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Abstra
tBayesian networks provide a natural, 
on
ise knowledge representation method for building knowledge-based systems under un
ertainty. We 
onsider domains representable by general but sparse networks and
hara
terized by in
remental eviden
e where the probabilisti
 knowledge 
an be 
aptured on
e and usedfor multiple 
ases. Current Bayesian net representations do not 
onsider stru
ture in the domain andlump all variables into a homogeneous network. In pra
ti
e, one often dire
ts attention to only partof the network within a period of time, i.e., there is \lo
alization" of queries and eviden
e. In su
h
ase, propagating eviden
e through a homogeneous network is ineÆ
ient sin
e the entire network has tobe updated ea
h time. This paper derives reasonable 
onstraints, whi
h 
an often be easily satis�ed,that enable a natural (lo
alization preserving) partition of a domain and its representation by separateBayesian subnets. The subnets are transformed into a set of permanent jun
tion trees su
h that eviden-tial reasoning takes pla
e at only one of them at a time; and marginal probabilities obtained are identi
alto those that would be obtained from the homogeneous network. We show how to swap in a new jun
tiontree, and absorb previously a
quired eviden
e. Although the overall system 
an be large, 
omputationalrequirements are governed by the size of one jun
tion tree.Key words Knowledge representation, Expert systems, Knowledge-based systems, Bayesian network,Probabilisti
 reasoning, Reasoning under un
ertainty.
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1 Introdu
tionOver the last de
ade, Bayesian belief networks, 
ombining a graphi
 representation of a 
ausal domain modeland probability theory, have gained in
reasing popularity as a natural, 
on
ise knowledge representationmethod and a 
onsistent inferen
e formalism for building knowledge-based systems whi
h require reasoningunder un
ertainty.Cooper (1990) has shown that probabilisti
 inferen
e in a general Bayesian net is NP-hard. Severaldi�erent approa
hes have been pursued to avoid 
ombinatorial explosion in 
omputation for typi
al 
ases,and thus to redu
e 
omputational 
ost. Two 
lasses of approa
hes 
an be identi�ed.One 
lass of approa
hes explore approximation. Sto
hasti
 simulation is proposed as one approximateinferen
e s
heme (Henrion 1988). Annihilating very small numbers in se
ondary stru
tures of Bayesian netsis another way to redu
e 
onsumption of 
omputer resour
es (Jensen and Andersen 1990).Another 
lass of approa
hes Exploit the stru
ture of the problem to gain eÆ
ien
y in 
omputing exa
tprobabilities. The approa
h of this paper belongs to this se
ond 
lass. EÆ
ient algorithms have been devel-oped for inferen
e in Bayesian nets with spe
ial topologies (Pearl 1986; He
kerman 1990a). Unfortunatelymany domain models 
annot be represented by these spe
ial types of Bayesian nets. For general but sparsenets, eÆ
ient 
omputation has been a
hieved by 
reating a se
ondary stru
ture with a dire
ted tree topology(Lauritzen and Spiegelhalter 1988) or with an undire
ted tree topology (Jensen, Lauritzen and Olesen 1990,Shafer and Shenoy 1988). The se
ondary stru
tures o�er also the advantage of trading 
ompile time withrunning time for systems to be used repeatedly. However, for large appli
ations, the run time overhead(both spa
e and time) is still forbidding. Pruning Bayesian nets with respe
t to ea
h query instan
e is yetanother exa
t method with savings in 
omputational 
ost (Baker and Boult 1990). However, it is hard toknow what is relevant a priori where in
remental eviden
e absorption is required. A portion of a Bayesiannet may not be relevant given a set of eviden
e and a set of queries, and therefore 
an be pruned away before
omputation. But in light of a pie
e of new eviden
e, it may be
ome relevant and 
ould not be restoredwithin the pruning algorithm. Furthermore, the advantage of trading 
ompile time with running time is lostin systems for repeated usage if the network has to be pruned for ea
h set of queries. It is this problem thatthis paper addresses.We 
onsider domains representable by general but sparse networks and 
hara
terized by in
rementaleviden
e. We address reusable systems where the probabilisti
 knowledge 
an be 
aptured on
e and be usedfor multiple 
ases. Current Bayesian net representations do not 
onsider stru
ture in the domain and lumpall variables into a homogeneous network. For small appli
ations, this may be appropriate. For a largeappli
ation domain where eviden
e arrives in
rementally, in pra
ti
e one often dire
ts attention to only part2



of the network within a period of time, i.e., there is \lo
alization" of queries and eviden
e. More pre
isely,\lo
alization" means two things. For ea
h phase of a query session, only 
ertain parts of a large network areinteresting1; and new eviden
e and queries are dire
ted to a small part of a large network repeatedly withina period of time. When this is the 
ase, propagating eviden
e in the homogeneous network is ineÆ
ient sin
ethe newly arrived eviden
e has to be propagated to the entire network before queries 
an be answered.A large appli
ation domain 
an often be partitioned naturally in terms of lo
alization. For example (Xianget al. 1992), a neurologist, assisted by a knowledge-based system, examining a patient with a painful impairedupper limb, may temporarily 
onsider only his �ndings' impli
ations on a set of possible neuromus
ulardiseases. He may not start to 
onsider the diagnosti
 signi�
an
e of ea
h available laboratory test until hehas �nished the 
lini
al examination. That is, during the 
lini
al examination, queries and new eviden
e arerepeatedly dire
ted towards a set of 
lini
al symptoms and disease hypotheses. We do not need to 
onsiderother parts of the network. After the 
lini
al examination of the patient, the �ndings highlight 
ertain disease
andidates and make others less likely, whi
h may suggest that further nerve 
ondu
tion studies are of nohelp at all, and thus no attention will be paid to variables about nerve 
ondu
tion throughout the diagnosisof this patient. Instead EMG tests form the se
ond stage of the do
tor's diagnosti
 pra
ti
e. Here eviden
eand queries for the patient are lo
alized within the 
lini
al and EMG portions. Sin
e EMG tests are usuallynot 
omfortable for patients, the neurologist would not perform a test unless it is diagnosti
ally ne
essary.Thus, he would like to know the updated likelihood of disease hypotheses after ea
h test to see if furthertests are ne
essary and whi
h one 
an yield the most diagnosti
 bene�t. During this test period, queries andnew eviden
e are lo
alized within a set of EMG tests and disease variables. Therefore, in a knowledge-basedsystem for neuromus
ular diagnosis, knowledge about the 
lini
al symptoms and a set of diseases forms anatural subdomain. Knowledge about EMG test results and a subset of diseases forms another subdomain,and knowledge about nerve 
ondu
tion study results and a di�erent subset of diseases forms yet anothersubdomain. If this domain is represented in a homogeneous network, ea
h pie
e of 
lini
al �ndings has to bepropagated to all the EMG and nerve 
ondu
tion variables whi
h are not relevant at the moment. Likewise,after ea
h EMG test, the entire net has to be updated even though the neurologist is only interested inplanning the next EMG test.Clearly, the problem is be
ause 
urrent Bayesian net representations do not provide means to distinguishvariables a

ording to natural subdomains. (He
kerman 1990b) partitions Bayesian nets into small groups ofnaturally related variables to ease the 
onstru
tion of large networks. But on
e the 
onstru
tion is �nished,the run time representation is still homogeneous.It 
an be argued that if groups of naturally related variables in a domain 
an be identi�ed and represented,1\Interesting" is more restri
tive than \relevant". We may not be interested in something even though it is relevant.3



the run time 
omputation 
an be restri
ted to one group at any given stage of a query session due to thelo
alization. In parti
ular, we may not need to propagate new eviden
e beyond the 
urrent group. Alongwith the arrival of new eviden
e, attention 
an be shifted from one group to another. Chunks of knowledgenot required for the 
urrent fo
us of attention remain ina
tive (but are not thrown away) until the fo
usof attention shifts and they are a
tivated. This way, the run time overhead is governed by the size of thegroup of naturally related variables, not the size of the appli
ation domain. Large 
omputational savings
an be a
hieved when un
ertainty about 
urrent group needs to be updated repeatedly. As demonstratedby He
kerman (1990b), grouping of variables 
an also help in ease and a

ura
y in 
onstru
tion of Bayesiannetworks.Partitioning a large domain into separate knowledge bases and 
oordinating them in problem solving havea long history for rule-based expert systems termed bla
kboard ar
hite
tures (Nii 1986a; 1986b). However, aproper parallel for Bayesian network te
hnology has not appeared yet.Pearl, in his in
uential book (1988, page 319), expressed the following ideal:\Instead of propagating all the information everywhere, it is possible to assess �rst the poten-tial impa
t of every updating operation on the belief of the target node and to limit the updatingpro
ess so that only relevant information is propagated. Doing so will de
rease the amount ofdata traÆ
 in the network and the amount of 
omputation expended on inferen
e. However, itis important that the information we 
hoose not to propagate be allowed to a

umulate at theboundaries and dis
harge its impa
t to new areas of knowledge on
e our 
urrent set of beliefbe
omes stagnant."The te
hnique that we present in this paper provides a 
omputational model to implement this ideal.This paper derives 
onstraints, whi
h 
an often be satis�ed easily, that enable a natural (lo
alizationpreserving) partition of a domain and its representation by separate Bayesian subnets. Su
h a representationis termed multiply se
tioned Bayesian network (MSBN). In order to perform eÆ
ient evidential reasoning ina general but sparse network, the set of subnets are transformed into a set of jun
tion trees as a se
ondaryrepresentation whi
h is termed a jun
tion forest. The jun
tion forest be
omes the permanent representationfor the reusable system where in
remental evidential reasoning takes pla
e. Sin
e the jun
tion trees preservelo
alization, ea
h of them stands as a 
omputational obje
t whi
h 
an be used alone during reasoning.Multiple linkages between the jun
tion trees are introdu
ed to allow eviden
e a
quired from previouslya
tive jun
tion trees to be absorbed into the newly a
tive jun
tion tree whi
h is of 
urrent interest. In thisway, the lo
alization naturally existing in the domain 
an be exploited and the above illustrated idea isrealized. The MSBN te
hnique 
an be viewed as an extension to the d-separation 
on
ept (Pearl 1888) and4



the jun
tion tree te
hnique (Andersen et al. 1989, Jensen, Lauritzen and Olesen 1990).Se
tion 2 brie
y summarizes the ba
kground knowledge and previous resear
h. Se
tion 3 explains why\obvious" solutions to exploit lo
alization do not work, and Se
tion 4 gives an overview of the MSBNs andthe jun
tion forests te
hnique. We hope that these two se
tions will motivate and guide readers into thesubsequent se
tions whi
h present the mathemati
al theory ne
essary to the te
hnique. Due to limited spa
e,we have omitted all the proofs in this paper. Readers who are interested in the proofs are referred to Xiang,Poole and Beddoes (1992).2 Ba
kground2.1 Graphs and hypergraphsA graph G is a pair (N;E) where N = fA1; : : : ; A�g is a set of nodes and E � f(Ai; Aj)jAi; Aj 2 N ; i 6= jgis a set of links between pairs of nodes in N . A dire
ted graph is a graph where links in E are ordered pairsand an undire
ted graph is a graph where links in E are unordered pairs. Links in dire
ted graphs are 
alledar
s when their dire
tions are of 
on
ern. A subgraph of a graph (N;E) is any graph (Nk; Ek) satisfyingNk � N and Ek � E. Given a subset of nodes N l � N of a graph (N;E), the subgraph indu
ed by N l is(N l; El) where El = f(Ai; Aj) 2 EjAi 2 N l & Aj 2 N lg. The union graph of subgraphs G1 = (N1; E1) andG2 = (N2; E2) is the graph (N1 [N2; E1 [ E2) denoted G1 tG2.A path in graph (N;E) is a sequen
e of nodes A1; A2; : : : ; Ak (k > 1) su
h that (Ai; Ai+1) 2 E. Apath in a dire
ted graph 
an be dire
ted or undire
ted (i.e. ea
h ar
 is 
onsidered undire
ted). A simplepath is a path with no repeated node ex
ept that A1 is allowed to equal Ak. A 
y
le is a simple path withA1 = Ak. Dire
ted graphs without a dire
ted 
y
le are 
alled DAGs (dire
ted a
y
li
 graphs). A graph(N;E) is 
onne
ted if for any pair of nodes in N there is an undire
ted path between them. A graph is singly
onne
ted, or is a tree, if there is a unique undire
ted path between any pair of nodes. If a graph 
onsists ofseveral un
onne
ted trees, it is 
alled a forest. A graph is multiply 
onne
ted if there is a pair of nodes withmore than one undire
ted path between them.This paper 
onsiders only 
onne
ted DAGs sin
e an un
onne
ted DAG 
an always be treated as several
onne
ted ones. A subDAG of a DAG D = (N;E) is de�ned as any 
onne
ted subgraph of D. A DAG D isthe union DAG of subDAG D1 and D2 if D = D1 tD2.If there is an ar
 (A1; A2) from node A1 to A2, A1 is 
alled a parent of A2, and A2 a 
hild of A1. Similarly,if there is a dire
ted path from A1 to Ak, the two nodes are 
alled, respe
tively, an
estor and des
endent,relative to ea
h other. The in-degree of a node is the number of parents it has.If for ea
h node in a DAG, links are added between all its parents and the dire
tions on the ar
s aredropped, the resultant is the moral graph of the DAG. A graph is triangulated if every 
y
le of length > 35



has a 
hord. A 
hord is a link 
onne
ting two nonadja
ent nodes. A maximal set of nodes all of whi
h arepairwise linked is 
alled a 
lique.A hypergraph is a pair (N;C) where N is a set and C � 2N (power set of N) is a set of subsets of N .The union of hypergraphs is de�ned similarly to the union of graphs. The union hypergraph of (N1;C1)and (N2;C2) is (N1 [ N2;C1 [ C2) denoted (N1;C1) t (N2;C2). Let (N;E) be a graph, and C be theset of 
liques of (N;E). Then (N;C) is a 
lique hypergraph of graph (N;E). If a 
lique hypergraph isorganized into a tree where the nodes of the tree are labeled with 
liques su
h that for any pair of 
liques,their interse
tion is 
ontained in ea
h of the 
liques on the unique path between them then the tree is 
alleda jun
tion tree or a join tree. The interse
tion of two adja
ent 
liques in a jun
tion tree is 
alled the sepsetof the two 
liques.For formal treatment of the graph theoreti
al 
on
epts introdu
ed, see Golumbi
 (1980), Jensen (1988),Lauritzen, Speed and Vijayan (1984).2.2 Bayesian networks
Θ

1 A

2A

3A
H4

H3

2H

1 H

1 F 2F

2E
3E

1 EFigure 1: A DAG �A Bayesian network (Pearl 1988) is a triplet (N;E; P ).� N is a set of nodes ea
h of whi
h is labeled with a random variable having a set ofmutually ex
lusive andexhaustive out
omes. In the 
ontext of Bayesian nets, `node' and `variable' are used inter
hangeably.Upper
ase letters (possibly subs
ripted) in the beginning of the alphabet are used to denote variables,
orresponding s
ript letters to denote their sample spa
es, and 
orresponding lower
ase letters withsubs
ripts to denote their out
omes. For example, in binary 
ase, a variable A has its sample spa
eA = fa1; a2g, and Hi has its sample spa
e Hi = fhi1; hi2g. Upper
ase letters towards the end of thealphabet are used to denote a set of variables. If X � N is a set of variables, the spa
e 	(X) of X isthe 
ross produ
t of sample spa
es of the variables 	(X) = �A2XA. �i is used to denote the set ofparent variables of Ai 2 N . 6



For example, Figure 1 shows the DAG of a Bayesian net with a set of nodesfA1; A2; A3; E1; E2; E3; F1; F2; H1; H2; H3; H4g. In binary 
ase, the sample spa
e of A3 is A3 = fa31; a32g.� E is a set of ar
s su
h that (N;E) is a DAG. The ar
s signify the existen
e of dire
t 
ausal in
uen
esbetween the linked variables. The basi
 dependen
y assumption embedded in Bayesian nets is that avariable is independent of its non-des
endants given its parents.For example, the ar
s in Figure 1 signify the dire
t 
ausal in
uen
es from E1 and E3 to E2. Thetopology 
onveys the assumption p(E2jE1E3H4) = p(E2jE1E3).� P is a joint probability distribution quantifying the strengths of the 
ausal in
uen
es signi�ed bythe ar
s. P is spe
i�ed by, for ea
h Ai 2 N , the distribution of the random variable labeled at Ai
onditioned by the values of Ai's parents �i in the form of a 
onditional probability table p(Aij�i).p(Aij�i) is a normalized fun
tion mapping 	(fAig [ �i) to [0; 1℄. The joint probability distribution Pis P = p(A1 : : : A�) = �Yi=1 p(Aij�i)For example, Table 1 lists the 
onditional distributions needed to fully spe
ify P for the Bayesian net(�; P ).If we sum a joint distribution over all possible out
omes of the variables in N n fAig, the resultantdistribution is the marginal distribution over the variable Ai.p(h11) = :15 p(a21jh31) = :8 p(e11jh41) = :8p(a21jh32) = :1 p(e11jh42) = :15p(h21ja21a11) = :8696p(h21ja21a12) = :7 p(a31jh31) = :3 p(e21je31e11) = :9789p(h21ja22a11) = :6 p(a31jh32) = :8 p(e21je31e12) = :8p(h21ja22a12) = :08 p(e21je32e11) = :9p(f11 jh11h21) = :7895 p(e21je32e12) = :05p(h31) = :3 p(f11 jh11h22) = :5p(f11 jh12h21) = :6 p(e31 jh21h31) = :7702p(h41ja31) = :25 p(f11 jh12h22) = :05 p(e31 jh21h32) = :35p(h41ja32) = :4 p(e31 jh22h31) = :65p(f21 jf11) = :4 p(e31 jh22h32) = :01p(a11jh11) = :8 p(f21 jf12) = :75p(a11jh12) = :1Table 1: Probability distribution asso
iated with DAG � in Figure 1.2.3 Operations on belief tablesA belief table (Andersen et al. 1989; Jensen, Olesen, and Andersen 1990) or a potential (Lauritzen andSpiegelhalter 1988) denoted as B() is a non-normalized probability distribution. It 
an be viewed as a7



fun
tion from the spa
e of a set of one of more variables to the reals. For example, the belief table B(X) ofa set X of variables maps 	(X) to the reals. If x 2 	(X), the belief value of x is denoted by B(x). Denotea set X of variables and 
orresponding belief table B(X) with an ordered pair (X;B(X)) and 
all the paira world.For Y � X , the proje
tion y 2 	(Y ) of x 2 	(X) to the spa
e 	(Y ) is denoted as Prj	(Y )(x). Denotethe marginalization of B(X) to Y � X by PXnY B(X) whi
h spe
i�es a belief table on Y . The operationis de�ned as the following: if B(Y ) =PXnY B(X) then for all y 2 	(Y ),B(y) = XPrj	(Y )(x)=yB(x):Similarly, denote the multipli
ation of B(X) and B(Y ) by B(X) � B(Y ) whi
h spe
i�es a belief table onX [ Y . If B(X [ Y ) = B(X) �B(Y ) then for all z 2 	(X [ Y ), B(z) = B(x) �B(y) where x = Prj	(X)(z)and y = Prj	(Y )(z). Denote the division of B(X) over B(Y ) by B(X)=B(Y ) whi
h spe
i�es a belief tableon X [ Y . If B(X [ Y ) = B(X)=B(Y ) then for all z 2 	(X [ Y ), B(z) = B(x)=B(y) if B(y) 6= 0 wherex = Prj	(X)(z) and y = Prj	(Y )(z).2.4 Transform Bayesian nets into jun
tion treesThe MSBN te
hnique is an extension to the jun
tion tree te
hnique (Andersen et al. 1989; Jensen, Lauritzenand Olesen 1990) whi
h transforms a Bayesian net into an equivalent se
ondary stru
ture where inferen
eis 
ondu
ted (Figure 4). Be
ause of this restru
turing, belief propagation in multiply 
onne
ted Bayesiannets 
an be performed in a similar manner as in singly 
onne
ted nets. The following brie
y summarizes thejun
tion tree te
hnique.Moralization Transform the DAG into its moral graph, e.g. � in Figure 2 (with respe
t to � in Figure 1).Triangulation Triangulate the moral graph. Call the resultant graph a morali-triangulated graph, e.g. �of Figure 2.Clique hypergraph formation Identify 
liques of the morali-triangulated graph, e.g. the nodes in � ofFigure 2, and obtain a 
lique hypergraph.Jun
tion tree 
onstru
tion Organize the 
lique hypergraph into a jun
tion tree of 
liques, e.g. � ofFigure 2.Node assignment Assign ea
h node in the DAG to a 
lique in the jun
tion tree of 
liques. For example,H4 is assigned to either 
lique 7 or 8, and H3 is assigned to 
lique 5, 6, 7 or 8.8
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H43E1 E9Figure 2: The moral graph � of the DAG � in Figure 1, one of �'s triangulated graphs �, and the
orresponding jun
tion tree �. Ea
h 
lique in � is numbered (the number is separated from 
lique membersby a `j').Belief universes formation For ea
h 
lique Ci in the jun
tion tree of 
liques, obtain its belief table B(Ci)by multipli
ation of the 
onditional probability tables of its assigned nodes. Call (Ci; B(Ci)) a beliefuniverse. When it is 
lear from the 
ontext, no distin
tion is made between a jun
tion tree of 
liquesand a jun
tion tree of belief universes.Inferen
e is 
ondu
ted through the jun
tion tree representation. An absorption operation is de�nedfor lo
al belief propagation. Global belief propagation is a
hieved by a forward propagation operationDistributeEviden
e and a ba
kward propagation operation Colle
tEviden
e.Belief initialization Before any eviden
e 
an be entered to the jun
tion tree, the belief tables are made
onsistent by Colle
tEviden
e and DistributeEviden
e su
h that prior marginal probability for a variable(of the original Bayesian net) 
an be obtained by marginalization of a belief table in any universe whi
h
ontains it. 9



Evidential reasoning When eviden
e about a set of variables (of the original Bayesian net) is available,the eviden
e is entered into universes whi
h 
ontain the variables. Then the belief tables of the jun
tiontree are made 
onsistent again by Colle
tEviden
e and DistributeEviden
e su
h that posterior marginalprobability for a variable 
an be obtained from any universe 
ontaining the variable.The 
omputational 
omplexity of evidential reasoning in jun
tion trees is about the same as the reasoningmethod by Lauritzen and Spiegelhalter (1988) whi
h 
an be viewed as performed on a (se
ondary) dire
tedtree stru
ture (Sha
hter 1988; Neapolitan 1990). But jun
tion trees are undire
ted and allow more 
exible
omputation. The jun
tion tree representation is explored in this paper sin
e its 
exibility is of 
ru
ialimportan
e to the MSBN extension.2.5 d-separationThe 
on
ept of d-separation introdu
ed by Pearl (1988, page 116-118) is fundamental in probabilisti
 rea-soning in Bayesian networks. It permits easy determination, by inspe
tion, of whi
h sets of variables are
onsidered independent of ea
h other given a third set, thus making any DAG an unambiguous representationof dependen
y and independen
e. It plays an important role in our partitioning of Bayesian networks.De�nition 2.1 (d-separate (Pearl 1988)) If X, Y , and Z are three disjoint subsets of nodes in a DAG,then Z is said to d-separate X from Y , if there is no path between a node in X and a node in Y alongwhi
h two 
onditions hold: (1) every node with 
onverging ar
s (head-to-head node) is in Z or has ades
endent in Z and (2) every other node (non-head-to-head node) is outside Z.A path satisfying the 
onditions above is said to be a
tive; otherwise it is said to be blo
ked by Z.For example (Figure 1), fF1g d-separates fF2g from fH1; H2g. fH2; H3; H4g d-separates fE1; E2; E3gfrom the rest. The path between A3 and E1 is blo
ked by H4. Detailed illustrations of d-separation 
an befound in Neapolitan (1990, page 192-207).The importan
e of d-separation is that, in a Bayesian network, X and Y are 
onditionally independentgiven Z i� Z d-separates X from Y (Geiger, Verma and Pearl 1990).3 \Obvious" Ways to Explore Lo
alization\Lo
alization" means the following: (1) For an average query session, only 
ertain parts of a large networkare interesting. We would like to 
on
entrate on the part of 
urrent interest without the overhead of theuninteresting parts. We don't want to remove those parts a priori as what seemed initially uninteresting maybe
ome interesting, and we would like to pay only a small 
ost to `swap' those parts in. (2) New eviden
e10



and queries are dire
ted to a small part of a large network repeatedly within a period of time. Making useof this, we only want to in
ur the swapping 
ost o

asionally.An obvious way to explore lo
alization in multiply 
onne
ted networks is to preserve lo
alization withinsubtrees of a jun
tion tree by 
lever 
hoi
e of triangulation and jun
tion tree 
onstru
tion. If this 
an bedone, the jun
tion tree 
an be split and ea
h subtree 
an be used as a separate 
omputational obje
t. Thefollowing example shows that this is not always workable. Consider the DAG � in Figure 2. Supposevariables in the DAG form three groups naturally related whi
h satisfy lo
alization:G1 = fA1; A2; A3; H1; H2; H3; H4gG2 = fF1; F2; H1; H2gG3 = fE1; E2; E3; H2; H3; H4gWe would like to 
onstru
t a jun
tion tree whi
h preserves the lo
alization within three subtrees. The graph� in Figure 2 is the moral graph of �. Only the 
y
le A3�H3�E3�E1�H4�A3 needs to be triangulated.There are six distin
t ways of triangulation out of whi
h only two do not mix nodes in di�erent groups.The two triangulations have the link (H3; H4) in 
ommon and whi
h is 
hosen does not make a signi�
antdi�eren
e in the following analysis. The � in Figure 2 shows one of the two triangulations. The nodes ofgraph � are all the 
liques in �.The jun
tion tree � does not preserve lo
alization sin
e 
liques 3, 4, 5 and 8 
orrespond to group G1 butare 
onne
ted via 
liques 6 and 7 whi
h 
ontains E3 from group G3. This is unavoidable. When there iseviden
e towards A1 or A2 in �, updating the belief in group G3 requires passing the joint distribution overH2 and H3. But updating the belief in A3 only requires passing the marginal distribution of H3. That isto say, updating the belief in A3 needs less information than group G3. In the jun
tion tree representation,this be
omes a path from 
liques 3, 4 and 5 to 
lique 8 via 
liques 6 and 7.In general, let X and Y be two sets of variables in the same natural group, and let Z be a set of variablesin a distin
t group. Suppose the information ex
hange between pairs of them requires the ex
hange ofdistribution on sets IXY , IXZ and IY Z of variables respe
tively. Sometime IXY is a subset of both IXZ andIY Z . When this is the 
ase, a jun
tion tree representation will always indire
tly 
onne
t 
liques 
orrespondingto X and Y through 
liques 
orresponding to Z if the method in Andersen et al. (1989), Jensen, Lauritzenand Olesen (1990) is followed.However, there is a way around the problem with a brute for
e method. In the above example, whenthere is eviden
e towards A1 or A2, the brute for
e method pretends that updating the belief in A3 needsas mu
h information as G3. A dummy link (H2; A3) is added to the moral graph � in Figure 2. Thentriangulating the augmented graph gives the graph �0 in Figure 3. The resultant jun
tion tree �0 in Figure 311



does have three subtrees whi
h 
orrespond to the three groups desired. However, the largest 
liques nowhave size four instead of three as before. In the binary 
ase, the size of the total state spa
e is 84 instead of76 as before.
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Figure 3: �0 is a triangulated graph. �0 is a jun
tion tree of �0.In general, the brute for
e method preserves natural lo
alization by 
ongregation of the set of interfa
ingnodes (nodes H2; H3; H4 above) between natural groups. In this way, the joint distribution on interfa
ingnodes2 
an be passed between groups, and preservation of lo
alization and preservation of tree stru
ture 
anbe 
ompatible. However, in a large appli
ation domain with the original network sparse, this will greatlyin
rease the amount of 
omputation in ea
h group due to the exponential enlargement of the 
lique statespa
e. The 
omputation amount in
reased 
ould outweigh the savings gained by exploring lo
alization ingeneral.The trouble illustrated in the above two situations 
an be tra
ed to the tree stru
ture of a jun
tion treerepresentation whi
h insists on single path between any two 
liques in the tree. The normal triangulation
ase has small 
liques but loses lo
alization. The brute for
e 
ase preserves lo
alization but does not havesmall 
liques. To summarize, we have shown that the preservation of natural lo
alization and small 
liques
annot 
oexist by the method of Andersen et al. (1989), Jensen, Lauritzen and Olesen (1990). It is 
laimedhere that this is due to a single information 
hannel between lo
al groups of variables. In the following, it2It will be shown later that when the set of interfa
ing nodes possesses a 
ertain property, the joint distribution on the setis the suÆ
ient information to be ex
hanged. 12



is shown that by introdu
ing multiple information 
hannels between groups and by exploring 
onditionalindependen
e, the joint distribution on a set of interfa
ing variables 
an be passed between groups by passingonly marginal distributions on subsets of the set.4 Overview of MSBNs and the Jun
tion Forest Te
hnique

Figure 4: Left: major steps in transformation of a USBN into a jun
tion tree. Right: major steps intransformation of a MSBN into a jun
tion forest.As demonstrated in Se
tion 3, in order to explore lo
alization, the tree stru
ture and the single 
hannelrequirement must be relaxed. Sin
e the 
omputational advantage o�ered by a tree stru
ture has also beendemonstrated repeatedly, it is not desirable to totally abandon the tree stru
ture. Rather, we keep the treestru
ture within ea
h natural group, but to allow multiple 
hannels between groups. To implement thisidea, the MSBN and the jun
tion forest representations extend the d-separation 
on
ept and the jun
tion13



tree te
hnique. This se
tion outlines the development of these representations. Ea
h major step involved isdes
ribed in terms of its fun
tionality. The problems possibly en
ountered and the hints for solutions aredis
ussed. The details are presented in the subsequent se
tions. Sin
e the te
hnique extends the jun
tiontree te
hnique reviewed in Se
tion 2.4, the parallels and the di�eren
es are indi
ated. Figure 4 illustratesthe major steps in the transformation of the original representation into the se
ondary representation forboth te
hniques.The d-sepset We want to partition a large domain a

ording to natural lo
alization into subdomains su
hthat ea
h 
an be represented separately by a Bayesian subnet; and that these subnets 
an 
ooperate withea
h other during inferen
e by ex
hanging small amount of information between them. We dis
uss herethe te
hni
al 
onstraints whi
h have to be followed during the partition in order to solve these goals. Thisproblem 
an be formulated 
on
eptually in the opposite dire
tion. Suppose the domain has been representedwith a homogeneous network. The task is to �nd the ne
essary te
hni
al 
onstraints to be followed whenthe net is partitioned into subnets a

ording to natural lo
alization. Se
tion 5 de�nes d-sepsets whose jointdistribution is the suÆ
ient information to be ex
hanged to keep `adja
ent' subnets informed. It is shown thatin the jun
tion tree representation of the homogeneous net, the nodes in d-sepsets 
an serve as informationpassageways between nodes in di�erent subnets. Thus, the d-sepsets form the interfa
es between pairs ofsubnets.Se
tioning Continuing in the 
on
eptual dire
tion, Se
tion 6 des
ribes how to se
tion a homogeneousBayesian net into subnets 
alled se
ts. The 
olle
tion of these se
ts forms a MSBN. It is des
ribed how theprobability distribution should be assigned to se
ts relative to the distribution in the homogeneous network.Parti
ularly, it is ne
essary to assign the original probability table of a d-sepnode to a unique se
t whi
h
ontains the d-sepnode and all its parent nodes, and to assign the same d-sepnode in other se
ts a uniformtable.In order to perform eÆ
ient inferen
e in a general but sparse network, ea
h se
t is transformed into aseparate jun
tion tree whi
h will stand as an inferen
e entity. When doing so, it is ne
essary to preservethe inta
tness of the 
lique hypergraph resulting from the 
orresponding homogeneous net. That is, we haveto ensure that ea
h 
lique in the original hypergraph will �nd at least one host se
t. This imposes another
onstraint, termed soundness of se
tioning, on the overall organization of the se
ts. Se
tion 6.2 dis
ussesthis 
onstraint.In addition to a ne
essary and suÆ
ient 
ondition for soundness of se
tioning, two suÆ
ient and natural
onditions, that 
an easily be 
he
ked, are provided. The 
onditions are spe
i�ed by two rules, the 
overing14



subDAG rule and the hypertree rule, whi
h, if followed, guarantee sound se
tioning. The two rules plus thed-sepset interfa
e impose 
onditional independen
e 
onstraints at a ma
ro level (at the level of the se
ts asopposed to 
onditional independen
e at the level of the nodes). This is dis
ussed in Se
tion 6.3. Althoughthere exists MSBNs of sound se
tioning whi
h do not follow the two rules, it is shown that 
omputationaladvantages are obtained in MSBNs se
tioned a

ording to the rules. Further dis
ussion will therefore onlybe dire
ted to MSBNs satisfying the two rules.Moralization and triangulation To transform a MSBN into a set of jun
tion trees requires moralizationand triangulation as reviewed in Se
tion 2.4. In the MSBN 
ontext, the transformation 
an be performedglobally or by lo
al 
omputation at the level of the se
ts. The global 
omputation performs moralization andtriangulation in the same way as in the jun
tion tree te
hnique with 
are not to mix the nodes of distin
tse
ts into one 
lique. An additional mapping of the resultant morali-triangulated graph into subgraphs
orresponding to the se
ts is needed. But where spa
e saving is 
on
erned, lo
al 
omputation is desired.The pitfalls and pro
edures involved in moralization and triangulation by lo
al 
omputation are dis
ussed.Sin
e the number of parents for a d-sepnode may be di�erent for di�erent se
ts, the moralization inMSBN 
annot be a
hieved by \pure" lo
al 
omputation in ea
h se
t. Communi
ation between the se
ts isrequired to ensure parent d-sepnodes are moralized identi
ally in di�erent se
ts.The 
riterion of triangulation in the MSBN is to ensure the \inta
tness" of a resulting hypergraph fromthe 
orresponding homogeneous net. Problems arise if we insist on triangulation by lo
al 
omputation atthe level of se
ts. One problem is that an inter-se
t 
y
le will be triangulated in the homogeneous net, butthe 
y
le 
annot be identi�ed by examining ea
h of the se
ts involved individually. Another problem is thatd-sepnodes may be triangulated di�erently in di�erent se
ts. The solution is to let the se
ts 
ommuni
ateduring triangulation. Sin
e moralization and triangulation both involve adding links and both require 
om-muni
ation between se
ts, the 
orresponding lo
al operations in ea
h se
t 
an be performed together andmessages to other se
ts 
an be sent together. Therefore, operationally, moralization and triangulation inMSBN are not separate steps as in the jun
tion tree te
hnique. The 
orresponding integrated operation istermed morali-triangulation to re
e
t this.In Se
tion 7.1, the above 
on
ept of \inta
tness" of the hypergraph is formalized in terms of invertibilityof morali-triangulation. It is shown that if the se
tioning of a MSBN is sound then there exists an invertiblemorali-triangulation su
h that the \inta
tness" of the hypergraph is preserved. Se
tion 7.1 provides analgorithm for an invertible morali-triangulation assuming a 
overing subDAG.
15



Next steps in the jun
tion tree te
hnique In the jun
tion tree te
hnique, after triangulation, furthersteps of the transformation are the identi�
ation of 
liques in the morali-triangulated graph (
lique hyper-graph formation) and the jun
tion tree 
onstru
tion. In MSBNs, these steps are performed in a similar wayfor ea
h se
t as in the jun
tion tree te
hnique. A MSBN is thus transformed into a set of jun
tion trees
alled a jun
tion forest of 
liques. Readers are referred to Andersen et al. (1989), Jensen, Lauritzen andOlesen (1990) for te
hnique details involving these steps.Linkage formation An important extension of MSBNs and jun
tion forests to the jun
tion tree te
hniqueis the formation of multiple information 
hannels between jun
tion trees (in a jun
tion forest) su
h that ajoint distribution on a d-sepset 
an be passed between a pair of jun
tion trees by passing through marginaldistributions on subsets of the d-sepset. In this way, the exponential enlargement of the 
lique state spa
e
aused by the brute for
e method (Se
tion 3) 
an be avoided. These 
hannels are termed linkages (Se
-tion 7.2). Ea
h linkage is a set of d-sepnodes whi
h links two 
liques. The two 
liques are from the pair ofjun
tion trees involved, respe
tively. During inferen
e, if eviden
e is obtained from previously a
tive jun
tiontree, it 
an then be propagated to the newly a
tive jun
tion tree through linkages between them.If we built this naively, multiple linkages 
ould 
ause redundant information passing or 
ould 
onfusethe information re
eiver. The problem 
an be avoided by 
oordination among linkages during informationpassing. Sin
e the problem manifests di�erently during belief initialization and evidential reasoning, the two
ases are treated separately. In both 
ases, information passing is performed one linkage at a time. Duringinitialization, (redundant) information already passed through other linkages is removed from the linkagebelief table before the latter is passed over. Operationally, the linkages are ordered. The interse
tion ofa linkage with the union of those linkages ordered before is 
alled the redundan
y set of the linkage. Theredundan
y set tells a linkage what portion of the information has to be removed during information passing.During evidential reasoning, the operation DistributeEviden
e (Se
tion 2.4) is performed after informationpassing. The jun
tion forest of 
liques with linkages and redundan
y sets, forms a linked jun
tion forest of
liques.Formation of joint system belief of jun
tion forest The joint system belief of the jun
tion forest,de�ned (Se
tion 7.3) in terms of the belief on ea
h of the jun
tion trees, is proportional to the joint probabilitydistribution of the homogeneous net. The jun
tion forest with the joint system belief de�ned, forms ajun
tion forest of belief universes. When it is 
lear from the 
ontext, only \jun
tion forest" is used, withoutdi�erentiating between its di�erent stages.
16



Consisten
y and separability of jun
tion forest As in the 
ase of the jun
tion tree te
hnique, we wouldlike to obtain the marginal probability of a variable by marginalization of the belief in any belief universeof any jun
tion tree whi
h 
ontains the variable. In the 
ase of the jun
tion tree te
hnique, this requiresthe 
onsisten
y property whi
h 
an be satis�ed by DistributeEviden
e and Colle
tEviden
e as reviewedin Se
tion 2.4. In the 
ontext of a jun
tion forest, an additional property 
alled separability is required(Se
tion 8) due to multiple linkages between jun
tion trees. It imposes a host 
omposition 
onstraint on the
omposition of linkage host 
liques. The fun
tion of linkages is to pass the joint belief of the 
orrespondingd-sepset. It is shown that if all the jun
tion trees in a jun
tion forest satisfy the host 
omposition 
onditionthen separability is guaranteed. Why these 
onditions usually hold naturally is explained. The remedy whenthe 
ondition does not hold is also dis
ussed. A jun
tion forest stru
ture satisfying separability, and with aset of operations performed to bring the forest into 
onsisten
y, 
an obtain marginal probabilities by lo
al
omputation.Belief initialization Belief initialization (Se
tion 9.3) in a jun
tion forest is a
hieved by �rst bringingthe belief universes in ea
h jun
tion tree into 
onsisten
y, and then ex
hanging prior belief between jun
tiontrees to bring the jun
tion forest into global 
onsisten
y. When ex
hanging beliefs, 
are is to be taken ontwo issues. First, non-trivial information (re
all that d-sepnodes in some se
ts are assigned uniform tablesduring se
tioning) 
ould be 
ontained in either side of the two jun
tion trees involved. Se
ond, redundantinformation 
ould be passed through multiple linkages. Se
tion 9 de�nes several levels of operations toinitialize belief of a jun
tion forest by lo
al 
omputation at the level of jun
tion trees.Evidential reasoning Only one jun
tion tree in a jun
tion forest needs to be a
tive. Whenever neweviden
e be
omes available to the 
urrently a
tive jun
tion tree, it is entered and the tree is made 
onsistentsu
h that queries 
an be answered. Thus, the 
omputation 
omplexity of evidential reasoning is governedby the size of one se
t. When the user shifts attention, a new jun
tion tree repla
es the 
urrently a
tivetree and all previously a
quired eviden
e is absorbed through an operation ShiftAttention. The operationrequires only a 
hain of `intermediate' jun
tion trees to be updated. During the inter-jun
tion tree updating,we need to ensure no 
onfusion results from multi-linkage information passing.5 The d-sepset and the Jun
tion Tree5.1 The d-sepsetAs dis
ussed in Se
tion 4, the problem of partitioning a Bayesian net by natural lo
alization 
an be 
on
ep-tually formulated as though the domain has been represented with a homogeneous network. The task is to17



�nd the te
hni
al 
onstraint to partition the net into subnets su
h that the subnets 
an be used separatelyand 
ooperatively during inferen
e with small amount of information ex
hange. This se
tion de�nes the mostimportant 
on
ept for partitioning, namely, d-sepset. Then some insights are provided into its impli
ationin the se
ondary stru
ture of DAGs.De�nition 5.1 (d-sepset) Let D = D1 t D2 be a DAG. The set of nodes I = N1 \ N2 is a d-sepsetbetween subDAG D1 and D2 if the following 
ondition holds3.For every Ai 2 I with its parents �i in D, either �i � N1, or �i � N2.Elements of a d-sepset are 
alled d-sepnodes. When the above 
ondition holds, D is said to be se
tionedinto fD1; D2g.Note that in general a DAG D = D1 t D2 does not imply the se
tioning of D into fD1; D2g. This isbe
ause the interse
tion of the 
orresponding two sets of nodes may not be a d-sepset.Lemma 5.2 Let a DAG D be se
tioned into fD1; D2g and I = N1 \N2 be a d-sepset. I d-separates N1 n Ifrom N2 n I.The lemma 
an be generalized into the following theorem whi
h states that, although the d-sepset ispairwise de�ned, the union of d-sepsets of a subDAG with other subDAGs globally d-separate the subDAGfrom the rest of the DAG. Note that when a d-sepset is indexed with two supers
ripts, their order isimmaterial.Theorem 5.3 Let a DAG D be se
tioned into fD1; : : : ; D�g and I ij = N i \N j be the d-sepset between Diand Dj . For ea
h i, [j 6=iI ij d-separates N i n [j 6=iI ij from N nN i.The theorem implies that the joint distribution on d-sepsets is the suÆ
ient information to be ex
hangedbetween a Bayesian subnet and the rest of the network.Corollary 5.4 Let (D;P ) be a Bayesian net, D be se
tioned into fD1; : : : ; D�g, and I ij = N i \N j be thed-sepset between Di and Dj . When eviden
e is available at variables in N i, the propagation of the jointdistribution on [j 6=iI ij from Di to the rest is suÆ
ient in order to obtain posterior distribution on N .Example 5.5 The DAG � in Figure 2 is se
tioned into f�1;�2;�3g in Figure 5. I12 = fH1; H2g is thed-sepset between �1 and �2; I13 = fH2; H3; H4g is the d-sepset between �1 and �3; and I23 = fH2g is thed-sepset between �2 and �3. I12 [ I13 = fH1; H2; H3; H4g d-separates the rest of �1 from the rest of �2and �3. 18
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lose relation between d-sepset and usual graph separator given in proposition 5.6. If Z isthe graph separator of X and Y then the removal of the set Z of nodes from the graph (together with theirasso
iated links) would render the nodes in X dis
onne
ted from those in Y .Proposition 5.6 Let a DAG D be se
tioned into fD1; D2g. The set of nodes I = N1 \ N2 is a d-sepsetbetween D1 and D2 i� I is a graph separator in the moral graph of D.The properties of d-separation in the DAG representation of Bayesian networks have been studied exten-sively (Pearl 1988; Geiger, Verma and Pearl 1990). It 
an be used to derive Pearl's propagation algorithmin singly-
onne
ted Bayesian nets (Neapolitan 1990). But to our knowledge, its impli
ation in se
ondarystru
ture has not been examined. The de�nition of the d-sepset now allows to do so.3By the de�nition of t, there 
an be no ar
s from D1 n I to D2 n I.19



5.2 Impli
ation of d-sepset in jun
tion treesRepresenting a multiply 
onne
ted Bayesian network in a se
ondary stru
ture, namely a jun
tion tree,enables 
exible and eÆ
ient belief propagation. With the d-sepset 
on
ept de�ned, we would like to knowhow information is passed in the jun
tion tree between nodes separated by the d-sepset in the originalBayesian network.Lemma 5.7 Let a DAG D be se
tioned into fD1; D2g and I = N1 \N2 be the d-sepset. A jun
tion tree T
an be 
onstru
ted from D, su
h that the following statement is true.For all pairs of nodes A1 2 N1 n I and A2 2 N2 n I, if A1 is 
ontained in 
lique C1 and A2 inC2, then on the unique path between C1 and C2 in T , there exists a 
lique sepset Q 
ontainingonly d-sepnodes.The lemma 
an be generalized to the 
ase of any �nite number of subDAGs. This is the followingproposition. Its proof is similar to the lemma.Proposition 5.8 (belief relay) Let a DAG D be se
tioned into fD1; : : : ; D�g and I = [j 6=iI ij be the unionof d-sepsets between Di and other subDAGs. A jun
tion tree T 
an be 
onstru
ted from D, su
h that thefollowing statement is true.For all pairs of nodes A1 2 N i n I and A2 2 N nN i, if A1 is 
ontained in 
lique C1 and A2 inC2, then on the unique path between C1 and C2 in T , there exists a 
lique sepset Q 
ontainingonly d-sepnodes in I.Example 5.9 Re
all the DAG � in Figure 2 whi
h is se
tioned into f�1;�2;�3g in Figure 5 with I =fH2; H3; H4g being the d-sepset between �1 and �3. Consider the node A3 in 
lique fH3; H4; A3g and thenode E2 in 
lique fE4; E3; E2g in the jun
tion tree � in Figure 2. In the path between the two 
liques, thesepset fH3; H4g between 
liques fH3; H4; A3g and fH3; H4; E3g 
ontains only d-sepnodes.When new eviden
e is available, it 
an be propagated to the jun
tion tree through sepsets between 
liques(Jensen, Lauritzen and Olesen 1990). Therefore, the above proposition means that a jun
tion tree 
an be
onstru
ted su
h that eviden
e in N i n I must pass through at least one sepset 
ontaining only nodes in I inorder to be propagated to nodes in N nN i.Theorem 5.3 and Proposition 5.8 suggest that the 
lique hypergraph 
an be organized su
h that the
liques 
orresponding to di�erent subDAGs separated by d-sepsets 
an be organized into di�erent jun
tiontrees. Communi
ation between them 
an be a

omplished through d-sepsets. This idea is formalized below.20



6 Multiply Se
tioned Bayesian Nets6.1 De�nition of MSBNDe�nition 6.1 (MSBN) Let S = (N;E; P ) be a Bayesian network. Suppose D = (N;E) is se
tioned intofD1; : : : ; D�g where Di = (N i; Ei). Suppose I ij = N i \ N j is the d-sepset between Di and Dj (1 � i; j ��; i 6= j).Ea
h d-sepnode A is assigned to a subDAGs in the following way:Let �i be the in-degree of A in subDAG Di. Choose some i su
h that �i � �j (j = 1; : : : ; �)(breaking ties arbitrarily). Assign A to subDAG Di.A probability distribution P i is assigned to ea
h subDAG Di (i = 1; : : : ; �) in the following way.For ea
h node A 2 N i, if A is a d-sepnode and A is not assigned to Di, assign to A a uniformprobability table.4 Otherwise assign to A an identi
al probability table to that in (N;E; P ).Call Si = (Di; P i) = ((N i; Ei); P i) a se
t and 
all the set of se
ts fS1; : : : ; S�g a Multiply Se
tionedBayesian Network (MSBN).De�nition 6.2 (adja
ent se
ts) Two se
ts in a MSBN are adja
ent if their d-sepset is non-empty. Thetwo se
ts are also 
alled neighbour se
ts.The original Bayesian net S is 
alled as an `UnSe
tioned Bayesian Network (USBN)'. Note that these
tioning of a Bayesian network is essentially determined by the se
tioning of the 
orresponding DAG D.It doesn't matter whi
h way ties are broken. There will be no signi�
ant di�eren
e in further pro
essing.Example 6.3 Suppose the variables in DAG � in Figure 2 are all binary. Asso
iate the probability distri-bution P given in Table 1 with �. (�; P ) is an USBN.Given the USBN (�; P ), and 
orresponding three subDAGs �1, �2 and �3, a 3-se
t MSBN f(�1; P 1);(�2; P 2); (�3; P 3)g 
an be 
onstru
ted. First assign d-sepnodes H1; : : : ; H4 to the subDAGs. H2 and H4must be assigned to �1. H1 
an be assigned to either �1 or �2, and H3 
an be assigned to either �1 or �3.Here it is 
hosen to assign all 4 d-sepnodes to �1. Based on this assignment and P given, the probabilitydistribution for ea
h se
t 
an be determined (Table 2). Note the uniform probability tables assigned tod-sepnodes in �2 and �3.4This is ne
essary for two reasons. If a se
t does not 
ontain all a d-sepnode's parents, the size of probability table of thed-sepnode must be de
reased. This assignment guarantees that the joint system belief 
onstru
ted in Se
tion 7.3 is proportionalto the joint probability distribution P . 21



P 1 P 2 P 3p(h11) = :15 p(h11) = :5 p(h21) = :5p(h21ja21a11) = :8696 p(h21) = :5 p(h31) = :5p(h21ja21a12) = :7p(h21ja22a11) = :6 p(f11jh11h21) = :7895 p(h41) = :5p(h21ja22a12) = :08 p(f11jh11h22) = :5p(f11jh12h21) = :6 p(e11jh41) = :8p(h31) = :3 p(f11jh12h22) = :05 p(e11jh42) = :15p(h41ja31) = :25 p(f21jf11) = :4 p(e21je31e11) = :9789p(h41ja32) = :4 p(f21jf12) = :75 p(e21je31e12) = :8p(e21je32e11) = :9p(a11jh11) = :8 p(e21je32e12) = :05p(a11jh12) = :1 p(e31jh21h31) = :7702p(a21jh31) = :8 p(e31jh21h32) = :35p(a21jh32) = :1 p(e31jh22h31) = :65p(e31jh22h32) = :01p(a31jh31) = :3p(a31jh32) = :8Table 2: Probability distribution asso
iated with subDAGs �1, �2 and �3 in Figure 5.6.2 Soundness of Se
tioningIn order to perform eÆ
ient inferen
e 
omputation in a multiply 
onne
ted Bayesian net, the jun
tion treete
hnique transforms the Bayesian net into a 
lique hypergraph through moralization and triangulation.The hypergraph is organized into a jun
tion tree within whi
h eÆ
ient inferen
e 
an take pla
e. Be
ause ofthe 
omputational advantage of jun
tion trees, in the 
ontext of a MSBN, we would like to transform ea
hse
t into a jun
tion tree. The immediate issue is to de�ne 
onditions on the transformation that guaranteethat 
orre
t inferen
e 
an take pla
e in the resultant set of jun
tion trees. The following reviews the majortheoreti
al results related to this question.Lauritzen, Speed and Vijayan (1984) showed that the 
lique hypergraph of a graph is de
omposable i�the graph is triangulated. Jensen (1988) proved that a hypergraph has a jun
tion tree i� it is de
omposable.Maier (1983) proved the same in the 
ontext of relational database. Jensen, Lauritzen, Olesen (1990) andPearl (1988) showed that a jun
tion tree representation of a Bayesian net is an equivalent representationin the sense that the information about joint probability distribution 
an be preserved. Finally, a more
exible algorithm (
ompared to that by Lauritzen and Spiegelhalter (1988)) was devised on the jun
tion treerepresentation of multiply 
onne
ted Bayesian nets (Jensen, Lauritzen and Olesen 1990).The above results highlight the importan
e of 
lique hypergraphs resulted from triangulation of theoriginal graphs. Thus, as ea
h se
t in a MSBN is transformed into a jun
tion tree, it is ne
essary to preserve22



the inta
tness of the 
lique hypergraph resulting from the 
orresponding USBN. This is possible only if these
tioning of DAG D of the original USBN is sound as de�ned formally below.De�nition 6.4 (soundness of se
tioning) Let a DAG D be se
tioned intofD1; : : : ; D�g. If there exists a 
lique hypergraph from D su
h that for every 
lique Ck in the hypergraphthere is at least one subDAG Di satisfying Ck � N i, then the se
tioning is sound. Di is said to be a hostsubDAG of 
lique Ck.Although the soundness of se
tioning is de�ned in terms of DAGs, the 
on
ept is used here in the 
ontextof MSBNs. When the se
tioning of a DAG is sound, it is said that the se
tioning of the 
orresponding USBNinto the MSBN is sound, or the MSBN is said to be sound.If the se
tioning of a DAG D is unsound, there is no host subDAG for at least one 
lique in all possiblehypergraphs from D. If a MSBN is based on su
h a se
tioning, it is impossible to 
onsistently maintain theautonomous status of se
ts in the se
ondary representation.Example 6.5 In Figure 6, fD1; D2; D3g is an unsound se
tioning of D. The 
lique hypergraph for D musthave 
lique fA;B;Cg whi
h �nds no host subDAG from D1, D2, and D3.

Figure 6: Top left: A DAG D. Top right: The set of subDAGs from an unsound se
tioning of D. Bottomleft: The jun
tion tree T from D.The following develops a ne
essary and suÆ
ient 
ondition for soundness of se
tioning.Lemma 6.6 Let A1� : : :�Ai�1�B1� : : :�Bj�1�C1� : : :�Ck�1� : : :�A1 be a 
y
le 
onsisting of nodesfrom three or more sets: X = fA1; : : : ; Ai�1; B1g, Y = fB1; : : : ; Bj�1; C1g, and so on. The nodes from anyone set are adja
ent in the 
y
le, and two adja
ent sets have a node in 
ommon. Then triangulation of this
y
le must 
reate a triangle with its three nodes not belonging to any single set.23



If a MSBN has only two se
ts, the se
tioning is always sound. Unsoundness 
an arise only when thereare three or more se
ts. The following shows exa
tly the 
ase where a se
tioning is unsound.Theorem 6.7 (inter-subDAG 
y
le) A se
tioning of a DAG D to a set of three or more subDAGs issound i� there exists no (undire
ted) 
y
le in D whi
h 
onsists of nodes from three or more distin
t subDAGssu
h that the nodes from ea
h subDAG are adja
ent on the 
y
le.6.3 Rules That Guarantee SoundnessGiven a DAG and a se
tioning, the sear
h for inter-subDAG 
y
les relative to the se
tioning is expensive,espe
ially by lo
al 
omputation when spa
e is of 
on
ern. Just that a se
tioning is sound does not mean thatthe resultant MSBN has good 
omputational properties (see the latter part of this Se
tion, Se
tion 7.3, and9.5). Furthermore, in pra
ti
e, a large network (MSBN) is 
onstru
ted one se
t at a time. If a se
tioning isnot sound and it 
an only be dis
overed after all se
ts have been 
onstru
ted, the overall revision would bedisastrous. Thus, we would like to develop a simple guideline for sound se
tioning whi
h 
ould be followedduring in
remental 
onstru
tion of MSBNs. The following 
overing subDAG rule is one su
h guideline. Thisrule, if followed, gives good 
omputational properties, and allows to be 
he
ked lo
ally as well.Theorem 6.8 (
overing subDAG) Let a DAG D be se
tioned into fD1; : : : ; D�g. Let Ijk = N j \Nk bethe d-sepset between Dj and Dk. If there is a subDAG Di su
h that N i � [j 6=kIjk then the se
tioning issound. The subDAG Di is 
alled the 
overing subDAG relative to the se
tioning.In the 
ontext of a MSBN, 
all the se
t 
orresponding to the 
overing subDAG the 
overing se
t. Notethat the 
overing se
t rule imposes a 
onditional independen
e 
onstraint at a ma
ro level.Proposition 6.9 Let Si and Sj be any two se
ts in a MSBN with a 
overing se
t Sk (i 6= k, j 6= k). Thetwo sets of variables N i and N j are 
onditionally independent given Nk.Example 6.10 Consider the 3-se
t MSBN f(�1; P 1); (�2; P 2); (�3; P 3)g. (�1; P 1) is the 
overing se
t.Note, in general, the 
overing se
t of a MSBN may not be unique. As far as soundness is 
on
erned, oneis as good as the others. Pra
ti
ally, the one to be 
onsulted most often or the one with the least size ispreferred for the sake of 
omputational eÆ
ien
y whi
h will be 
lear later.The 
overing se
t is typi
ally formed naturally. For example (Xiang et al. 1992), in a neuromus
ulardiagnosis system, the se
t 
ontaining knowledge about 
lini
al examination 
ontains all the disease hypotheses
onsidered by the system. The EMG se
t or nerve 
ondu
tion se
t 
ontains only a subset of the diseasehypotheses based on diagnosti
 importan
e of these tests to ea
h disease. Thus, the 
lini
al se
t is a natural
overing se
t with all the disease hypothesis as d-sepnodes interfa
ing the se
t with other se
ts.24



The 
overing subDAG rule 
an be repeatedly used to 
reate sophisti
ated MSBNs whi
h are sound. Whendoing so, a global 
overing subDAG requirement is repla
ed by a lo
al 
overing subDAG requirement.De�nition 6.11 (MSBN of hypertree stru
ture) A MSBN of hypertree stru
ture is one that is built bythe following pro
edure:Start with an empty MSBN. Re
ursively add a new subDAG Dk to the set of 
onstru
ted subDAGsfD1; : : : ; Dk�1g subje
t to the 
onstraint:There exists Di (i < k) su
h that, for all Dj (j < k; j 6= i), Ijk � N i where Ijk is the d-sepsetbetween Dj and Dk. Di is 
alled a lo
al 
overing subDAG relative to Dk.Theorem 6.12 (hypertree) A MSBN with a hypertree stru
ture is sound.The following example illustrate the hypertree rule. It also explains why the se
tioning is sound.Example 6.13 Figure 7 depi
ts part of a MSBN 
onstru
ted by the hypertree rule. Ea
h box represents asubDAG with boundaries between boxes representing d-sepsets. The supers
ripts of subDAGs represent theorder of their 
reation. D1; D4; D5 are lo
al 
overing subDAGs.

Figure 7: A MSBN with a hypertree stru
ture.The inter-subDAG 
y
le as des
ribed in theorem 6.7 
annot happen in this MSBN due to its hypertreestru
ture, and hen
e the se
tioning is sound.Note that the hypertree rule also imposes a 
onditional independen
e 
onstraint at a ma
ro level.Proposition 6.14 Let Si and Sj be any two se
ts with an empty d-sepset in a MSBN se
tioned by thehypertree rule. Let Sk be any se
t on the unique route mediating Si and Sj on the hypertree. The two setsof variables N i and N j are 
onditionally independent given Nk.25



It should be indi
ated that the 
overing subDAG rule and the hypertree rule do not 
over every 
asewhere se
tioning is sound.Example 6.15 The 3-se
t MSBN fD1; D2; D3g in Figure 8 has no 
overing subDAG. But the se
tioning issound.

Figure 8: Top left: A DAG D. Top right: A jun
tion tree T from D. Bottom left: fD1; D2; D3g forms asound se
tioning of D. Bottom right: The jun
tion trees from the MSBN in Bottom left.Note that, although the se
tioning of the MSBN in Figure 8 is sound, this kind of stru
ture is restri
ted.For example, ar
s 
an be added between A and B in D1, between A and C in D2, but as soon as one morear
 is added between B and C in D3, the theorem 6.7 is violated and the se
tioning be
ome unsound. Thatis, when n subDAGs (n � 3) are interfa
ed in this style, there 
an be at most n� 1 of them being multiply
onne
ted. Further 
omputational problems with su
h stru
ture will be dis
ussed in the appropriate latterse
tions.Sin
e MSBNs 
onstru
ted by the 
overing subDAG rule or the hypertree rule have sound se
tioning, areless restri
ted, and have extra 
omputational advantages (Se
tion 7.3 and 9.5) over the MSBNs whi
h donot follow these rules, the following study is dire
ted to only the MSBNs that follow these rules.Con
eptually, all MSBNs 
onstru
ted by the hypertree rule 
an be viewed as MSBNs with 
overingsubDAGs when attention is dire
ted to lo
al stru
tures. For example, 
onsider D1 in Figure 7 and its sur-rounding subDAGs. D2; D4; D6; D7; D8 
an be 
onsidered as one subDAG, D3; D5; D9; D10; D11 as another,26



D12; D13 and D14; D15 as two others. Thus, the MSBN is viewed as one with a global 
overing subDAGD1. Likewise, when 
on
erned with the relation between D14 and D15, the MSBN 
an be viewed as onesatisfying the 
overing subDAG rule with � = 2. Therefore, the 
omputation required for a MSBN of ahypertree stru
ture is just the repetition of the 
omputation required for a MSBN with a global 
overingsubDAG. On the other hand, a MSBN with a global 
overing subDAG is a spe
ial 
ase of the hypertreestru
ture. Hen
e, the following study is often simpli�ed by 
onsidering only one of the two 
ases.7 Transform MSBN Into Jun
tion ForestIn order to perform eÆ
ient inferen
e in a general but sparse network, it is desirable to transform ea
h se
tof a MSBN into a jun
tion tree whi
h will stand as an inferen
e entity (Se
tion 4). The transformationtakes several steps to be dis
ussed in this se
tion. The set of subDAGs of the MSBN are morali-triangulatedinto a set of morali-triangulated graphs from whi
h a set of 
lique hypergraphs are formed. Then the set of
lique hypergraphs are organized into a set of jun
tion trees of 
liques. Afterwards, the linkages between thejun
tion trees are 
reated. Finally, belief tables are assigned to 
liques and linkages and a jun
tion forest ofbelief universes is 
onstru
ted.7.1 Transform subDAGs into jun
tion trees by lo
al 
omputationThe key issue is morali-triangulating subDAGs of a MSBN into a set of morali-triangulated graphs. On
ethis is done, the formation of the 
lique hypergraph and the organization of ea
h subDAG into a jun
tiontree are performed the same way as in the 
ase of a USBN and a single jun
tion tree (Andersen et al. 1989,Jensen, Lauritzen and Olesen 1990). As mentioned before, the 
riterion in morali-triangulation of a set ofsubDAGs of a MSBN into a set of 
lique hypergraphs is to preserve the `inta
tness' of the 
lique hypergraphresulted from the 
orresponding USBN. The 
on
ept of `inta
tness' is formalized below.De�nition 7.1 (invertible morali-triangulation) Let D be a DAG se
tioned intofD1; : : : ; D�g. Let N i be the set of nodes of Di. If there exists a morali-triangulated graph G of D, withthe 
lique hypergraph H, su
h that G = t�i=1Gi where Gi is the subgraph of G indu
ed by N i, or equiv-alently, H = t�i=1H i where H i is the 
lique hypergraph of Gi, then the set of morali-triangulated graphsfG1; : : : ; G�g is invertible. Also the transformation of fD1; : : : ; D�g into fG1; : : : ; G�g is said to be aninvertible morali-triangulation.The invertibility of morali-triangulation depends on the soundness in se
tioning. This is given by thefollowing theorem. 27



Theorem 7.2 (existen
e of invertible morali-triangulation) There exists an invertible morali-triangulationfor fD1; : : : ; D�g se
tioned from a DAG D, i� the se
tioning is sound.A set of invertible morali-triangulated graphs of a MSBN 
an be 
onstru
ted by �rst performing a global
omputation (moralization and triangulation) on D to �nd G, and then determining its subgraphs relativeto the se
tioning of the MSBN. The moralization and triangulation would be the same as in the jun
tiontree te
hnique with 
are to be taken not to mix nodes in di�erent subDAGs into one 
lique. However, whenspa
e is of 
on
ern, the use of MSBNs o�ers the possibility of morali-triangulation by lo
al 
omputation atthe level of subDAGs of se
ts. In this method, ea
h subDAG in a MSBN is morali-triangulated separately(message passing may be involved) su
h that the 
olle
tion of them is invertible. The following dis
usseshow this 
an be a
hieved.Example 7.3 In the example depi
ted in Figures 2 and 5, � is se
tioned intof�1;�2;�3g by a sound se
tioning and f�1;�2;�3g is a set of invertible morali-triangulated graphs relativeto the se
tioning. We want to �nd �i (i = 1; 2; 3) from �i (i = 1; 2; 3) by lo
al 
omputation.Sin
e subDAGs of a MSBN are interfa
ed through d-sepsets, the fo
us of �nding a set of invertiblemorali-triangulated graphs by lo
al 
omputation is to de
ide whether ea
h pair of d-sepnodes is to be linked.Coordination between adja
ent subDAGs is ne
essary to ensure 
orre
t de
isions. The following 
onsidersthis systemati
ally.Call a link between two d-sepnodes a d-link. Call a simple path (A1; A2; : : : ; Ak) a d-path if there is somei; j, (1 � i < j � k) su
h that A1; : : : ; Ai and Aj ; : : : ; Ak are all d-sepnodes, while all the other nodes on thepath are non-d-sepnodes. A d-link is a trivial d-path. There are six types of d-links:Ar
 type inherited from the subDAG. That is, if two d-sepnodes are 
onne
ted originally in the subDAG,there is a d-link between them in Gi.ML type 
reated by lo
al moralization. For example, the d-links (H1; H2) in �2 and (H2; H3) in �3. No
ommuni
ation between subDAGs is required to add these d-links.ME type 
reated by moralization in neighbour subDAGs. For example, the d-links (H1; H2) and (H2; H3)in �1. De
iding to add this type of d-link requires 
ommuni
ation between neighbour subDAGs.Cy type 
reated to triangulate inter-subDAG 
y
les. For example, the d-link (H3; H4) in �1 and �3.De
iding to add this type of d-links requires 
ommuni
ation between neighbour subDAGs.TL type 
reated during lo
al triangulation. After the above four types of d-links have been introdu
edto the moral graph of a subDAG, there may still be un-triangulated 
y
les within the moral graph28



involving four or more d-sepnodes. The example used above is too simple to illustrate this and nexttype.TE type 
reated by lo
al triangulation in neighbour subDAGs. The triangulation of a 
y
le of length > 3involving only d-sepnodes is not unique. If two neighbour subDAGs triangulate su
h a 
y
le by lo
al
omputation without 
oordination, they may triangulate in di�erent ways and result in di�erent set of
liques for the nodes in the d-sepset. Therefore 
ommuni
ation is required su
h that a subDAG mayadopt the d-links introdu
ed by triangulation in adja
ent subDAGs. The argument also applies to the
ase of triangulating 
y
les 
onsisting of general d-paths.An algorithm for morali-triangulation of subDAGs of a MSBN into a set of invertible triangulated graphsunder the 
overing subDAG assumption is given below.Algorithm 7.4 (morali-triangulation with a 
overing subDAG) Let D1 be the 
overing subDAG inthe MSBN.1. Let MLi be the set of d-links added in the lo
al moralization of subDAG Di. Let Cyi be the set ofpairs of nodes that are 
andidates for be
oming Cy type d-links in Di. For ea
h subDAG Di, do thefollowing:(a) Moralize Di to obtain its moral graph �i. Add new d-links to MLi.(b) Sear
h for pairs of d-sepnodes 
onne
ted by a d-path in �i. Add the pairs found to Cyi.2. For D1, do the following:(a) For ea
h pair of d-sepnodes in D1 also 
ontained in one of the MLi (i > 1), 
onne
t the pair bya d-link in �1.(b) For ea
h pair of d-sepnodes 
ontained in both Cy1 and one of the Cyj (j > 1), 
onne
t the pairby a d-link in �1.(
) Triangulate �1 to obtain the morali-triangulated graph �1.(d) Let DLINK be the set of d-links in �1.3. For ea
h Di (i = 2; : : : ; �), do the following:(a) For ea
h pair of d-sepnodes of �i also 
ontained in DLINK, 
onne
t the pair by a d-link.(b) Triangulate �i to obtain the morali-triangulated graph �i.Note that Algorithm 7.4 has two passes through all the subDAGs. The following theorem shows theinvertibility of the morali-triangulation. 29



Theorem 7.5 (invertibility of Algorithm 7.4) The morali-triangulation 
onstru
ted in Algorithm 7.4is invertible.Example 7.6 The following des
ribe the morali-triangulation of t3i=1�i (Figure 5) by Algorithm 7.4.1. After step 1 of the algorithm, ML1 = �, ML2 = f(H1; H2)g, ML3 = f(H2; H3)g,Cy1 = f(H1; H2); (H2; H3); (H3; H4)g, Cy2 = f(H1; H2)g, and Cy3 = f(H2; H3); (H2; H4); (H3; H4)g.2. After step 2, the morali-triangulated graph �1 of �1 is 
ompleted by adding d-links (H1; H2); (H2; H3);(H3; H4) to �1's moral graph, and then triangulating (nothing is added). DLINK will 
ontainf(H1; H2); (H2; H3); (H3; H4)g.3. After step 3, the morali-triangulated graph �2 of �1 is 
ompleted without 
hange to its moral graph;the morali-triangulated graph �3 of �3 is 
ompleted by adding the d-link (H3; H4) to its moral graph,and then triangulating (with the link (E3; H4) added).As mentioned in Se
tion 4, after the morali-triangulation, the other steps in transformation of a MSBNinto a set of jun
tion trees of 
liques are: identifying 
liques of the morali-triangulated graphs to form aset of 
lique hypergraphs, and organizing ea
h hypergraph into a jun
tion tree. These steps are performedin the same way as in the jun
tion tree te
hnique. Throughout the rest of the 
hapter, it is assumed thatjun
tion trees are obtained through a set of invertible triangulated graphs, and it is said that the jun
tiontrees are obtained by an invertible transformation.Call a set of jun
tion trees of 
liques from an invertible transformation of subDAGs of a MSBN a jun
tionforest of 
liques denoted by F = fT 1; : : : ; T �g where T i is the jun
tion tree from the subDAG Di.7.2 Linkages between jun
tion treesJust as d-sepsets interfa
e subDAGs, linkages interfa
e jun
tion trees transformed from subDAGs and serveas information 
hannels between jun
tion trees during inferen
e. The 
reation of the linkages is an extensionto the jun
tion tree te
hnique. The multiple linkages between pairs of jun
tion trees in a jun
tion forest allowthe preservation of lo
alization within jun
tion trees, and allow the avoidan
e of the exponential explosionof the sizes of 
lique state spa
es asso
iated with the brute for
e method (Se
tion 3).De�nition 7.7 (linkage set) Let I be the d-sepset between two subDAGs Da and Db. Let T a and T b bethe jun
tion trees transformed from Da and Db respe
tively. A linkage of T a relative to T b is a set l ofnodes su
h that the following two 
onditions hold.1. Boundary: there exists a 
lique Cx 2 T a su
h that l = Cx \ I. Cx is 
alled a host 
lique of l;30



2. Maximum: there is no subset of l that is also a linkage.In general there may be more than one linkage between a pair of jun
tion trees. De�ne Lab to be the set ofall linkages of T a relative to T b.Proposition 7.8 (identity of linkages) Let T a and T b be the jun
tion trees from subDAGs Da and Dbrespe
tively. If Lab is the set of linkages of T a relative to T b and Lba is the set of linkages of T b relative toT a then Lab = Lba.Example 7.9 In Figure 5, linkages between jun
tion trees are indi
ated with ribbed bands 
onne
ting the
orresponding host 
liques. The two linkages between �1 and �3 are fH3; H2g and fH3; H4g.Given a set of linkages between a pair of jun
tion trees, the 
on
ept of a redundan
y set 
an be de�ned. Asmentioned in Se
tion 4, redundan
y sets provide stru
tures whi
h allow redundant information to be removedduring inter-jun
tion tree information passing. The 
on
ept will be used for de�ning joint system belief inSe
tion 7.3 and de�ning the operation NonRedundan
yAbsorption in Se
tion 9.2. To de�ne the redundan
yset, we need to index linkages su
h that the redundan
y sets de�ned based on the indexing possess 
ertaindesirable properties des
ribed below. We index a set Lab of linkages by the following algorithm.Algorithm 7.10 (indexing linkages) Let T a and T b be two jun
tion trees with a set Lab of linkages.1. Pi
k one of the jun
tion trees in the pair, say T a. Create a tree G with nodes labeled by linkages in Lab.Conne
t two nodes in G by a link if either the hosts of 
orresponding linkages are dire
tly 
onne
tedin T a, or the hosts of 
orresponding linkages are (indire
tly) 
onne
ted in T a by a path on whi
h allintermediate 
liques are not linkage hosts. Call this tree a linkage tree.2. Index the nodes (linkages in Lab) of G into L1; L2; : : : in any order that is 
onsistent with G, i.e., forevery i > j there is a unique prede
essor j(i) < i su
h that Lj(i) is adja
ent to Li in G.Note, the se
ond step is always possible due to the tree stru
ture of G. With linkages indexed this way,the redundan
y set 
an be de�ned as the following.De�nition 7.11 (redundan
y set) Let a set of linkages Lab = fL1; : : : ; Lgg be indexed by Algorithm 7.10.Then for this set of indexed linkages, a redundan
y set Ri for index i is de�ned asRi = � � if i = 1,Li \ Lj(i) i > 1; j(i) < i; Lj(i) is adja
ent to Li in the linkage tree G.Lemma 7.12 A linkage tree is a jun
tion tree. The redundan
y sets are sepsets of the linkage tree.31



Example 7.13 There are two linkages between �1 and �3 in Figure 5. Consider jun
tion tree �3. Thelinkage tree G has two 
onne
ted nodes, one labeled by the linkage fH3; H2g and the other by fH3; H4g. Anindexing L1 = fH3; H2g and L2 = fH3; H4g de�nes two redundan
y sets R1 = � and R2 = fH3g.With linkages and redundan
y sets 
onstru
ted, we have a linked jun
tion forest of 
liques.7.3 Joint system belief of jun
tion forestThe following algorithm asso
iates belief tables with ea
h 
lique, ea
h 
lique sepset, and ea
h linkage in ajun
tion forest whose 
orresponding MSBN has a 
overing se
t. These data stru
tures spe
ify a joint systembelief for the jun
tion forest.Algorithm 7.14 (
reating data stru
tures for the joint system belief) Let(D;P ) be a USBN, S = fS1; : : : ; S�g be a 
orresponding MSBN with a 
overing se
t S1, and F = fT 1; : : : ; T �gbe the jun
tion forest from an invertible transformation. Let T i be the jun
tion tree of Di with 
liques Ciand sepsets Qi. Let I i (i > 1) be the d-sepset between Si and S1. Let Li (i > 1) be the set of linkagesbetween T i and T 1, and Ri (i > 1) be the 
orresponding set of redundan
y sets.1. For ea
h jun
tion tree T i in F , do the following:� Assign ea
h node nk 2 N i to a unique 
lique Cx 2 Ci su
h that Cx 
ontains nk and its parents�k. Break ties arbitrarily.� Let Pk denote the probability table asso
iated with node nk. For ea
h 
lique Cx that has nodesnk; : : : ; nl assigned to it, asso
iate Cx with a belief table B(Cx) = Pk � : : : � Pl.� For ea
h 
lique sepset Qy 2 Qi, asso
iate it with a 
onstant belief table B(Qy).2. For ea
h set of linkage Li, do the following:� For ea
h linkage Lz 2 Li, asso
iate it with a 
onstant belief table B(Lz).De�nition 7.15 (belief on redundan
y set) Using the notations in Algorithm 7.14, for ea
h redundan
yset Rz 2 Ri, its belief table is de�ned as B(Rz) = XLznRz B(Lz):De�nition 7.16 (belief on d-sepset) Using the notations in Algorithm 7.14 and De�nition 7.15, for ea
hd-sepset I i, its belief table is de�ned as B(I i) = QLz2Li B(Lz)QRz2Ri B(Rz) :32



De�nition 7.17 (belief on jun
tion tree) Using the notations in Algorithm 7.14, for ea
h jun
tion treeT i, its belief table is de�ned as B(T i) = QCx2Ci B(Cx)QQy2Qi B(Qy) :The above de�nition uses the notation B(T i) instead of B(N i) to emphasize that it is related to the jun
tiontree.Comparing the form of joint probability distribution for an USBN (Se
tion 2.2) and the assignment ofprobability tables for nodes in a se
t (De�nition 6.1), it 
an be seen that B(T i) is proportional to the jointprobability distribution of Si relative to that assignment.De�nition 7.18 (belief on jun
tion tree) Using the notations in Algorithm 7.14, De�nitions 7.16 and7.17, the joint system belief for the jun
tion forest F is de�ned asB(F ) = Q�i=1B(T i)Q�i=2 B(I i) :The notation B(F ) instead of B(N) is used for the same reason as above. Note that unlike B(Cx), B(Qy),B(Lz) and B(Rz), B(I i), B(T i) and B(F ) are mathemati
al obje
ts whi
h do not have 
orresponding datastru
tures in the knowledge base.We have the following lemma.Lemma 7.19 The joint belief B(F ) of a MSBN is proportional to the joint probability distribution P of the
orresponding USBN.To see this is true, we indi
ate that ea
h d-sepnode, appearing in at least two se
ts, 
arries its originalprobability table as in (N;E; P ) exa
tly on
e by De�nition 6.1, and 
arries an uniform table for the rest.Example 7.20 Table 3 lists 
onstru
ted belief tables for belief universes of jun
tion forest F = f�1;�2;�3gin Figure 5. The belief tables for sepsets, linkages, and redundan
y sets are all 
onstant tables at this stage.Having 
onstru
ted belief tables for 
liques, sepsets, linkages, redundan
y sets and jun
tion forest, usingthe de�nition of world of Se
tion 2.3, we talk about belief universes, sepset worlds, linkage worlds, redundan
yworlds, and jun
tion forest of belief universes. These terms will be used below.The pre
eding has an assumption of a 
overing se
t. The joint system belief of a jun
tion forest with ahypertree stru
ture 
an be de�ned in a similar way. As the d-sepset/linkages between non-
overing se
ts arenot 
onsidered in Algorithm 7.14, in the hypertree 
ase, there is no need to 
onsider the d-sepset/linkagesbetween neighbour se
ts 
overed by a lo
al 
overing se
t. In pra
ti
e, these linkages are not 
reated. This isanother 
omputational advantage of the 
overing se
t rule and the hypertree rule.33



B(�1) B(�2) B(�3)Clique NodeAss: Clique NodeAss: Clique NodeAss:fH2;H1; A1g H1; A1 fF2; F1g F2 fH3;H2; E3g H3;H2; E3Config: B() Config: B() Config: B()fh21; h11; h11g :12 ff21; f11g :4 fh31; h21; e31g :7702fh21; h11; h12g :03 ff21; f12g :75 fh31; h21; e32g :2298fh21; h12; h11g :085 ff22; f11g :6 fh31; h22; e31g :65fh21; h12; h12g :765 ff22; f12g :25 fh31; h22; e32g :35fh22; h11; h11g :12 Clique NodeAss: fh32; h21; e31g :35fh22; h11; h12g :03 fH2; F1;H1g H2; F1;H1 fh32; h21; e32g :65fh22; h12; h11g :085 Config: B() fh32; h22; e31g :01fh22; h12; h12g :765 fh21; f11; h11g :7895 fh32; h22; e32g :99Clique NodeAss: fh21; f11; h12g :6 Clique NodeAss:fH2; A2; A1g H2 fh21; f12; h11g :2105 fE2; E3; E1g E2Config: B() fh21; f12; h12g :4 Config: B()fh21; a21; a11g :8696 fh22; f11; h11g :5 fe21; e31; e11g :9789fh21; a21; a12g :7 fh22; f11; h12g :05 fe21; e31; e12g :8fh21; a22; a11g :6 fh22; f12; h11g :5 fe21; e32; e11g :9fh21; a22; a12g :08 fh22; f12; h12g :95 fe21; e32; e12g :05fh22; a21; a11g :1304 fe22; e31; e11g :0211fh22; a21; a12g :3 fe22; e31; e12g :2fh22; a22; a11g :4 fe22; e32; e11g :1fh22; a22; a12g :92 fe22; e32; e12g :95Clique NodeAss: Clique NodeAss:fH3;H2; A2g H3; A2 fE3; E1;H4g E1;H4Config: B() Config: B()fh31; h21; a21g :24 fe31; e11; h41g :8fh31; h21; a22g :06 fe31; e11; h42g :15fh31; h22; a21g :24 fe31; e12; h41g :2fh31; h22; a22g :06 fe31; e12; h42g :85fh32; h21; a21g :07 fe32; e11; h41g :8fh32; h21; a22g :63 fe32; e11; h42g :15fh32; h22; a21g :07 fe32; e12; h41g :2fh32; h22; a22g :63 fe32; e12; h42g :85Clique NodeAss: Clique NodeAss:fH3; A3;H4g A3;H4 fH3; E3;H4gConfig: B() Config: B()fh31; a31; h41g :075 fh31; e31; h41g 1fh31; a31; h42g :225 fh31; e31; h42g 1fh31; a32; h41g :28 fh31; e32; h41g 1fh31; a32; h42g :42 fh31; e32; h42g 1fh32; a31; h41g :2 fh32; e31; h41g 1fh32; a31; h42g :6 fh32; e31; h42g 1fh32; a32; h41g :08 fh32; e32; h41g 1fh32; a32; h42g :12 fh32; e32; h42g 1Table 3: Constru
ted belief tables for belief universes of jun
tion forest F = f�1;�2;�3g in Figure 5. Con�g:Con�guration. Node Ass: Nodes Assigned.
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Algorithm 7.21 (linkage 
reation in a hypertree MSBN) Let S = fS1; : : : ; S�g be a MSBN 
on-stru
ted a

ording to De�nition 6.11. Let F = fT 1; : : : ; T �g be the jun
tion forest from S where T i isthe jun
tion tree from Si.For ea
h T j, if Si is the lo
al 
overing se
t during the 
onstru
tion of S, then 
reate a set of linkagesbetween T i and T j.De�nition 7.22 (Neighbour jun
tion tree) A pair of jun
tion trees in a jun
tion forest are neighboursif linkages are 
reated between them.8 Consisten
y and Separability of Jun
tion ForestIn order to perform eÆ
ient inferen
e, we need to propagate the information stored in di�erent belief universesin di�erent jun
tion trees of a jun
tion forest to the whole system su
h that marginal probability of variables
an be obtained from any universes 
ontaining them with lo
al 
omputation.5 More pre
isely, we need topropagate both prior knowledge in the form of produ
ts of original probability tables from the 
orrespondingUSBN, and eviden
e entered from a set of universes possibly in di�erent jun
tion trees. The followingde�nes 
onsisten
y and separability that are properties of jun
tion forests whi
h guarantee the 
orre
tnessof marginals obtained by lo
al 
omputation.8.1 Consisten
y of jun
tion forestThis subse
tion de�nes a property of 
onsisten
y that partially guarantees the 
orre
tness of marginal prob-abilities obtained by lo
al 
omputation. In the 
ontext of the jun
tion forest, three levels of 
onsisten
y 
anbe identi�ed.The �rst level 
on
erns the internal 
onsisten
y of ea
h jun
tion tree.De�nition 8.1 (lo
al 
onsisten
y) Neighbor universes (Ci; B(Ci)) and (Cj ; B(Cj)) in a jun
tion tree T lwith sepset world (Qk; B(Qk)) (Se
tion 7.3) are 
onsistent ifXCinCj B(Ci) / B(Qk) / XCjnCiB(Cj)where `/' reads `proportional to'. When the relation holds among all neighbour universes, the jun
tion treeT l is said to be 
onsistent. When all jun
tion trees are 
onsistent, a jun
tion forest F is said to be lo
ally
onsistent.The se
ond level 
on
erns the 
onsisten
y between linkage hosts.5Obtaining marginals by lo
al 
omputation is what the jun
tion tree te
hnique is developed for. More is obtained fromjun
tion forests, namely, exploiting lo
alization. 35



De�nition 8.2 (boundary 
onsisten
y) Host universes (Cix; B(Cix)) and (Cjy ; B(Cjy)) of linkage world(Lk; B(Lk)) are 
onsistent if XCixnCjy B(Cix) / B(Lk) / XCjynCixB(Cjy)When the relation holds among all linkage host universes, a jun
tion forest is said to have rea
hed boundary
onsisten
y.The third level 
on
erns what the name of the following de�nition suggests.De�nition 8.3 (global 
onsisten
y) A jun
tion forest is said to be globally 
onsistent if for any 2belief universes (possibly in di�erent jun
tion trees) (Cix; B(Cix)) and (Cjy ; B(Cjy))XCixnCjy B(Cix) / XCjynCixB(Cjy)Theorem 8.4 (
onsistent jun
tion forest) A jun
tion forest is globally 
onsistent i� it rea
hes both lo
al
onsisten
y and boundary 
onsisten
y.8.2 Separability of jun
tion forestsIn the jun
tion tree te
hnique, 
onsisten
y is all that is required in order to obtain marginals by lo
al
omputation. In jun
tion forests, this is not suÆ
ient due to the existen
e of multiple linkages. The fun
tionof multiple linkages between a pair of jun
tion trees is to pass the joint distribution on the d-sepset bypassing marginal distributions on subsets of the d-sepset. Doing so, avoids the exponential in
rease in 
liquestate spa
e sizes as outlined in Se
tion 3. When breaking the joint into the marginals, we must ensure thatthe joint 
an be reassembled from the marginals, i.e., a 
orre
t version of the joint is passed. Otherwise, the
orre
tness of lo
al 
omputation is not guaranteed. Sin
e passing the marginals is a
hieved by passing thebelief tables on linkages and redundan
y sets, the stru
ture of linkage hosts is the key fa
tor. The followingde�nes separability of jun
tion forests in terms of the 
orre
tness of lo
al 
omputation. Then the stru
tural
ondition of linkage hosts is given under whi
h the separability holds.De�nition 8.5 (separability) Let F = fT ij1 � i � �g be a jun
tion forest with nodes N and joint systembelief B(F ). F is said to be separable if, when it is globally 
onsistent, for any T i over subdomain N iXNnNiB(F ) / B(T i)The following lemma, quoted from Jensen, is used to prove Proposition 8.10.Lemma 8.6 (Jensen 1988) 36



Let T be a jun
tion tree from 
lique hypergraph (N;C). Let C1 and C2 be two adja
ent 
liques in T .Let T 0 be the graph resulting from T by making the union of C1 and C2 into one 
lique, and by keeping theoriginal sepsets. Then T 0 is a jun
tion tree for 
lique hypergraph (N; (C n fC1; C2g) [ fC1 [ C2g).De�nition 8.7 (host tree) Let a sound MSBN be transformed into a jun
tion forest. Let T i be a jun
tiontree and L be the set of linkages between T i and a neighbour jun
tion tree.A host tree of T i relative to L is the 
lique tree resulting from re
ursively removing from T i every leaf
lique whi
h is not a linkage host relative to L.The following is the stru
tural 
ondition for separability to be proved below.De�nition 8.8 (host 
omposition) Let a sound MSBN be transformed into a jun
tion forest. Let Si bea se
t in the MSBN, and T i be the jun
tion tree of Si. Let I be the d-sepset between Si and any distin
t se
tSj , and L be the set of linkages between T i and the jun
tion tree for Sj.T i satis�es a host 
omposition 
ondition relative to L if the following are true in the host tree of T irelative to L.1. No non-d-sepnode is 
ontained in more than one linkage host.2. Two non-d-sepnodes in some non-host 
lique are not 
ontained in di�erent linkage hosts.Example 8.9 The host 
omposition 
ondition is violated in the host trees of Figure 9. The following showsthe violation and the resultant problem. Assume both trees are 
onsistent.First 
onsider the top tree. Let L 
onsist of linkages L1 = fA;Dg and L2 = fA;Eg. Let their hostsbe C1 = fA;B;Dg and C2 = fA;B;Eg whi
h are adja
ent in the tree. B is a 
ommon non-d-sepnode - aviolation of part 1 of the host 
omposition 
ondition. Even if all the belief tables are 
onsistent, in general,XB B(ABD)B(ABE)B(AB) 6/ B(AD)B(AE)B(A)That is, the joint distribution on the d-sepset fA;D;Eg 
onstru
ted from belief tables on linkages andredundan
y sets is in
onsistent in general.Consider the bottom tree. Let L and C1 be the same. Let the host C2 = fA;E;Gg whi
h is 
onne
tedto C1 through a non-host C3 = fA;B;Gg. fB;Gg is a set of non-d-sepnodes violating the part 2 of the host
omposition 
ondition. If C1 and C3 are united (forming 
lique C13) as des
ribed in lemma 8.6, the resultantgraph is still a jun
tion tree. If let B(C13) = B(C1)B(C3)=B(Q13)37



where Q13 (
ontaining AB) is the sepset between C1 and C3, the joint belief for the new tree is exa
tly thesame as before and the new tree is 
onsistent. Now the 
ommon node G in C13 and C2 
reates the sameproblem illustrated above.
Figure 9: Two partial trees to exemplify violation of the host 
omposition 
ondition. I : the d-sepset. Thethi
k bands indi
ate linkages.The following proposition shows that, if a jun
tion forest is globally 
onsistent and the host 
omposition
ondition holds, then the belief table B(I) de�ned in Se
tion 7.3 is indeed the joint belief on d-sepset I .Proposition 8.10 Let a sound MSBN be transformed into a jun
tion forest F . Let Sx and Sy be se
tsin the MSBN, and T x and T y be the jun
tion trees of Sx and Sy in F , respe
tively. Let I be the d-sepsetbetween Sx and Sy, and L be the set of linkages between T x and T y. Let all belief tables be de�ned as inSe
tion 7.3.When F is globally 
onsistent, B(I) satis�esB(I) / XNxnI B(T x)i� T x satis�es the host 
omposition 
ondition relative to L.
Figure 10: Part of a host tree violating the host 
omposition 
ondition. I : the d-sepset. The thi
k bandsindi
ate linkages.Now we are ready for the following result on separability.Theorem 8.11 (host 
omposition) Let S = fS1; : : : ; S�g be a MSBN satisfying the hypertree 
ondition.Suppose S has been transformed into a jun
tion forest F = fT ij1 � i � �g, with linkages between the jun
tion38



trees 
reated by Algorithm 7.21. Let B(F ) be the joint system belief of F . F is separable i�, for every pairof neighbour jun
tion trees, the host 
omposition 
ondition holds.The host 
omposition 
ondition 
an usually be satis�ed naturally in an appli
ation system. Sin
e d-sepsetsare the only media for information ex
hange between se
ts, d-sepnodes usually involve many inter-subDAG
y
les. The 
onsequen
e is that they will be heavily 
onne
ted during morali-triangulation and form severallarge 
liques in the 
lique hypergraph as well as some small ones. On the other hand, non-d-sepnodes rarelyform 
onne
tions with so many d-sepnodes simultaneously and hen
e will rarely be the elements of theselarge 
liques. To be an element of more than one su
h large 
lique is even more unlikely. Be
ause linkagesare de�ned to be maximal, these large 
liques will be
ome linkage hosts.For example, in the PAINULIM expert system (Xiang et al. 1992), there are three se
ts and 
orrespond-ingly three jun
tion trees. The host 
omposition 
ondition is satis�ed naturally in all three trees. Figure 11gives one of them. The four linkage hosts 
ontain no non-d-sepnode at all.

Figure 11: T is a jun
tion tree in a jun
tion forest taken from an appli
ation system PAINULIM withvariable names revised to simplify. Upper 
ase letters represent d-sepnodes and lower 
ase letters representnon-d-sepnodes. The 
liques C1; C2; C3; C4 are linkage hosts.When the host 
omposition 
ondition 
annot be satis�ed naturally, dummy links 
an be added betweend-sepnodes in the moral graph before triangulation su
h that linkage hosts will be enlarged and the 
onditionis satis�ed. Hen
e, given a MSBN, a separable jun
tion forest 
an always be realized. The penalty of addedlinks is in
reased amount of 
omputation during belief propagation due to in
reased sizes of 
liques andlinkages. In the worst 
ase, we may have to resort to the brute for
e method dis
ussed in Se
tion 3 in orderto satisfy the host 
omposition 
ondition for 
ertain pairs of jun
tion trees. If the system is large, se
tioning39



may still yield 
omputational savings on the whole even if 
liques are enlarged at a few jun
tion trees.One of the key results now follows.Theorem 8.12 (lo
al 
omputation) Let F be a 
onsistent and separable jun
tion forest with nodes Nand joint system belief B(F ). Let (Cx; B(Cx)) be any universe in F . ThenXNnCxB(F ) / B(Cx)With the above theorem, the marginal belief of any variable in a 
onsistent and separable jun
tion forest
an be 
omputed by marginalization of the belief table of any universe whi
h 
ontains the variable. In thisrespe
t, a 
onsistent and separable jun
tion forest behaves the same as a 
onsistent jun
tion tree (Jensen,Lauritzen and Olesen 1990). It will be shown that in the 
ontext of jun
tion forests, additional 
omputationaladvantage is available. That is, the global 
onsisten
y is not ne
essary to obtain marginal belief by lo
al
omputation, whi
h allows the exploitation of lo
alization.9 Belief Propagation In Jun
tion ForestsGiven the importan
e of 
onsisten
y of jun
tion forests, we need to introdu
e a set of operations whi
h bringa jun
tion forest into 
onsisten
y. First, sin
e our purpose is to exploit lo
alization, only operations for lo
al
omputation up to the level of jun
tion trees are 
onsidered. At any moment, we 
onsider only one jun
tiontree. This jun
tion tree is said to be a
tive.Se
ond, we present the operations in an obje
t-oriented fashion as does Jensen, Lauritzen and Olesen(1990) in des
ribing the jun
tion tree te
hnique. As argued in the above referen
e, the purpose is to avoida global 
ontrol stru
ture, and to exploit parallel pro
essing. Four levels of obje
ts 
an be identi�ed in the
ontext of jun
tion forests.1. (Inside a jun
tion tree) The belief universes are obje
ts, and sepsets are 
ommuni
ation 
hannels.2. (Between linkage hosts in neighbour jun
tion trees) The linkage host worlds are obje
ts, and linkagesare 
ommuni
ation 
hannels.3. (Between neighbour jun
tion trees) The set of linkage host worlds in a jun
tion tree relative to aneighbour jun
tion tree is an obje
t, and the set of linkages between the two neighbour jun
tion treesis the 
ommuni
ation 
hannel.4. (Top level obje
t) A jun
tion forest is a top level obje
t.
40



Third, ea
h operation presented in this se
tion is asso
iated with a parti
ular level of obje
ts. Someoperations 
an be initiated by the obje
ts they asso
iate. Other operations 
an only be invoked (
alled) byobje
ts at the higher level.The operations to be presented below are summarized in Figure 12.
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Figure 12: Summary of operations. The node at the right of ea
h operation is the type of obje
ts with whi
hthe operation 
an asso
iate. C: belief universe; H : linkage host; T : jun
tion tree; F : jun
tion forest. Ar
sindi
ate that the lower level operations provide servi
es to the higher level operations.9.1 SupportivenessJensen, Lauritzen and Olesen (1990) introdu
ed the 
on
ept of supportiveness. Let (Z;B(Z)) be a world.The support of B(Z) is de�ned as �(B(Z)) = fz 2 	(Z)jbelief of z > 0g:A jun
tion tree is supportive, if, for any universe (Ci; B(Ci)) and for any neighbouring sepset world (Qj ; B(Qj)),�(B(Ci)) � �(B(Qj)). The underlying intuition is that, when beliefs are propagated in a supportive jun
-tion tree, non-zero belief values will not be turned into zeros.Here the 
on
ept is extended to jun
tion forests. A jun
tion forest is supportive, if (1) all its jun
tiontrees are supportive and (2) for any linkage host (Ci; B(Ci)) and 
orresponding linkage world (Lj ; B(Lj)),�(B(Ci)) � �(B(Lj)).The 
onstru
tion in Se
tion 7.3 results in a supportive jun
tion forest.41



9.2 Basi
 operations9.2.1 Operations for 
onsisten
y within a jun
tion treeThe following operation is used to a
hieve 
onsisten
y between a belief universe and its neighbours.Operation 9.1 (AbsorbThroughSepset) (Jensen, Lauritzen and Olesen 1990)Let U0 = (C0; B(C0)) be a belief universe in a jun
tion tree. Let Ui = (Ci; B(Ci)) (i = 1; : : : ; k) beneighbour universes of U0. Let (Qi; B(Qi)) (i = 1; : : : ; k) be the sepset world between U0 and Ui. Sup-pose �(B(C0)) � �(B(Qi)) (i = 1; : : : ; k). When AbsorbThroughSepset is initiated by U0 to absorbfrom U1; : : : ; Uk, the following updates are performed:1. For ea
h i, update sepset belief B0(Qi) = XCinC0B(Ci):2. Update belief in C0 B0(C0) = B(C0) kYi=1B0(Qi)=B(Qi):AbsorbThroughSepset is asso
iated with belief universes.Jensen, Lauritzen and Olesen (1990) showed, in the 
ontext of a jun
tion tree, that AbsorbThroughSepset
hanges neither the supportiveness of a jun
tion tree nor the joint system belief. We indi
ate that, in the
ontext of a jun
tion forest, the supportiveness is also invariant after AbsorbThroughSepset. This is be
auseAbsorbThroughSepset does not in
rease the support of any linkage host and does not 
hange linkage beliefsdire
tly. The invarian
e of the joint system belief for the jun
tion forest is obvious given the de�nition ofthe joint system belief and the invarian
e of beliefs for jun
tion trees.The following three operations bring a jun
tion tree into 
onsisten
y.Operation 9.2 (DistributeEviden
e) (Jensen, Lauritzen and Olesen 1990)Let U0 = (C0; B(C0)) be a universe in a jun
tion tree. Let 
aller be either the jun
tion tree or a neighbouruniverse. When DistributeEviden
e is 
alled in U0, the following are performed:1. If 
aller is a neighbour Ui, then U0 absorbs from Ui by AbsorbThroughSepset.2. U0 
alls DistributeEviden
e in all neighbours ex
ept 
aller if 
aller is a neighbour.DistributeEviden
e is asso
iated with belief universes.Suppose a jun
tion tree T j is 
onsistent. The multipli
ation of B(C0) by another belief table may renderT j in
onsistent. Su
h multipli
ation is performed in eviden
e entering to be dis
ussed in Se
tion 9.4. IfDistributeEviden
e is then 
alled in U0, T j is again 
onsistent.42



Operation 9.3 (Colle
tEviden
e) (Jensen, Lauritzen and Olesen 1990)Let U0 = (C0; B(C0)) be a universe in a jun
tion tree. Let 
aller be either the jun
tion tree or a neighbouruniverse. When Colle
tEviden
e is 
alled in U0, the following are performed:1. U0 
alls Colle
tEviden
e in all neighbours ex
ept 
aller if 
aller is a neighbour.2. After the neighbours being 
alled have �nished Colle
tEviden
e, U0 absorbs from them by Ab-sorbThroughSepset.Colle
tEviden
e is asso
iated with belief universes.Both DistributeEviden
e and Colle
tEviden
e are 
omposed of just AbsorbThroughSepset. Thus they donot 
hange the supportiveness and the joint system belief of the jun
tion forest.The 
ombination of DistributeEviden
e and Colle
tEviden
e yields the following UnifyBelief. UnifyBeliefbrings a supportive jun
tion tree into 
onsisten
y.Operation 9.4 (UnifyBelief) Let T i be a jun
tion tree in a jun
tion forest. When UnifyBelief is initi-ated by T i, the following are performed:1. A belief universe U0 = (C0; B(C0)) is arbitrarily sele
ted.2. Colle
tEviden
e is 
alled in U0.3. When U0 has �nished Colle
tEviden
e, DistributeEviden
e is 
alled in U0.UnifyBelief is asso
iated with jun
tion trees.9.2.2 Operations for belief ex
hange in belief initializationBelief initialization brings a jun
tion forest into global 
onsisten
y before any eviden
e is available. Oneproblem arises when there are multiple linkages between jun
tion trees. Care must be taken not to 
ountthe same information multiple times by passing through di�erent linkages. The following two operationsperform information passing through multiple linkages during belief initialization. They ensure that theprior distribution on d-sepsets is ex
hanged between jun
tion trees without redundant information passing.Operation 9.5 (NonRedundan
yAbsorption) Let Uax = (Cax ; B(Cax)) and U bx = (Cbx; B(Cbx)) be twolinkage host universes in jun
tion trees T a and T b respe
tively. Let (Lx; B(Lx)) and (Rx; B(Rx)) be theworlds for 
orresponding linkage and redundan
y set. Suppose �(B(Cax )) � �(B(Lx)). When NonRe-dundan
yAbsorption is 
alled on Uax to absorb from U bx through linkage Lx, the following updates areperformed: 43



1. Update the linkage belief B0(Lx) = XCbxnLxB(Cbx):2. Update the belief on redundan
y set B0(Rx) = XLxnRxB0(Lx):3. Update the host belief B0(Cax) = B(Cax) � B0(Lx)=B0(Rx)B(Lx)=B(Rx) :The fa
tor 1=B0(Rx) above has the fun
tion of redundan
y removal. NonRedundan
yAbsorption isasso
iated with linkage hosts.At initialization, the belief tables for linkages and redundan
y sets are in the state of 
onstru
tion andso 
onstant (see Algorithm 7.14 and De�nition 7.15). Thus, B(Lx) and B(Rx) above are 
onstant tables.There are three possible 
onsequen
es of NonRedundan
yAbsorption depending on the states of the twolinkage hosts involved.1. If B0(Lx) is 
onstant, whi
h is possible be
ause 
onstant probability tables are assigned to d-sepnodesin some se
ts in De�nition 6.1, then after NonRedundan
yAbsorptionXCaxnLxB0(Cax) / XCaxnLxB(Cax):That is, if Cbx has no information to o�er, then Cax will not 
hange its belief.2. If PCaxnLx B(Cax) is 
onstant, then after NonRedundan
yAbsorptionXCaxnLxB0(Cax) / 0� XCbxnLxB(Cbx)1A,0� XCbxnRxB(Cbx)1A :That is, if Cbx has new information and Cax 
ontains no non-trivial information, then the belief of Cbxwill be 
opied with redundan
y removed.3. If none of B0(Lx) and PCaxnLx B(Cax) is 
onstant, then after NonRedundan
yAbsorptionXCaxnLxB0(Cax) / XCaxnLx0�B(Cax) �0� XCbxnLxB(Cbx)1A,0� XCbxnRxB(Cbx)1A1A :That is, if none of the above two 
ases is true, the belief from both sides will be 
ombined withredundan
y removed. 44



The supportiveness of a jun
tion forest is invariant under NonRedundan
yAbsorption, sin
e�(B(Cbx)) � �( XCbxnLxB(Cbx)) = �(B0(Lx)):The joint system belief is invariant under NonRedundan
yAbsorption sin
eB0(Cax)B0(Lx)=B0(Rx) = B(Cax)B(Lx)=B(Rx) :NonRedundan
yAbsorption is asso
iated with linkage hosts.Operation 9.6 (Ex
hangeBelief) Let L be the set of linkages between jun
tion trees T a and T b. WhenEx
hangeBelief is initiated in T a to ex
hange belief with T b, the following is performed:For ea
h linkage Lx 2 L with 
orresponding hosts Uax and U bx, NonRedundan
yAbsorptionis 
alled in Uax to absorb from U bx.Ex
hangeBelief is asso
iated with jun
tion trees.Sin
e Ex
hangeBelief is 
omposed of just NonRedundan
yAbsorption, the supportiveness of the jun
tiontree and its joint system belief are invariant under Ex
hangeBelief. After Ex
hangeBelief, the non-trivial
ontent of joint distribution on d-sepset at T b is passed onto T a without redundan
y.9.2.3 Operations for belief update in evidential reasoningDuring evidential reasoning, it may be needed to propagate eviden
e obtained in a jun
tion tree T b to therest of the jun
tion forest. A jun
tion tree T a re
eiving, from a neighbour jun
tion tree T b, the updated beliefon their d-sepset may be 
onfused due to multiple linkage eviden
e passing. The following two operationshandle the eviden
e propagation between jun
tion trees. AbsorbThroughLinkage propagates eviden
e fromT b to T a through one linkage. UpdateBelief propagates eviden
e from T b to T a through the set of linkagesbetween the two. UpdateBelief is used during evidential reasoning when both T a and T b are internally
onsistent but may not rea
h boundary 
onsisten
y between them.Operation 9.7 (AbsorbThroughLinkage)Let Uax = (Cax ; B(Cax)) and U bx = (Cbx; B(Cbx)) be two linkage host universes in jun
tion trees T a and T brespe
tively. Let (Lx; B(Lx)) be the 
orresponding linkage world. Suppose �(B(Cax )) � �(B(Lx)). WhenAbsorbThroughLinkage is 
alled on Uax to absorb from U bx, the following updates are performed:1. Update the linkage belief B0(Lx) = XCbxnLxB(Cbx):45



2. Update the host belief B0(Cax) = B(Cax) �B0(Lx)=B(Lx):AbsorbThroughLinkage is asso
iated with linkage hosts.After AbsorbThroughLinkage, XCaxnLxB0(Cax) = XCbxnLxB(Cbx):The supportiveness of a jun
tion forest is invariant after AbsorbThroughLinkage, sin
e�(B(Cbx)) � �( XCbxnLxB(Cbx)) = �(B0(Lx)):AbsorbThroughLinkage makes the belief of Cax up-to-date with respe
t to the belief of Cbx on their 
ommonvariables.Operation 9.8 (UpdateBelief) Let L = fL1; : : : ; Lkg be the set of linkages between jun
tion trees T aand T b with Uai being the linkage host universe in T a and U bi being the linkage host universe in T b. WhenUpdateBelief is initiated by T a or is 
alled in T a to update its belief relative to T b, the following isperformed:AbsorbThroughLinkage is 
alled in ea
h Uai to absorb from U bi through Li. After ea
h Ab-sorbThroughLinkage, DistributeEviden
e is 
alled in Uai .UpdateBelief is asso
iated with jun
tion trees.Sin
e UpdateBelief is 
omposed of AbsorbThroughLinkage and DistributeEviden
e, the supportiveness ofthe jun
tion forest is invariant.After UpdateBelief, T a is 
onsistent andXCaxnLxB0(Cax) = XCbxnLxB(Cbx) x = 1; : : : ; k:Thus the e�e
t of the operation is B0(T a) = B(T a) �B0(I)=B(I)where I is the d-sepset between Sa and Sb. EquivalentlyB0(T a)=B0(I) = B(T a)=B(I);whi
h implies the joint system belief is invariant.Note that, in UpdateBelief, DistributeEviden
e needs to be performed after ea
h AbsorbThroughLinkage.Re
all that DistributeEviden
e will restore the 
onsisten
y in a jun
tion tree if 
hanges on belief are made on46



exa
tly one belief universe. If 
hanges on belief are made on more than one universe, DistributeEviden
e willnot be able to restore the 
onsisten
y. The following example shows what 
an happen if DistributeEviden
eis not performed after ea
h AbsorbThroughLinkage.
Figure 13: An example illustrating the operation UpdateBelief.Example 9.9 Let jun
tion tree T i (Figure 13) have two linkage host C1 = L1 = X[Z and C2 = L2 = Y [Zwhere X;Y; Z are three disjoint sets of nodes. Let B(C1), B(C2) and B(Z) be the belief tables of thetwo hosts and their sepset, respe
tively. Suppose new information is passed over to T i through the twolinkages from its neighbour jun
tion tree. If AbsorbThroughLinkage is performed at C1 and then C2 withoutDistributeEviden
e being 
arried out between the two operations, the belief on the two host 
liques will beupdated to B0(C1), B0(C2), while B(Z) is un
hanged. If AbsorbThroughSepset is 
alled on C1 to absorbfrom C2 in the pro
ess of propagating the new information to the rest of T i, the belief on C1 will be
omeB00(C1) = B0(C1)(XY B0(C2)=B(Z)) 6/ B0(C1)whi
h is in
orre
t be
ause PY B0(C2) 6/ B(Z).When DistributeEviden
e is performed after ea
h AbsorbThroughLinkage, B0(Z) = PY B0(C2). Theresult of AbsorbThroughSepset isB00(C1) = B0(C1)(XY B0(C2)=B0(Z)) / B0(C1)whi
h is 
orre
t.9.3 Belief initializationBefore any eviden
e is available, an internal representation of beliefs is to be established. The establishmentof this representation is termed initialization by Lauritzen and Spiegelhalter (1988) for their method. Thefun
tionality of initialization in the 
ontext of jun
tion forests is to propagate the prior knowledge storedin di�erent belief universes of di�erent jun
tion trees to the rest of the forest su
h that (1) prior marginalprobability distribution for any variable 
an be obtained in any universe 
ontaining the variable, and (2)subsequent evidential reasoning 
an be performed. 47



We de�ne operations DistributeBelief and Colle
tBelief whi
h are analogous to DistributeEviden
e andColle
tEviden
e but are asso
iated with jun
tion trees. The operation BeliefInitialization relates to Dis-tributeBelief and Colle
tBelief just as UnifyBelief relates to DistributeEviden
e and Colle
tEviden
e.Operation 9.10 (DistributeBelief) Let T i be a jun
tion tree in a jun
tion forest. Let 
aller be eitherthe jun
tion forest or a neighbour jun
tion tree. When DistributeBelief is 
alled in T i, the following areperformed:1. If 
aller is a neighbour T j, then T i updates its belief relative to T j by UpdateBelief.2. T i 
alls DistributeBelief in all neighbours ex
ept 
aller if 
aller is a neighbour.DistributeBelief is asso
iated with jun
tion trees.Operation 9.11 (Colle
tBelief) Let T i be a jun
tion tree in a jun
tion forest. Let 
aller be either thejun
tion forest or a neighbour jun
tion tree. When Colle
tBelief is 
alled in T i, the following are performed:1. T i 
alls Colle
tBelief in all neighbours ex
ept 
aller if 
aller is a neighbour.2. After ea
h neighbour being 
alled has �nished Colle
tBelief, T i ex
hanges belief respe
t to the neigh-bour by Ex
hangeBelief, followed by UnifyBelief in T i.Colle
tBelief is asso
iated with jun
tion trees.Operation 9.12 (BeliefInitialization) When BeliefInitialization is initiated at a jun
tion forest F , thefollowing are performed:1. A jun
tion tree T i in F is arbitrarily sele
ted.2. Colle
tBelief is 
alled in T i.3. when T i has �nished Colle
tBelief. DistributeBelief is 
alled in T i.BeliefInitialization is asso
iated with the jun
tion forest.All three operations do not 
hange the supportiveness and joint system belief. This gives us the followingtheorem.Theorem 9.13 (belief initialization with hypertree) Let fS1; : : : ; S�g be a MSBN with a hypertreestru
ture (De�nition 6.11). Let F = fT 1; : : : ; T �g be a jun
tion forest with T i being the jun
tion tree ofSi. Let B(F ) be the joint system belief 
onstru
ted as in Se
tion 7.3. After BeliefInitialization, the jun
tionforest is globally 
onsistent. 48



Example 9.14 After BeliefInitialization is initiated at the jun
tion forest in Figure 5, �1 is sele
ted andColle
tBelief is 
alled in it. It then 
alls Colle
tBelief in �2 and �3. Sin
e �2 and �3 do not have neighboursother than �1, only UnifyBelief is performed in �2 and �3. Table 4 lists the belief tables for belief universesin jun
tion trees �2 and �3 after their UnifyBeliefs.Table 5 gives the belief tables for belief universes of the jun
tion forest. Table 6 gives the (prior) marginalprobabilities for all variables of jun
tion forest after the 
ompletion of BeliefInitialization. The marginalprobabilities are identi
al to what would be derived from the USBN (�; P ) where � is given in Figure 2 andP is given in Table 1. B(�2) B(�3)Clique NodeAss: Clique NodeAss:fF2; F1g F2 fH3;H2; E3g H3;H2; E3Config: B() Config: B()ff21; f11g :7758 fh31; h21; e31g 1:54ff21; f12g 1:545 fh31; h21; e32g :4596ff22; f11g 1:164 fh31; h22; e31g 1:3ff22; f12g :5151 fh31; h22; e32g :7Clique NodeAss: fh32; h21; e31g :7fH2; F1;H1g H2; F1;H1 fh32; h21; e32g 1:3Config: B() fh32; h22; e31g :02fh21; f11; h11g :7895 fh32; h22; e32g 1:98fh21; f11; h12g :6 Clique NodeAss:fh21; f12; h11g :2105 fE2; E3; E1g E2fh21; f12; h12g :4 Config: B()fh22; f11; h11g :5 fe21; e31; e11g 1:656fh22; f11; h12g :05 fe21; e31; e12g 1:495fh22; f12; h11g :5 fe21; e32; e11g 1:898fh22; f12; h12g :95 fe21; e32; e12g :1165fe22; e31; e11g :0356fe22; e31; e12g :3738fe22; e32; e11g :2109fe22; e32; e12g 2:214Clique NodeAss:fE3; E1;H4g E1;H4Config: B()fe31; e11; h41g 1:424fe31; e11; h42g :2670fe31; e12; h41g :3560fe31; e12; h42g 1:513fe32; e11; h41g 1:776fe32; e11; h42g :3330fe32; e12; h41g :4440fe32; e12; h42g 1:887Clique NodeAss:fH3; E3;H4gConfig: B()fh31; e31; h41g 1:42fh31; e31; h42g 1:42fh31; e32; h41g :5798fh31; e32; h42g :5798fh32; e31; h41g :36fh32; e31; h42g :36fh32; e32; h41g 1:64fh32; e32; h42g 1:64Table 4: Belief tables for belief universes in jun
tion trees �2 and �3 in Figure 5 after Colle
tBelief duringBeliefInitialization.On
e belief initialization is 
ompleted, the jun
tion forest be
omes the permanent representation whi
hwill be reused for ea
h query session. 49



9.4 Evidential reasoningThe joint system belief de�ned in Se
tion 7.3 is proportional to the prior joint distribution representing theba
kground domain knowledge. Initialization allows us to obtain prior marginal probabilities with eÆ
ientlo
al 
omputation. When eviden
e about a parti
ular 
ase be
omes available, we want the prior distributionto 
hange into the posterior distribution. Call the overall pro
ess of entering eviden
e and propagatingeviden
e evidential reasoning.B(�1) B(�2) B(�3)Clique NodeAss: Clique NodeAss: Clique NodeAss:fH2;H1; A1g H1; A1 fF2; F1g F2 fH3;H2; E3g H3;H2; E3Config: B() Config: B() Config: B()fh21; h11; h11g :8203 ff21; f11g 1:160 fh31; h21; e31g 1:444fh21; h11; h12g :08166 ff21; f12g 5:324 fh31; h21; e32g :4310fh21; h12; h11g :5810 ff22; f11g 1:741 fh31; h22; e31g :731fh21; h12; h12g 2:082 ff22; f12g 1:775 fh31; h22; e32g :3936fh22; h11; h11g :3797 Clique NodeAss: fh32; h21; e31g :5915fh22; h11; h12g :2183 fH2; F1;H1g H2; F1;H1 fh32; h21; e32g 1:098fh22; h12; h11g :2690 Config: B() fh32; h22; e31g :0531fh22; h12; h12g 5:568 fh21; f11; h11g :7121 fh32; h22; e32g 5:257Clique NodeAss: fh21; f11; h12g 1:598 Clique NodeAss:fH2; A2; A1g H2 fh21; f12; h11g :1899 fE2; E3; E1g E2Config: B() fh21; f12; h12g 1:065 Config: B()fh21; a21; a11g :5526 fh22; f11; h11g :2990 fe21; e31; e11g 1:020fh21; a21; a12g 1:725 fh22; f11; h12g :2918 fe21; e31; e12g 1:422fh21; a22; a11g :8487 fh22; f12; h11g :2990 fe21; e32; e11g 2:182fh21; a22; a12g :4388 fh22; f12; h12g 5:545 fe21; e32; e12g :2378fh22; a21; a11g :08289 fe22; e31; e11g :02194fh22; a21; a12g :7394 fe22; e31; e12g :3555fh22; a22; a11g :5658 fe22; e32; e11g :2424fh22; a22; a12g 5:047 fe22; e32; e12g 4:518Clique NodeAss: Clique NodeAss:fH3;H2; A2g H3; A2 fE3; E1;H4g E1;H4Config: B() Config: B()fh31; h21; a21g 1:763 fe31; e41; h11g :7622fh31; h21; a22g :1120 fe31; e41; h12g :2801fh31; h22; a21g :6366 fe31; e42; h11g :1906fh31; h22; a22g :4880 fe31; e42; h12g 1:587fh32; h21; a21g :5143 fe32; e41; h11g 1:658fh32; h21; a22g 1:176 fe32; e41; h12g :7662fh32; h22; a21g :1857 fe32; e42; h11g :4145fh32; h22; a22g 5:124 fe32; e42; h12g 4:342Clique NodeAss: Clique NodeAss:fH3; A3;H4g A3;H4 fH3; E3;H4gConfig: B() Config: B()fh31; a31; h41g :225 fh31; e31; h41g :7723fh31; a31; h42g :675 fh31; e31; h42g 1:403fh31; a32; h41g :84 fh31; e32; h41g :2927fh31; a32; h42g 1:26 fh31; e32; h42g :5319fh32; a31; h41g 1:4 fh32; e31; h41g :1805fh32; a31; h42g 4:2 fh32; e31; h42g :4641fh32; a32; h41g :56 fh32; e32; h41g 1:780fh32; a32; h42g :84 fh32; e32; h42g 4:576Table 5: Belief tables for belief universes of jun
tion forest F = f�1;�2;�3g in Figure 5 obtained after the
ompletion of BeliefInitialization.A pie
e of eviden
e is a 
onjun
tion of values of variables su
h that the variables are 
ontained in the samese
t (lo
alization), and the values are obtained at one time. As the value of a variable, we allow eviden
e tospe
ify a disjun
tion of out
omes (e.g. only one out
ome, or ruling out one out
ome). There may be multiplepie
es of eviden
e, in a query session, that may involve di�erent se
ts and may be obtained at di�erent time(in
remental eviden
e). We assume that, after ea
h pie
e of eviden
e is available, the posterior distribution50



p(h11) = :15 p(a11) = :205 p(f11) = :2901 p(e11) = :3466p(h21) = :3565 p(a21) = :31 p(f21) = :6485 p(e21) = :4862p(h31) = :3 p(a31) = :65 p(e31) = :282p(h41) = :3025Table 6: Prior marginal probabilities from jun
tion forest F = f�1;�2;�3g in Figure 5 obtained after the
ompletion of BeliefInitialization.on the variables in the 
urrent se
t is to be 
omputed.Eviden
e is represented in terms of eviden
e fun
tions in the same manner as Jensen, Olesen and Andersen(1990). A eviden
e fun
tion maps the out
omes of one variable to f0; 1g. `0' stands for the fa
t that the
orresponding out
ome is impossible and `1' stands for the fa
t that the 
orresponding out
ome is stillpossible. An eviden
e fun
tion 
an be entered to a jun
tion forest by multiplying the prior distribution withthe eviden
e fun
tion.Operation 9.15 (EnterEviden
e) (Jensen, Lauritzen and Olesen 1990)Let T be a jun
tion tree in a jun
tion forest. When EnterEviden
e is initiated at T to enter a pie
eof eviden
e E, the following are performed:1. For ea
h variable Ai involved in E a belief universe Uj = (Cj ; B(Cj)) su
h that Ai 2 Cj is arbitrarilysele
ted, and B(Cj) is multiplied by the eviden
e fun
tion for Ai.2. If Uj is the only universe that is a�e
ted by the above step, DistributeEviden
e is 
alled in Uj ,otherwise UnifyBelief is 
alled in any universe Uk.EnterEviden
e is asso
iated with jun
tion trees.After EnterEviden
e, the jun
tion T is updated with respe
t to the eviden
e and is 
onsistent internally.As far as a single jun
tion tree is 
on
erned, this 
omputation is the same as the jun
tion tree te
hnique wherethe 
onsisten
y within a jun
tion tree 
onstitutes the global 
onsisten
y. However, in order to obtain 
orre
tposterior marginal distributions on variables in the 
urrently a
tive jun
tion tree, the global 
onsisten
y ofthe jun
tion forest is not ne
essary. Before a formal treatment, several 
on
epts are de�ned below.Here only jun
tion forests transformed from MSBNs with hypertree stru
tures are 
onsidered. Whena user wants to obtain marginal distributions or add eviden
e on variables not 
ontained in the 
urrentlya
tive jun
tion tree, it is said that there is an attention shift. The jun
tion tree whi
h 
ontains the desiredvariables is 
alled the destination tree.De�nition 9.16 (intermediate tree) Let Si, Sj , Sk be three di�erent se
ts in a MSBN with a hypertreestru
ture, and T i, T j, T k be their jun
tion trees in the 
orresponding jun
tion forest F , respe
tively. T j isthe intermediate tree between T i and T k if the removal of T j would dis
onne
t T i from T k in F .51



Due to the hypertree stru
ture, we have the following lemma.Lemma 9.17 Suppose a jun
tion forest has been transformed from a MSBN with a hypertree stru
ture. LetT i and T j be two di�erent jun
tion trees in the forest. The set of intermediate jun
tion trees between T iand T j is unique.The following de�nes an operation ShiftAttention at the jun
tion forest level. It is performed when theuser's attention shifts.Operation 9.18 (ShiftAttention) Let F be a jun
tion forest whose 
orresponding MSBN has a hypertreestru
ture. Let T j0 be the 
urrently a
tive tree and T jm+1 be the destination tree in F . Let fT j1 ; : : : ; T jmgbe the set of m intermediate trees between T j0 and T jm+1 su
h that T j0 ; T j1 ; : : : ; T jm ; T jm+1 form a 
hain ofneighbours. When ShiftAttention is initiated at F to shift attention from T j0 to T jm+1, the following areperformed:For i = 1 to m+ 1, UpdateBelief is 
alled in T ji to update its belief with respe
t to T ji�1 .ShiftAttention is asso
iated with the jun
tion forest.Before ea
h attention shift, several pie
es of eviden
e 
an be entered to the 
urrently a
tive tree. When anattention shift happens, ShiftAttention swaps in and out only the intermediate trees between the 
urrentlya
tive tree and destination tree without the parti
ipation of the rest of the forest. The following theoremshows that this is suÆ
ient in order to obtain the 
orre
t marginal distributions in the destination tree.Theorem 9.19 (multiple attention shifts) Let F be a 
onsistent jun
tion forest whose 
orrespondingMSBN has a hypertree stru
ture. Start with any a
tive jun
tion tree. Repeat the following 
y
le a �nitenumber of times:1. Use EnterEviden
e to enter eviden
e to the 
urrently a
tive tree a �nite number of times.2. Use ShiftAttention to shift attention to any destination tree.The marginal distributions obtained in the �nal a
tive tree are identi
al as would be obtained when the forestis globally 
onsistent.Example 9.20 Let us 
ontinue the example with the jun
tion forest (Figure 5) F = f�1;�2;�3g by demon-stration of evidential reasoning. Suppose the out
ome of variable E3 in �3 is observed to be e31. Table 7lists B0(�3), whi
h is obtained after EnterEviden
e, and also B0(�1) and B0(�2), whi
h are obtained afterShiftAttention with destination �2. Table 8 lists the posterior marginal probability of ea
h variable afterShiftAttention. 52



B0(�3) B0(�1) B0(�2)Clique NodeAss: Clique NodeAss: Clique NodeAss:fH3;H2; E3g H3;H2; E3 fH2;H1; A1g H1; A1 fF2; F1g F2Config: B() Config: B() Config: B()fh31; h21; e31g 14:44 fh21; h11; h11g 4:105 ff21; f11g 5:523fh31; h21; e32g 0 fh21; h11; h12g :5036 ff21; f12g 10:79fh31; h22; e31g 7:31 fh21; h12; h11g 2:908 ff22; f11g 8:285fh31; h22; e32g 0 fh21; h12; h12g 12:84 ff22; f12g 3:598fh32; h21; e31g 5:915 fh22; h11; h11g :4627 Clique NodeAss:fh32; h21; e32g 0 fh22; h11; h12g :2661 fH2; F1;H1g H2; F1;H1fh32; h22; e31g :5310 fh22; h12; h11g :3278 Config: B()fh32; h22; e32g 0 fh22; h12; h12g 6:785 fh21; f11; h11g 3:638Clique NodeAss: Clique NodeAss: fh21; f11; h12g 9:450fE2; E3; E1g E2 fH2; A2; A1g H2 fh21; f12; h11g :9702Config: B() Config: B() fh21; f12; h12g 6:300fe21; e31; e11g 1:020 fh21; a21; a11g 3:732 fh22; f11; h11g :3644fe21; e31; e12g 1:422 fh21; a21; a12g 11:65 fh22; f11; h12g :3556fe21; e32; e11g 0 fh21; a22; a11g 3:281 fh22; f12; h11g :3644fe21; e32; e12g 0 fh21; a22; a12g 1:696 fh22; f12; h12g 6:757fe22; e31; e11g :02194 fh22; a21; a11g :4190fe22; e31; e12g :3555 fh22; a21; a12g 3:737fe22; e32; e11g 0 fh22; a22; a11g :3715fe22; e32; e12g 0 fh22; a22; a12g 3:313Clique NodeAss: Clique NodeAss:fE3; E1;H4g E1;H4 fH3;H2; A2g H3; A2Config: B() Config: B()fe31; e11; h41g 7:622 fh31; h21; a21g 13:58fe31; e11; h42g 2:801 fh31; h21; a22g :8623fe31; e12; h41g 1:906 fh31; h22; a21g 4:138fe31; e12; h42g 15:87 fh31; h22; a22g 3:172fe32; e11; h41g 0 fh32; h21; a21g 1:800fe32; e11; h42g 0 fh32; h21; a22g 4:115fe32; e12; h41g 0 fh32; h22; a21g :01857fe32; e12; h42g 0 fh32; h22; a22g :5124Clique NodeAss: Clique NodeAss:fH3; E3;H4g fH3; A3;H4g A3;H4Config: B() Config: B()fh31; e31; h41g 7:723 fh31; a31; h41g 1:632fh31; e31; h42g 14:03 fh31; a31; h42g 4:895fh31; e32; h41g 0 fh31; a32; h41g 6:091fh31; e32; h42g 0 fh31; a32; h42g 9:137fh32; e31; h41g 1:805 fh32; a31; h41g 1:289fh32; e31; h42g 4:641 fh32; a31; h42g 3:867fh32; e32; h41g 0 fh32; a32; h41g :5157fh32; e32; h42g 0 fh32; a32; h42g :7735Table 7: Belief tables updated after entering eviden
e for F = f�1;�2;�3g where �is are as in Figure 5.First, B0(�3) is obtained after E3 = e31 is entered to �3 by EnterEviden
e in �3. B0(�1) and B0(�2) areobtained afterwards by ShiftAttention.
p(h11) = :1893 p(a11) = :2767 p(f11) = :4897 p(e11) = :3696p(h21) = :7219 p(a21) = :6928 p(f21) = :5786 p(e21) = :8661p(h31) = :7714 p(a31) = :4143 p(e31) = 1p(h41) = :3379Table 8: Posterior probabilities from jun
tion forest F = f�1;�2;�3g in Figure 5 after eviden
e E3 = e31 ispropagated by ShiftAttention.
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Before 
losing this subse
tion, the following example demonstrates the 
omputational advantage, duringattention shift, provided by the 
overing se
ts.Example 9.21 In Figure 8, D is se
tioned into fD1; D2; D3g by sound se
tioning without a 
overing se
t.The MSBN is transformed into the jun
tion forest fT 1; T 2; T 3g by an invertible transformation. If eviden
eabout E and then about G 
omes, the �rst pie
e of eviden
e will be entered to T 1 and then T 1 will sendmessage to T 2. After entering the se
ond pie
e of eviden
e, T 2 will be the only one up-to-date. Now if weare interested in the belief on H , the belief tables on fB;Fg and fC;Fg in T 3 have to be updated. However,T 2 
annot provide distribution on fB;Fg. Thus, T 2 has to send message to T 3 about fC;Fg and then sendmessage to T 1. T 1 
an then be
ome up-to-date and send distribution on fB;Fg to T 3. Three instan
esof message passing are ne
essary, and linkages between ea
h pair of jun
tion trees have to be 
reated andmaintained. More message passing and more linkages are needed when there are more se
ts organized inthis stru
ture. When n se
ts are inter
onne
ted and there is a 
overing se
t, only n-1 sets of linkages needto be 
reated; and a maximum of two message passings are needed to update the belief in any destinationtree.9.5 Computational 
omplexityTheorem 9.19 shows the most important 
hara
terization of the MSBN and jun
tion forests, namely, the
apability of exploiting lo
alization to redu
e the 
omputational 
omplexity.Under the assumption of lo
alization, the user interest and new eviden
e remain in the sphere of onejun
tion tree for a period of time. Thus the time and spa
e requirement, while reasoning within a jun
tiontree, is bounded above by what is required by the largest jun
tion tree. The judgments obtained, however,are at the knowledge level of the overall jun
tion forest. Compared to the USBN and the single jun
tiontree representation where the eviden
e has to be propagated to the entire system, this leads to savings whenlo
alization is valid.When the user shifts interest to another set of variables 
ontained in a di�erent destination tree, only theintermediate trees need to be updated. The time required is linear to the number of intermediate trees andto the number of linkages between ea
h pair of neighbours. No matter how large the entire jun
tion forest,the time requirement for attention shift is �xed on
e the destination tree and mediating trees are �xed. Forexample, in a MSBN with a 
overing se
t, no matter how many se
ts are in the MSBN, the attention shiftupdates a maximum of two se
ts. The spa
e requirement is bounded above by what is needed by the largestjun
tion tree on the path between the starting and destination trees. Under the lo
alization assumption, the
omputational 
ost for attention shift is in
urred only o

asionally.Given the above analysis, the 
omputational 
omplexity of evidential reasoning in a MSBN with � se
ts54



of equal size is about 1=� of the 
orresponding USBN system when lo
alization is valid. The a
tual timerequirement is a little more than 1=� due to the 
omputation required for attention shift. The a
tual spa
erequirement is a little more than 1=� due to the repetition of d-sepnodes and the set of linkages required forattention shift.The MSBN and the jun
tion forest te
hnique has been implemented in PAINULIM (Xiang et al. 1992)- a system for diagnosis of neuromus
ular diseases 
hara
terized by a painful impaired upper limb. Thesystem has three se
ts: the 
lini
al, the EMG, and the nerve 
ondu
tion with the 
lini
al se
t being the
overing se
t. A

ording to the statisti
s in Xiang et al. (1992), about 27% of patients in this 
ategoryneed nerve 
ondu
tion studies only, and about 60% of patients need EMG tests only. Thus, for about 87%of the patients, about one third of the jun
tion forests will not be 
omputed at all, and there is only oneattention shift (from the 
lini
al se
t to either the nerve 
ondu
tion or the EMG se
t). There are �ve 
lini
al�ndings on an average patient. The number of tests performed on an average patient is about four fornerve 
ondu
tion and about six for EMG. After ea
h 
lini
al �nding and ea
h test, users would like to knowposterior probabilities for diseases and out
omes of possible examinations or tests not yet performed. Thus,the lo
alization assumption works well in the PAINULIM domain. The overall 
omputational savings inPAINULIM by applying the MSBN and the jun
tion forest te
hnique is about half.10 SummaryThis paper presents MSBNs and jun
tion forests as a 
exible knowledge representation and as an eÆ
ientinferen
e formalisms to exploit lo
alization naturally existing in large knowledge-based systems. The sys-tems whi
h 
an bene�t from the te
hnique are those that are reusable, representable by general but sparsenetworks, and 
hara
terized by in
remental evidential reasoning and where lo
alization is valid.The MSBNs allow the partition of a large appli
ation domain into smaller natural subdomains su
h thatea
h of them 
an be represented as a Bayesian subnetwork (a se
t), and 
an be tested and re�ned individually.This makes the representation of a 
omplex domain easier for knowledge engineers and potentially makesthe resultant system more natural and more understandable to system users. The modularity fa
ilitatesimplementation of large systems in an in
remental fashion. When partitioning, a knowledge engineer hasto take into a

ount the te
hni
al 
onstraints imposed by the MSBN, namely that the interfa
es must bed-sepsets and the se
tioning must be sound. These 
onstraints are not very restri
tive.Two important guidelines, the 
overing subDAG rule and the hypertree rule, for sound se
tioning arederived. MSBNs that follow the rules 
an have multiply 
onne
ted se
ts, do not require expensive 
omputa-tion to verify soundness of se
tioning, and have additional 
omputational advantage during attention shiftin evidential reasoning. 55



Ea
h se
t in the MSBN is transformed into a jun
tion tree su
h that the MSBN is transformed into ajun
tion forest representation where evidential reasoning takes pla
e. The 
onstraints on transformation arethe invertibility of morali-triangulation and separability.Ea
h se
t/jun
tion tree in the MSBN/jun
tion forest stands as a separate 
omputational obje
t. Sin
ethe te
hnique allows transformation of se
ts into jun
tion trees through lo
al 
omputation at the se
t level,and allows reasoning to be 
ondu
ted with jun
tion trees as units, the spa
e requirement is governed by thesize of one se
t/jun
tion tree. Hen
e large appli
ations 
an be built and run on relatively small 
omputerswherever hardware resour
es are of 
on
ern. This was, in fa
t, our original motivation to develop the MSBNte
hnique.For large appli
ation domains, an average 
ase may involve only a portion of the total knowledge en
odedin a system, and one portion may be used repeatedly over a period of time. A MSBN and a jun
tion forestrepresentation allows the `interesting' or `relevant' se
t/jun
tion tree to be loaded while the rest of thejun
tion forest remains ina
tive and uses no 
omputational resour
es. The judgments made on variables inthe a
tive jun
tion tree are 
onsistent with all the knowledge available, in
luding both prior knowledge andall the eviden
e 
ontained in the entire jun
tion forest. When the user's attention shifts, ina
tive jun
tiontrees 
an be made a
tive and previous a

umulation of eviden
e is preserved. This is a
hieved by passing thejoint beliefs on d-sepsets. The overall 
omputational resour
e required is governed by the size of the largestse
t, and not by the size of the appli
ation domain.The te
hnique of the MSBN and the jun
tion forest has been applied to an appli
ation knowledge-basedsystem PAINULIM 
apable of diagnosing neuromus
ular diseases 
hara
terized by a painful impaired upperlimb. Our experien
e with PAINULIM supports the signi�
an
e of the te
hnique (Xiang et al. 1992).A
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