sign(s —q));
if pato, matches that of 7y, T, } or {7, T3}, do
estimater = P(e > e « c?) andy = P(e > e* « ¢ ) by matching group;
for each member NAT}; of the matching group do
compute multi-causal = P(e > e* « ¢}, ¢¥, ¢ V) fromg, z, y and NATT;
compute differencg — z|;
return the NAT with the smaller difference;
10 matchpat, against that of{ T;,, Ts} or {13, T. };
11 estimater’ = P(e > " « ¢}) andy’ = P(e > " «— c¥) by the matching group;
12 for each membef’; of the matching group, do
13 compute’ = P(e > e « ¢}, ¢?, c) fromgq, 2',y" and Tj;
14 compute differencg — 2/|;
15 return the NAT with the smaller difference;

O©CoooO~NOOOTh~hWNE

Theorem 2 establishes the most important property of Algorithm 1.

THEOREM 2 (Soundness): For any target probabilities
Plezeb —cl),Ple= e —cl, ), Ple=e" — ¢, c 7), andP(e > b — c(l],cl,cJ )
Algorithm 1 returns a unique NAT amorif}, throughT}, subject to arbitrary tie-breaking.

Proof. Assume that no ties are involved in sign computation and difference comparison. If
pat; matches rows 1, 2, and 3 of Table 2, on€lQf Ty, T, or Ty will be returned by line 2.
Otherwisepat, is computed (line 3), with four possible outcomes.

If the outcome i+, —) or (—, +), lines 4 to 9 will be executed. lfaty = (+, —), line
4 matches the groupZy, 7, }. Line 5 estimates:, according to reinforcing, andc;, and
estimateg, according to undermining, andc;. The valueg and|t— z|will be computed for
bothTy andT, in lines 6 to 8. One of; andT, will be returned in line 9. Ipaty = (—, +),
the process is similar, but returns on€lpfandTy,.

If paty = (4, +) or (—, —), the group{T,, Ty} or {13, T} will be processedin a similar
fashion by lines 10 to 15, and a unique NAT will be returned. a

Given a value-tuplée®, cf, ¢, c;.”), once the NAT model is identified, the three value-
pair interactions can be found from Table 1. Hence, Theorem 2 implies that the causal
interactionpci(e®, c?, ¢ for any k, i, j values can be extracted.

» “ J

However, pci(e” ,cl,cj) from a general target CPT may differ for differehtv, w
values (not so for a NAT model). Hence, for a given combinatiorkof, j, Rule 4 must
be applied to determingci(e”, c;, c;). Since a null outcome is possible, the resultant PCI
pattern fore” is partial in general. Furthermore, the PCI patterns for diffeeémnay differ,

in which case, we apply all of them to generation of candidate NATSs.
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6. EXPERIMENTS

To validate the framework for compression of general CPTs into multi-valued NAT mod-
els and the techniques presented above, several experiments are conducted. In the following,
we report the objective, the setup, and the result for each experiment.

6.1. Necessity of Flexible PCI Extraction

This experiment reveals the difference between general CPTs and NAT CPTs, to justify
the need for flexible PCI extraction. Two batches of CPTs are simulated eacloweb
causes with domain sizes of all variables being 4. The 1st batch consists of 100 random
CPTs(without local structure) and the 2nd 100 NAT CPTs (of randomly selected NATs
and single-causals).

Given a target CPT, for each pair of causes, Eqn. (1) is applied relative to eagheof
andes. With n = 5, there are”'(5,2) = 10 cause pairs. For each pair, there 8re3 = 9
active value pairs. For each pair, the PCI bit is well-defined if and only if one condition of
Egn. (1) holds for all 9 value pairs. A target CPT has between 0 and 10 well-defined PCI
bits.

For the 1st batch, 0 well-defined PCI bit are extracted from 97 CPTs. For each of the 3
remaining CPTs, one well-defined PCI bit is extracted relative tamne relative tae,, and
one relative tae3. Hence, the extraction rate of well-defined PCI bit9 /{8000 = 0.003. In
the 2nd batch, 10 well-defined PCI bits are extracted from each CPT. This shows that general
CPTs and NAT CPTs differ significantly and the flexible PCI pattern extraction presentedin
Section 3 is necessary.

6.2. Compression Accuracy Relative to the Optimal

In this experiment, we evaluate the effectiveness of our PIC extraction techniques. The
techniques reduce the number of candidate NATs to a small subset in the search space
(exponential onn). It is important to assess whether such reduction retains good candi-
date NATs. To this end, we compare our methods with exhaustively evaluating all NATs
(optimal). We refer to our compression method without PLC modeling as NPLC-Comp, and
the corresponding optimal method as NPLC-Opt. The methods with explicit PLC modeling
are referred to as PLC-Comp and PLC-Opt, respectively. Since the optimal methods are
intractable, smallen values are used. We denote the maximum domain size of variables in
eachtarget CPT by.

To evaluate NPLC-Comp, 100 random CPTs are generated without PLC, wheré
andk = 4. Table 3 shows the experiment result where ED, KL, SR, and RT refer to Euclidean
distance, KL distance, space reduction, and runtime (in seconds), respectively.

TABLE 3. Experimental comparison of NPLC-Comp and NPLC-Opt on random CPTs without PLC

NPLC-Comp NPLC-Opt
Mean Stdev Mean Stdev

ED 0.1928 0.0378 0.1869 0.0356
KL 0.1778 0.0743 0.1636 0.0587
SR 14.67 6.91 14.67 6.91
RT 7.84 6.31 49.96 37.95

NPLC-Comp runs about 6 times faster as NPLC-Opt, and incurred only slightly larger
compression errors. We conducted a single-sided t-test based on KL distance with the null
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hypothesisiy: NPLC-Comp has the same compression error as NPLC-Opt. The null hy-
pothesis is accepted at the level of significamce: 0.025 and is rejected at: = 0.05.

To evaluate PLC-Comp, random CPTs are generated with PLC& and. The first 100
CPTs haven = 3 and the second 100 CPTs hawe= 4. Hence, compressed NAT models
haven = 4 andn = 5, respectively. Tables 4 and 5 show the experiment results.

TABLE 4. Experimental comparison of PLC-Comp and PLC-Opt where target CPTsrhava

PLC-Comp PLC-Opt
Mean Stdev Mean Stdev
ED 0.1572 0.0428 0.1538 0.0421
KL 0.1021 0.0348 0.0976 0.0329

SR 6.53 2.55 6.53 2.55
RT  11.92 750 56.85 40.35

TABLE 5. Experimental comparison of PLC-Comp and PLC-Opt where target CPTshavé

PLC-Comp PLC-Opt
Mean Stdev Mean Stdev

ED 0.1802 0.0385 0.1701 0.0369
KL 0.1495 0.0514 0.1294 0.0365
SR 13.83 6.12 13.83 6.12
RT 23.99 1847 1026.99 495.50

For target CPTs witm = 3, PLC-Comp is about 5 times faster than PLC-Opt. The
single-sided t-test accepted the null hypothesiaat 0.05. For target CPTs withh = 4,
PLC-Comp is about 43 times faster. The KL-distance of PLC-Opt is at 0.1294 while that of
PLC-Comp is at 0.1495. As the result, the null hypothesis is rejectad=a.005.

In summary, the experimental results demonstrate that our PCI extraction techniques
(with and without PLCs) reduce NAT search space effectively while retaining good candidate
NATS.

6.3. Compressions of Random CPTs

In this experiment, we evaluate both accuracy and efficiency of NAT compression as the
numbem of causes grows. As a base-line, we compare our methods, NPLC-Comp and PLC-
Comp, with the popular noisy-MAX, denoted NMAX below. NMAX uses a fixed structure
and hence only parameter search is involved.

For target CPTs without PLC, we generated 100 random CPTsmwithd, another 100
CPTs withn = 5, and a third 100 CPTs with = 6, wherek = 4 for all. Parameters in each
CPT are non-extreme, excepie|c?, ..., c2). The compression results by NPLC-Comp and
NMAX are shown in Table 6.

As n grows from 4 to 6, both NAT models and noisy-MAX have space reduction in-
creased from 14.67 to 89.96. When= 6, NMAX runs 22 times faster than NPLC-Comp,
as it only parameterizes a single structure. On the other hand, the KL-distance of NAT models
is about 37% of noisy-MAX. The Euclidean distance of NAT models is reasonable at about
0.28. We conducted single-sided t-tests based on KL distanceil§ttNPLC-Comp has the
same compression error as NMAX. It is rejectedvat 0.0005 for all n values.

For target CPTs with PLC, we generated 100 random CPTs for eaeh-6f4,5, 6,
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TABLE 6. Experimental comparison of NPLC-Comp and NMAX on random CPTs without PLC

NPLC-Comp NMAX
Mean Stdev Mean Stdev

4 ED 0.1928 0.0378 0.2296 0.0639
KL 0.1778 0.0743 0.3205 0.2748
SR 14.67 6.91 14.67 6.91
RT 7.84 6.31 0.54 0.38

5 ED 0.2353 0.0547 0.3556 0.1042
KL 0.2940 0.1353 0.8536 0.4082
SR  36.60 20.73 36.60 20.73
RT  25.62 25.81 2.12 1.98

6 ED 0.2835 0.0663 0.4425 0.0601
KL 0.4361 0.1409 1.1683 0.1354
SR 89.96 53.32 89.96 53.32
RT 102.81 147.78 4.74 3.77

wherek = 4. Parameters in each CPT are non-extreme. They are compressed by PLC-Comp,
NPLC-Comp and NMAX. When NPLC-Comp is applied to target CPTs with PLCs, the
average KL distance in Egn. (2) is undefined, as explained in Section 5.1. For performance
comparison, we apply to NPLC-Comp théorified average KL distancevhere CPDs7(0)
and Py (0), corresponding to the conditian= (¢!, ..., c2), are excluded from Eqgn. (2) and

the CPD count is reduced by one. The experimental results are shown in Table 7.

3

TABLE 7. Comparison of PLC-Comp, NPLC-Comp and NMAX on random CPTs with PLCs

PLC-Comp NPLC-Comp NMAX
Mean Stdev Mean Stdev Mean Stdev

3 ED 0.1572 0.0428 0.1980 0.0356 0.2204 0.0407
KL 0.1021 0.0348 0.1120 0.0374 0.1523 0.0363
SR 6.53 2.55 6.94 2.77 6.94 2.77
RT  11.92 7.50 3.22 2.48 0.50 0.26

4 ED 0.1802 0.0385 0.2029 0.0352 0.2402 0.0609
KL 0.1495 0.0514 0.1687 0.0681 0.3228 0.2771
SR 13.83 6.12 1494 6.50 14.94 6.50
RT 23.99 1847 8.23 7.64 0.60 0.35

5 ED 0.2166 0.0608 0.2388 0.0540 0.3680 0.0889
KL 0.2471 0.1165 0.3193 0.1492 0.9319 0.3587
SR 3194 1546  34.38 16.48 34.38 16.48
RT 56.63 65.62 19.19 19.80 1.37 1.07

As n grows from3 to 5, space reduction rate grows from about 7 to about 32. NPLC-
Comp and NMAX have the same space reduction, while PLC-Comp is slightly less due
to encoding of the PLC. The runtime of PLC-Comp is about 3 times as that of NPLC-
Comp, as each candidate NAT model is more complexdlue is large). As for compression
accuracy, both PLC-Comp and NPLC-Comp are more accurate than NMAX. PLC-Comp has
the lowest KL-distance from the target, even though the KL-distance used for NPLC-Comp
is glorified. We performed single-sided t-tests for each pair of methods. For PLC-Comp vs.

3
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NPLC-Comp, the null hypothesisis rejected fo= 3 andn = 5 ata = 0.0005. Forn = 4,
it is accepted atv = 0.0005, but rejected atv = 0.001. For the pair PLC-Comp vs. NMAX
and NPLC-Comp vs. NMAX, the null hypothesis is rejectedvat 0.0005 for all n values.

In summary, compression into NAT models has superior accuracy than noisy-MAX, and
explicit PLC modeling significantly further improves accuracy when PLCs exist.

6.4. Compressions of Real BN CPTs

In this experiment, we evaluate the effectiveness of NAT compression in real world
CPTs. A total of 11 real world BNs are retrieved from a book website (Nagarajan et al.
(2013)), where the maximum domain size of variablez 3 and the maximum number of
parents per node: 3. From these BNs, we selected 362 target CPTs (see Table 8), where the
number of parents > 3 and the majority of parameter values are not extreme (uncertain
causes). Among these CPTs, 57 of them involve PLCs and the remaining 305 CPTs do not.
The domain sizes of variables range between 2 and 63. Due to the generalization of NAT
models beyond graded variables (Def. 1), we are able to conduct the compression without
having to ascertain whether each variable is graded.

TABLE 8. Summary of Target CPTs from real world Bayesian networks

BN # CPTs selected Max # parents/node

Alarm 3 4
Barley 13 4
Hailfinder 6 4
Heaper2 12 6
Water 5 5
Sachs 1 3
Insurance 5 3
Mildew 9 3
Pathfinder 24 5
Munin 48 3
Link 236 3

The compression results for NPLC-Comp and NMAX on target CPTs without PLC are
shown in Table 9. A t-test based on KL-distance rejected the null hypothesis that NPLC-
Comp and NMAX have the same compression accuracy= 0.0005). The commpression
error of NPLC-Comp by either distance measure is comparable with that for random CPTs
(larger than those fon = 4 and5 in Table 6, and smaller than that for = 6). We
identify an extra source of error in the real world target CPTs. A NAT model CPT has non-
extreme parameters, except thoseRue|c), ..., c%). It is also the case for random target
CPTs used in Section 6.3, but not so for many real world BN CPTs in the experiment. The
extreme parametersin the target CPT cause distribution of probability mass to the remaining
parameters that cannot not be perfectly matched by non-extreme parametersin the NAT CPT.
This is also true for the following compression.

The compression results for PLC-Comp, NPLC-Comp and NMAX on target CPTs with
PLCs are shown in Table 10. Based on the Euclidean distance (the KL-distance for NPLC-
Comp is glorified), compressions into NAT models are more accurate than noisy-MAX with
PLC-Comp being the most accurate. The accuracy of PLC-Comp is comparable with that
for random CPTs (Table 7).

In Zagorecki and Druzdzel (2013), a weighted KL-distance is used, where the KL-
distance for each CPD is weighted by the probability of its configuration, before sum-
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TABLE 9. Experimental comparison of NPLC-Comp and NMAX on real world CPTs without PLC

NPLC-Comp NMAX
Mean Stdev Mean Stdev

ED 0.2640 0.0423 0.3117 0.0662
KL 0.3653 0.1576 0.5002 0.9260
SR 7.19 5.39 7.19 5.39
RT 7857 32491 1.94 6.98

TABLE 10. Comparison of PLC-Comp, NPLC-Comp and NMAX on real world CPTs with PLCs

PLC-Com NPLC-Com NMAX
Mean Stdev Mean Stdev Mean Stdev

ED 0.1778 0.0904 0.2056 0.0703 0.2293 0.0797
KL 0.5312 0.4546 0.5243 0.4340 0.6742 0.5243
SR 19.25  311.67 19.95 3258 1995 32.58
RT 402.14 1498.11 226.414 75151 15.63 38.71

ming into the overall KL-distance for the CPT. Hence, the overall KL-distance is con-
ditioned on the particular BN which provides the probability for each parent con-
figuration. The weighting may suppress a large KL-distance for a CPD if its parent
configuration has a close-to-zero probability. The average KL-distance used in this
work (Section 4) is equivalentto weighted KL-distance with uniform weights, and offers
an unbiased distance measure.

7. CONCLUSION

The main contributions of this work are the following. We extended the scope of NAT
models from graded variables (ordinal) to causal variables (Def. 1) that can be either ordinal
or nominal. We developed a flexible PCI pattern extraction to reduce the NAT search space
while retaining good candidate NATs. We presented a constrained gradient descent for pa-
rameter search given a NAT structure. We also proposed subNAT based differentiation for
PCI pattern extraction when persistent leaky causes exist. The effectiveness the framework
for compressing general CPTs into NAT models, coupled with the above techniques, is
validated by experimental study with both randomly generated and real world CPTs.

Since NAT-modeled BNs significantly reduce the space and time complexity during
inference (Xiang and Jin (2016)), the above contributions are a step forward to significantly
improving inference efficiency for BNs. They also provide guiding insight for learning
tractable BNs directly from data, which we will pursue as future work. We have measured
compression accuracy by comparing the resultant NAT CPT with the target CPT. This is
based on the assumption that if the compressed NAT CPTs are reasonably accurate, rela-
tive to target CPTs, then inference performed on a so-compressed BN will be reasonably
accurate, relative to the original BN. As a future work, the assumption will be verified by
assessing accuracy of posteriors resultant from inference with the compressed BNs.

A technique closely related to NAT compression is the rank-one tensor decomposition
(Savicky and Vomlel (2007)). It was shown that a CPT owerbinary causes and their
additive effect of domain sizen + 1 can be decomposed into the sum xaf + 1 rank-
one tensors, each of which is the outer productref+ 1 vectors. Hence, the rank-one
tensor decomposition reduces the number of paramdters- 1)2" of a general CPT to
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3m2+4m+1. If the CPT is overn uncertain causes of the above domain sizes for variables,

a NAT model requires the specification af? parameters. Hence, NAT compression is
more compact than rank-one tensor decomposition. For accuracy, although rank-one tensor
decomposition has more parameters, which may lead to better accuracy, a NAT model can
select its NAT topology from a super-exponential space. More study is needed to evaluate
the relative accuracy between NAT compression and tensor decomposition.
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