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AbstratBayesian networks provide a natural, onise knowledge representation method for building knowledge-based systems under unertainty. We onsider domains representable by general but sparse networks andharaterized by inremental evidene where the probabilisti knowledge an be aptured one and usedfor multiple ases. Current Bayesian net representations do not onsider struture in the domain andlump all variables into a homogeneous network. In pratie, one often direts attention to only partof the network within a period of time, i.e., there is \loalization" of queries and evidene. In suhase, propagating evidene through a homogeneous network is ineÆient sine the entire network has tobe updated eah time. This paper derives reasonable onstraints, whih an often be easily satis�ed,that enable a natural (loalization preserving) partition of a domain and its representation by separateBayesian subnets. The subnets are transformed into a set of permanent juntion trees suh that eviden-tial reasoning takes plae at only one of them at a time; and marginal probabilities obtained are identialto those that would be obtained from the homogeneous network. We show how to swap in a new juntiontree, and absorb previously aquired evidene. Although the overall system an be large, omputationalrequirements are governed by the size of one juntion tree.Key words Knowledge representation, Expert systems, Knowledge-based systems, Bayesian network,Probabilisti reasoning, Reasoning under unertainty.
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1 IntrodutionOver the last deade, Bayesian belief networks, ombining a graphi representation of a ausal domain modeland probability theory, have gained inreasing popularity as a natural, onise knowledge representationmethod and a onsistent inferene formalism for building knowledge-based systems whih require reasoningunder unertainty.Cooper (1990) has shown that probabilisti inferene in a general Bayesian net is NP-hard. Severaldi�erent approahes have been pursued to avoid ombinatorial explosion in omputation for typial ases,and thus to redue omputational ost. Two lasses of approahes an be identi�ed.One lass of approahes explore approximation. Stohasti simulation is proposed as one approximateinferene sheme (Henrion 1988). Annihilating very small numbers in seondary strutures of Bayesian netsis another way to redue onsumption of omputer resoures (Jensen and Andersen 1990).Another lass of approahes Exploit the struture of the problem to gain eÆieny in omputing exatprobabilities. The approah of this paper belongs to this seond lass. EÆient algorithms have been devel-oped for inferene in Bayesian nets with speial topologies (Pearl 1986; Hekerman 1990a). Unfortunatelymany domain models annot be represented by these speial types of Bayesian nets. For general but sparsenets, eÆient omputation has been ahieved by reating a seondary struture with a direted tree topology(Lauritzen and Spiegelhalter 1988) or with an undireted tree topology (Jensen, Lauritzen and Olesen 1990,Shafer and Shenoy 1988). The seondary strutures o�er also the advantage of trading ompile time withrunning time for systems to be used repeatedly. However, for large appliations, the run time overhead(both spae and time) is still forbidding. Pruning Bayesian nets with respet to eah query instane is yetanother exat method with savings in omputational ost (Baker and Boult 1990). However, it is hard toknow what is relevant a priori where inremental evidene absorption is required. A portion of a Bayesiannet may not be relevant given a set of evidene and a set of queries, and therefore an be pruned away beforeomputation. But in light of a piee of new evidene, it may beome relevant and ould not be restoredwithin the pruning algorithm. Furthermore, the advantage of trading ompile time with running time is lostin systems for repeated usage if the network has to be pruned for eah set of queries. It is this problem thatthis paper addresses.We onsider domains representable by general but sparse networks and haraterized by inrementalevidene. We address reusable systems where the probabilisti knowledge an be aptured one and be usedfor multiple ases. Current Bayesian net representations do not onsider struture in the domain and lumpall variables into a homogeneous network. For small appliations, this may be appropriate. For a largeappliation domain where evidene arrives inrementally, in pratie one often direts attention to only part2



of the network within a period of time, i.e., there is \loalization" of queries and evidene. More preisely,\loalization" means two things. For eah phase of a query session, only ertain parts of a large network areinteresting1; and new evidene and queries are direted to a small part of a large network repeatedly withina period of time. When this is the ase, propagating evidene in the homogeneous network is ineÆient sinethe newly arrived evidene has to be propagated to the entire network before queries an be answered.A large appliation domain an often be partitioned naturally in terms of loalization. For example (Xianget al. 1992), a neurologist, assisted by a knowledge-based system, examining a patient with a painful impairedupper limb, may temporarily onsider only his �ndings' impliations on a set of possible neuromusulardiseases. He may not start to onsider the diagnosti signi�ane of eah available laboratory test until hehas �nished the linial examination. That is, during the linial examination, queries and new evidene arerepeatedly direted towards a set of linial symptoms and disease hypotheses. We do not need to onsiderother parts of the network. After the linial examination of the patient, the �ndings highlight ertain diseaseandidates and make others less likely, whih may suggest that further nerve ondution studies are of nohelp at all, and thus no attention will be paid to variables about nerve ondution throughout the diagnosisof this patient. Instead EMG tests form the seond stage of the dotor's diagnosti pratie. Here evideneand queries for the patient are loalized within the linial and EMG portions. Sine EMG tests are usuallynot omfortable for patients, the neurologist would not perform a test unless it is diagnostially neessary.Thus, he would like to know the updated likelihood of disease hypotheses after eah test to see if furthertests are neessary and whih one an yield the most diagnosti bene�t. During this test period, queries andnew evidene are loalized within a set of EMG tests and disease variables. Therefore, in a knowledge-basedsystem for neuromusular diagnosis, knowledge about the linial symptoms and a set of diseases forms anatural subdomain. Knowledge about EMG test results and a subset of diseases forms another subdomain,and knowledge about nerve ondution study results and a di�erent subset of diseases forms yet anothersubdomain. If this domain is represented in a homogeneous network, eah piee of linial �ndings has to bepropagated to all the EMG and nerve ondution variables whih are not relevant at the moment. Likewise,after eah EMG test, the entire net has to be updated even though the neurologist is only interested inplanning the next EMG test.Clearly, the problem is beause urrent Bayesian net representations do not provide means to distinguishvariables aording to natural subdomains. (Hekerman 1990b) partitions Bayesian nets into small groups ofnaturally related variables to ease the onstrution of large networks. But one the onstrution is �nished,the run time representation is still homogeneous.It an be argued that if groups of naturally related variables in a domain an be identi�ed and represented,1\Interesting" is more restritive than \relevant". We may not be interested in something even though it is relevant.3



the run time omputation an be restrited to one group at any given stage of a query session due to theloalization. In partiular, we may not need to propagate new evidene beyond the urrent group. Alongwith the arrival of new evidene, attention an be shifted from one group to another. Chunks of knowledgenot required for the urrent fous of attention remain inative (but are not thrown away) until the fousof attention shifts and they are ativated. This way, the run time overhead is governed by the size of thegroup of naturally related variables, not the size of the appliation domain. Large omputational savingsan be ahieved when unertainty about urrent group needs to be updated repeatedly. As demonstratedby Hekerman (1990b), grouping of variables an also help in ease and auray in onstrution of Bayesiannetworks.Partitioning a large domain into separate knowledge bases and oordinating them in problem solving havea long history for rule-based expert systems termed blakboard arhitetures (Nii 1986a; 1986b). However, aproper parallel for Bayesian network tehnology has not appeared yet.Pearl, in his inuential book (1988, page 319), expressed the following ideal:\Instead of propagating all the information everywhere, it is possible to assess �rst the poten-tial impat of every updating operation on the belief of the target node and to limit the updatingproess so that only relevant information is propagated. Doing so will derease the amount ofdata traÆ in the network and the amount of omputation expended on inferene. However, itis important that the information we hoose not to propagate be allowed to aumulate at theboundaries and disharge its impat to new areas of knowledge one our urrent set of beliefbeomes stagnant."The tehnique that we present in this paper provides a omputational model to implement this ideal.This paper derives onstraints, whih an often be satis�ed easily, that enable a natural (loalizationpreserving) partition of a domain and its representation by separate Bayesian subnets. Suh a representationis termed multiply setioned Bayesian network (MSBN). In order to perform eÆient evidential reasoning ina general but sparse network, the set of subnets are transformed into a set of juntion trees as a seondaryrepresentation whih is termed a juntion forest. The juntion forest beomes the permanent representationfor the reusable system where inremental evidential reasoning takes plae. Sine the juntion trees preserveloalization, eah of them stands as a omputational objet whih an be used alone during reasoning.Multiple linkages between the juntion trees are introdued to allow evidene aquired from previouslyative juntion trees to be absorbed into the newly ative juntion tree whih is of urrent interest. In thisway, the loalization naturally existing in the domain an be exploited and the above illustrated idea isrealized. The MSBN tehnique an be viewed as an extension to the d-separation onept (Pearl 1888) and4



the juntion tree tehnique (Andersen et al. 1989, Jensen, Lauritzen and Olesen 1990).Setion 2 briey summarizes the bakground knowledge and previous researh. Setion 3 explains why\obvious" solutions to exploit loalization do not work, and Setion 4 gives an overview of the MSBNs andthe juntion forests tehnique. We hope that these two setions will motivate and guide readers into thesubsequent setions whih present the mathematial theory neessary to the tehnique. Due to limited spae,we have omitted all the proofs in this paper. Readers who are interested in the proofs are referred to Xiang,Poole and Beddoes (1992).2 Bakground2.1 Graphs and hypergraphsA graph G is a pair (N;E) where N = fA1; : : : ; A�g is a set of nodes and E � f(Ai; Aj)jAi; Aj 2 N ; i 6= jgis a set of links between pairs of nodes in N . A direted graph is a graph where links in E are ordered pairsand an undireted graph is a graph where links in E are unordered pairs. Links in direted graphs are alledars when their diretions are of onern. A subgraph of a graph (N;E) is any graph (Nk; Ek) satisfyingNk � N and Ek � E. Given a subset of nodes N l � N of a graph (N;E), the subgraph indued by N l is(N l; El) where El = f(Ai; Aj) 2 EjAi 2 N l & Aj 2 N lg. The union graph of subgraphs G1 = (N1; E1) andG2 = (N2; E2) is the graph (N1 [N2; E1 [ E2) denoted G1 tG2.A path in graph (N;E) is a sequene of nodes A1; A2; : : : ; Ak (k > 1) suh that (Ai; Ai+1) 2 E. Apath in a direted graph an be direted or undireted (i.e. eah ar is onsidered undireted). A simplepath is a path with no repeated node exept that A1 is allowed to equal Ak. A yle is a simple path withA1 = Ak. Direted graphs without a direted yle are alled DAGs (direted ayli graphs). A graph(N;E) is onneted if for any pair of nodes in N there is an undireted path between them. A graph is singlyonneted, or is a tree, if there is a unique undireted path between any pair of nodes. If a graph onsists ofseveral unonneted trees, it is alled a forest. A graph is multiply onneted if there is a pair of nodes withmore than one undireted path between them.This paper onsiders only onneted DAGs sine an unonneted DAG an always be treated as severalonneted ones. A subDAG of a DAG D = (N;E) is de�ned as any onneted subgraph of D. A DAG D isthe union DAG of subDAG D1 and D2 if D = D1 tD2.If there is an ar (A1; A2) from node A1 to A2, A1 is alled a parent of A2, and A2 a hild of A1. Similarly,if there is a direted path from A1 to Ak, the two nodes are alled, respetively, anestor and desendent,relative to eah other. The in-degree of a node is the number of parents it has.If for eah node in a DAG, links are added between all its parents and the diretions on the ars aredropped, the resultant is the moral graph of the DAG. A graph is triangulated if every yle of length > 35



has a hord. A hord is a link onneting two nonadjaent nodes. A maximal set of nodes all of whih arepairwise linked is alled a lique.A hypergraph is a pair (N;C) where N is a set and C � 2N (power set of N) is a set of subsets of N .The union of hypergraphs is de�ned similarly to the union of graphs. The union hypergraph of (N1;C1)and (N2;C2) is (N1 [ N2;C1 [ C2) denoted (N1;C1) t (N2;C2). Let (N;E) be a graph, and C be theset of liques of (N;E). Then (N;C) is a lique hypergraph of graph (N;E). If a lique hypergraph isorganized into a tree where the nodes of the tree are labeled with liques suh that for any pair of liques,their intersetion is ontained in eah of the liques on the unique path between them then the tree is alleda juntion tree or a join tree. The intersetion of two adjaent liques in a juntion tree is alled the sepsetof the two liques.For formal treatment of the graph theoretial onepts introdued, see Golumbi (1980), Jensen (1988),Lauritzen, Speed and Vijayan (1984).2.2 Bayesian networks
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For example, Figure 1 shows the DAG of a Bayesian net with a set of nodesfA1; A2; A3; E1; E2; E3; F1; F2; H1; H2; H3; H4g. In binary ase, the sample spae of A3 is A3 = fa31; a32g.� E is a set of ars suh that (N;E) is a DAG. The ars signify the existene of diret ausal inuenesbetween the linked variables. The basi dependeny assumption embedded in Bayesian nets is that avariable is independent of its non-desendants given its parents.For example, the ars in Figure 1 signify the diret ausal inuenes from E1 and E3 to E2. Thetopology onveys the assumption p(E2jE1E3H4) = p(E2jE1E3).� P is a joint probability distribution quantifying the strengths of the ausal inuenes signi�ed bythe ars. P is spei�ed by, for eah Ai 2 N , the distribution of the random variable labeled at Aionditioned by the values of Ai's parents �i in the form of a onditional probability table p(Aij�i).p(Aij�i) is a normalized funtion mapping 	(fAig [ �i) to [0; 1℄. The joint probability distribution Pis P = p(A1 : : : A�) = �Yi=1 p(Aij�i)For example, Table 1 lists the onditional distributions needed to fully speify P for the Bayesian net(�; P ).If we sum a joint distribution over all possible outomes of the variables in N n fAig, the resultantdistribution is the marginal distribution over the variable Ai.p(h11) = :15 p(a21jh31) = :8 p(e11jh41) = :8p(a21jh32) = :1 p(e11jh42) = :15p(h21ja21a11) = :8696p(h21ja21a12) = :7 p(a31jh31) = :3 p(e21je31e11) = :9789p(h21ja22a11) = :6 p(a31jh32) = :8 p(e21je31e12) = :8p(h21ja22a12) = :08 p(e21je32e11) = :9p(f11 jh11h21) = :7895 p(e21je32e12) = :05p(h31) = :3 p(f11 jh11h22) = :5p(f11 jh12h21) = :6 p(e31 jh21h31) = :7702p(h41ja31) = :25 p(f11 jh12h22) = :05 p(e31 jh21h32) = :35p(h41ja32) = :4 p(e31 jh22h31) = :65p(f21 jf11) = :4 p(e31 jh22h32) = :01p(a11jh11) = :8 p(f21 jf12) = :75p(a11jh12) = :1Table 1: Probability distribution assoiated with DAG � in Figure 1.2.3 Operations on belief tablesA belief table (Andersen et al. 1989; Jensen, Olesen, and Andersen 1990) or a potential (Lauritzen andSpiegelhalter 1988) denoted as B() is a non-normalized probability distribution. It an be viewed as a7



funtion from the spae of a set of one of more variables to the reals. For example, the belief table B(X) ofa set X of variables maps 	(X) to the reals. If x 2 	(X), the belief value of x is denoted by B(x). Denotea set X of variables and orresponding belief table B(X) with an ordered pair (X;B(X)) and all the paira world.For Y � X , the projetion y 2 	(Y ) of x 2 	(X) to the spae 	(Y ) is denoted as Prj	(Y )(x). Denotethe marginalization of B(X) to Y � X by PXnY B(X) whih spei�es a belief table on Y . The operationis de�ned as the following: if B(Y ) =PXnY B(X) then for all y 2 	(Y ),B(y) = XPrj	(Y )(x)=yB(x):Similarly, denote the multipliation of B(X) and B(Y ) by B(X) � B(Y ) whih spei�es a belief table onX [ Y . If B(X [ Y ) = B(X) �B(Y ) then for all z 2 	(X [ Y ), B(z) = B(x) �B(y) where x = Prj	(X)(z)and y = Prj	(Y )(z). Denote the division of B(X) over B(Y ) by B(X)=B(Y ) whih spei�es a belief tableon X [ Y . If B(X [ Y ) = B(X)=B(Y ) then for all z 2 	(X [ Y ), B(z) = B(x)=B(y) if B(y) 6= 0 wherex = Prj	(X)(z) and y = Prj	(Y )(z).2.4 Transform Bayesian nets into juntion treesThe MSBN tehnique is an extension to the juntion tree tehnique (Andersen et al. 1989; Jensen, Lauritzenand Olesen 1990) whih transforms a Bayesian net into an equivalent seondary struture where infereneis onduted (Figure 4). Beause of this restruturing, belief propagation in multiply onneted Bayesiannets an be performed in a similar manner as in singly onneted nets. The following briey summarizes thejuntion tree tehnique.Moralization Transform the DAG into its moral graph, e.g. � in Figure 2 (with respet to � in Figure 1).Triangulation Triangulate the moral graph. Call the resultant graph a morali-triangulated graph, e.g. �of Figure 2.Clique hypergraph formation Identify liques of the morali-triangulated graph, e.g. the nodes in � ofFigure 2, and obtain a lique hypergraph.Juntion tree onstrution Organize the lique hypergraph into a juntion tree of liques, e.g. � ofFigure 2.Node assignment Assign eah node in the DAG to a lique in the juntion tree of liques. For example,H4 is assigned to either lique 7 or 8, and H3 is assigned to lique 5, 6, 7 or 8.8
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Evidential reasoning When evidene about a set of variables (of the original Bayesian net) is available,the evidene is entered into universes whih ontain the variables. Then the belief tables of the juntiontree are made onsistent again by ColletEvidene and DistributeEvidene suh that posterior marginalprobability for a variable an be obtained from any universe ontaining the variable.The omputational omplexity of evidential reasoning in juntion trees is about the same as the reasoningmethod by Lauritzen and Spiegelhalter (1988) whih an be viewed as performed on a (seondary) diretedtree struture (Shahter 1988; Neapolitan 1990). But juntion trees are undireted and allow more exibleomputation. The juntion tree representation is explored in this paper sine its exibility is of ruialimportane to the MSBN extension.2.5 d-separationThe onept of d-separation introdued by Pearl (1988, page 116-118) is fundamental in probabilisti rea-soning in Bayesian networks. It permits easy determination, by inspetion, of whih sets of variables areonsidered independent of eah other given a third set, thus making any DAG an unambiguous representationof dependeny and independene. It plays an important role in our partitioning of Bayesian networks.De�nition 2.1 (d-separate (Pearl 1988)) If X, Y , and Z are three disjoint subsets of nodes in a DAG,then Z is said to d-separate X from Y , if there is no path between a node in X and a node in Y alongwhih two onditions hold: (1) every node with onverging ars (head-to-head node) is in Z or has adesendent in Z and (2) every other node (non-head-to-head node) is outside Z.A path satisfying the onditions above is said to be ative; otherwise it is said to be bloked by Z.For example (Figure 1), fF1g d-separates fF2g from fH1; H2g. fH2; H3; H4g d-separates fE1; E2; E3gfrom the rest. The path between A3 and E1 is bloked by H4. Detailed illustrations of d-separation an befound in Neapolitan (1990, page 192-207).The importane of d-separation is that, in a Bayesian network, X and Y are onditionally independentgiven Z i� Z d-separates X from Y (Geiger, Verma and Pearl 1990).3 \Obvious" Ways to Explore Loalization\Loalization" means the following: (1) For an average query session, only ertain parts of a large networkare interesting. We would like to onentrate on the part of urrent interest without the overhead of theuninteresting parts. We don't want to remove those parts a priori as what seemed initially uninteresting maybeome interesting, and we would like to pay only a small ost to `swap' those parts in. (2) New evidene10



and queries are direted to a small part of a large network repeatedly within a period of time. Making useof this, we only want to inur the swapping ost oasionally.An obvious way to explore loalization in multiply onneted networks is to preserve loalization withinsubtrees of a juntion tree by lever hoie of triangulation and juntion tree onstrution. If this an bedone, the juntion tree an be split and eah subtree an be used as a separate omputational objet. Thefollowing example shows that this is not always workable. Consider the DAG � in Figure 2. Supposevariables in the DAG form three groups naturally related whih satisfy loalization:G1 = fA1; A2; A3; H1; H2; H3; H4gG2 = fF1; F2; H1; H2gG3 = fE1; E2; E3; H2; H3; H4gWe would like to onstrut a juntion tree whih preserves the loalization within three subtrees. The graph� in Figure 2 is the moral graph of �. Only the yle A3�H3�E3�E1�H4�A3 needs to be triangulated.There are six distint ways of triangulation out of whih only two do not mix nodes in di�erent groups.The two triangulations have the link (H3; H4) in ommon and whih is hosen does not make a signi�antdi�erene in the following analysis. The � in Figure 2 shows one of the two triangulations. The nodes ofgraph � are all the liques in �.The juntion tree � does not preserve loalization sine liques 3, 4, 5 and 8 orrespond to group G1 butare onneted via liques 6 and 7 whih ontains E3 from group G3. This is unavoidable. When there isevidene towards A1 or A2 in �, updating the belief in group G3 requires passing the joint distribution overH2 and H3. But updating the belief in A3 only requires passing the marginal distribution of H3. That isto say, updating the belief in A3 needs less information than group G3. In the juntion tree representation,this beomes a path from liques 3, 4 and 5 to lique 8 via liques 6 and 7.In general, let X and Y be two sets of variables in the same natural group, and let Z be a set of variablesin a distint group. Suppose the information exhange between pairs of them requires the exhange ofdistribution on sets IXY , IXZ and IY Z of variables respetively. Sometime IXY is a subset of both IXZ andIY Z . When this is the ase, a juntion tree representation will always indiretly onnet liques orrespondingto X and Y through liques orresponding to Z if the method in Andersen et al. (1989), Jensen, Lauritzenand Olesen (1990) is followed.However, there is a way around the problem with a brute fore method. In the above example, whenthere is evidene towards A1 or A2, the brute fore method pretends that updating the belief in A3 needsas muh information as G3. A dummy link (H2; A3) is added to the moral graph � in Figure 2. Thentriangulating the augmented graph gives the graph �0 in Figure 3. The resultant juntion tree �0 in Figure 311



does have three subtrees whih orrespond to the three groups desired. However, the largest liques nowhave size four instead of three as before. In the binary ase, the size of the total state spae is 84 instead of76 as before.
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Figure 3: �0 is a triangulated graph. �0 is a juntion tree of �0.In general, the brute fore method preserves natural loalization by ongregation of the set of interfaingnodes (nodes H2; H3; H4 above) between natural groups. In this way, the joint distribution on interfaingnodes2 an be passed between groups, and preservation of loalization and preservation of tree struture anbe ompatible. However, in a large appliation domain with the original network sparse, this will greatlyinrease the amount of omputation in eah group due to the exponential enlargement of the lique statespae. The omputation amount inreased ould outweigh the savings gained by exploring loalization ingeneral.The trouble illustrated in the above two situations an be traed to the tree struture of a juntion treerepresentation whih insists on single path between any two liques in the tree. The normal triangulationase has small liques but loses loalization. The brute fore ase preserves loalization but does not havesmall liques. To summarize, we have shown that the preservation of natural loalization and small liquesannot oexist by the method of Andersen et al. (1989), Jensen, Lauritzen and Olesen (1990). It is laimedhere that this is due to a single information hannel between loal groups of variables. In the following, it2It will be shown later that when the set of interfaing nodes possesses a ertain property, the joint distribution on the setis the suÆient information to be exhanged. 12



is shown that by introduing multiple information hannels between groups and by exploring onditionalindependene, the joint distribution on a set of interfaing variables an be passed between groups by passingonly marginal distributions on subsets of the set.4 Overview of MSBNs and the Juntion Forest Tehnique

Figure 4: Left: major steps in transformation of a USBN into a juntion tree. Right: major steps intransformation of a MSBN into a juntion forest.As demonstrated in Setion 3, in order to explore loalization, the tree struture and the single hannelrequirement must be relaxed. Sine the omputational advantage o�ered by a tree struture has also beendemonstrated repeatedly, it is not desirable to totally abandon the tree struture. Rather, we keep the treestruture within eah natural group, but to allow multiple hannels between groups. To implement thisidea, the MSBN and the juntion forest representations extend the d-separation onept and the juntion13



tree tehnique. This setion outlines the development of these representations. Eah major step involved isdesribed in terms of its funtionality. The problems possibly enountered and the hints for solutions aredisussed. The details are presented in the subsequent setions. Sine the tehnique extends the juntiontree tehnique reviewed in Setion 2.4, the parallels and the di�erenes are indiated. Figure 4 illustratesthe major steps in the transformation of the original representation into the seondary representation forboth tehniques.The d-sepset We want to partition a large domain aording to natural loalization into subdomains suhthat eah an be represented separately by a Bayesian subnet; and that these subnets an ooperate witheah other during inferene by exhanging small amount of information between them. We disuss herethe tehnial onstraints whih have to be followed during the partition in order to solve these goals. Thisproblem an be formulated oneptually in the opposite diretion. Suppose the domain has been representedwith a homogeneous network. The task is to �nd the neessary tehnial onstraints to be followed whenthe net is partitioned into subnets aording to natural loalization. Setion 5 de�nes d-sepsets whose jointdistribution is the suÆient information to be exhanged to keep `adjaent' subnets informed. It is shown thatin the juntion tree representation of the homogeneous net, the nodes in d-sepsets an serve as informationpassageways between nodes in di�erent subnets. Thus, the d-sepsets form the interfaes between pairs ofsubnets.Setioning Continuing in the oneptual diretion, Setion 6 desribes how to setion a homogeneousBayesian net into subnets alled sets. The olletion of these sets forms a MSBN. It is desribed how theprobability distribution should be assigned to sets relative to the distribution in the homogeneous network.Partiularly, it is neessary to assign the original probability table of a d-sepnode to a unique set whihontains the d-sepnode and all its parent nodes, and to assign the same d-sepnode in other sets a uniformtable.In order to perform eÆient inferene in a general but sparse network, eah set is transformed into aseparate juntion tree whih will stand as an inferene entity. When doing so, it is neessary to preservethe intatness of the lique hypergraph resulting from the orresponding homogeneous net. That is, we haveto ensure that eah lique in the original hypergraph will �nd at least one host set. This imposes anotheronstraint, termed soundness of setioning, on the overall organization of the sets. Setion 6.2 disussesthis onstraint.In addition to a neessary and suÆient ondition for soundness of setioning, two suÆient and naturalonditions, that an easily be heked, are provided. The onditions are spei�ed by two rules, the overing14



subDAG rule and the hypertree rule, whih, if followed, guarantee sound setioning. The two rules plus thed-sepset interfae impose onditional independene onstraints at a maro level (at the level of the sets asopposed to onditional independene at the level of the nodes). This is disussed in Setion 6.3. Althoughthere exists MSBNs of sound setioning whih do not follow the two rules, it is shown that omputationaladvantages are obtained in MSBNs setioned aording to the rules. Further disussion will therefore onlybe direted to MSBNs satisfying the two rules.Moralization and triangulation To transform a MSBN into a set of juntion trees requires moralizationand triangulation as reviewed in Setion 2.4. In the MSBN ontext, the transformation an be performedglobally or by loal omputation at the level of the sets. The global omputation performs moralization andtriangulation in the same way as in the juntion tree tehnique with are not to mix the nodes of distintsets into one lique. An additional mapping of the resultant morali-triangulated graph into subgraphsorresponding to the sets is needed. But where spae saving is onerned, loal omputation is desired.The pitfalls and proedures involved in moralization and triangulation by loal omputation are disussed.Sine the number of parents for a d-sepnode may be di�erent for di�erent sets, the moralization inMSBN annot be ahieved by \pure" loal omputation in eah set. Communiation between the sets isrequired to ensure parent d-sepnodes are moralized identially in di�erent sets.The riterion of triangulation in the MSBN is to ensure the \intatness" of a resulting hypergraph fromthe orresponding homogeneous net. Problems arise if we insist on triangulation by loal omputation atthe level of sets. One problem is that an inter-set yle will be triangulated in the homogeneous net, butthe yle annot be identi�ed by examining eah of the sets involved individually. Another problem is thatd-sepnodes may be triangulated di�erently in di�erent sets. The solution is to let the sets ommuniateduring triangulation. Sine moralization and triangulation both involve adding links and both require om-muniation between sets, the orresponding loal operations in eah set an be performed together andmessages to other sets an be sent together. Therefore, operationally, moralization and triangulation inMSBN are not separate steps as in the juntion tree tehnique. The orresponding integrated operation istermed morali-triangulation to reet this.In Setion 7.1, the above onept of \intatness" of the hypergraph is formalized in terms of invertibilityof morali-triangulation. It is shown that if the setioning of a MSBN is sound then there exists an invertiblemorali-triangulation suh that the \intatness" of the hypergraph is preserved. Setion 7.1 provides analgorithm for an invertible morali-triangulation assuming a overing subDAG.
15



Next steps in the juntion tree tehnique In the juntion tree tehnique, after triangulation, furthersteps of the transformation are the identi�ation of liques in the morali-triangulated graph (lique hyper-graph formation) and the juntion tree onstrution. In MSBNs, these steps are performed in a similar wayfor eah set as in the juntion tree tehnique. A MSBN is thus transformed into a set of juntion treesalled a juntion forest of liques. Readers are referred to Andersen et al. (1989), Jensen, Lauritzen andOlesen (1990) for tehnique details involving these steps.Linkage formation An important extension of MSBNs and juntion forests to the juntion tree tehniqueis the formation of multiple information hannels between juntion trees (in a juntion forest) suh that ajoint distribution on a d-sepset an be passed between a pair of juntion trees by passing through marginaldistributions on subsets of the d-sepset. In this way, the exponential enlargement of the lique state spaeaused by the brute fore method (Setion 3) an be avoided. These hannels are termed linkages (Se-tion 7.2). Eah linkage is a set of d-sepnodes whih links two liques. The two liques are from the pair ofjuntion trees involved, respetively. During inferene, if evidene is obtained from previously ative juntiontree, it an then be propagated to the newly ative juntion tree through linkages between them.If we built this naively, multiple linkages ould ause redundant information passing or ould onfusethe information reeiver. The problem an be avoided by oordination among linkages during informationpassing. Sine the problem manifests di�erently during belief initialization and evidential reasoning, the twoases are treated separately. In both ases, information passing is performed one linkage at a time. Duringinitialization, (redundant) information already passed through other linkages is removed from the linkagebelief table before the latter is passed over. Operationally, the linkages are ordered. The intersetion ofa linkage with the union of those linkages ordered before is alled the redundany set of the linkage. Theredundany set tells a linkage what portion of the information has to be removed during information passing.During evidential reasoning, the operation DistributeEvidene (Setion 2.4) is performed after informationpassing. The juntion forest of liques with linkages and redundany sets, forms a linked juntion forest ofliques.Formation of joint system belief of juntion forest The joint system belief of the juntion forest,de�ned (Setion 7.3) in terms of the belief on eah of the juntion trees, is proportional to the joint probabilitydistribution of the homogeneous net. The juntion forest with the joint system belief de�ned, forms ajuntion forest of belief universes. When it is lear from the ontext, only \juntion forest" is used, withoutdi�erentiating between its di�erent stages.
16



Consisteny and separability of juntion forest As in the ase of the juntion tree tehnique, we wouldlike to obtain the marginal probability of a variable by marginalization of the belief in any belief universeof any juntion tree whih ontains the variable. In the ase of the juntion tree tehnique, this requiresthe onsisteny property whih an be satis�ed by DistributeEvidene and ColletEvidene as reviewedin Setion 2.4. In the ontext of a juntion forest, an additional property alled separability is required(Setion 8) due to multiple linkages between juntion trees. It imposes a host omposition onstraint on theomposition of linkage host liques. The funtion of linkages is to pass the joint belief of the orrespondingd-sepset. It is shown that if all the juntion trees in a juntion forest satisfy the host omposition onditionthen separability is guaranteed. Why these onditions usually hold naturally is explained. The remedy whenthe ondition does not hold is also disussed. A juntion forest struture satisfying separability, and with aset of operations performed to bring the forest into onsisteny, an obtain marginal probabilities by loalomputation.Belief initialization Belief initialization (Setion 9.3) in a juntion forest is ahieved by �rst bringingthe belief universes in eah juntion tree into onsisteny, and then exhanging prior belief between juntiontrees to bring the juntion forest into global onsisteny. When exhanging beliefs, are is to be taken ontwo issues. First, non-trivial information (reall that d-sepnodes in some sets are assigned uniform tablesduring setioning) ould be ontained in either side of the two juntion trees involved. Seond, redundantinformation ould be passed through multiple linkages. Setion 9 de�nes several levels of operations toinitialize belief of a juntion forest by loal omputation at the level of juntion trees.Evidential reasoning Only one juntion tree in a juntion forest needs to be ative. Whenever newevidene beomes available to the urrently ative juntion tree, it is entered and the tree is made onsistentsuh that queries an be answered. Thus, the omputation omplexity of evidential reasoning is governedby the size of one set. When the user shifts attention, a new juntion tree replaes the urrently ativetree and all previously aquired evidene is absorbed through an operation ShiftAttention. The operationrequires only a hain of `intermediate' juntion trees to be updated. During the inter-juntion tree updating,we need to ensure no onfusion results from multi-linkage information passing.5 The d-sepset and the Juntion Tree5.1 The d-sepsetAs disussed in Setion 4, the problem of partitioning a Bayesian net by natural loalization an be onep-tually formulated as though the domain has been represented with a homogeneous network. The task is to17



�nd the tehnial onstraint to partition the net into subnets suh that the subnets an be used separatelyand ooperatively during inferene with small amount of information exhange. This setion de�nes the mostimportant onept for partitioning, namely, d-sepset. Then some insights are provided into its impliationin the seondary struture of DAGs.De�nition 5.1 (d-sepset) Let D = D1 t D2 be a DAG. The set of nodes I = N1 \ N2 is a d-sepsetbetween subDAG D1 and D2 if the following ondition holds3.For every Ai 2 I with its parents �i in D, either �i � N1, or �i � N2.Elements of a d-sepset are alled d-sepnodes. When the above ondition holds, D is said to be setionedinto fD1; D2g.Note that in general a DAG D = D1 t D2 does not imply the setioning of D into fD1; D2g. This isbeause the intersetion of the orresponding two sets of nodes may not be a d-sepset.Lemma 5.2 Let a DAG D be setioned into fD1; D2g and I = N1 \N2 be a d-sepset. I d-separates N1 n Ifrom N2 n I.The lemma an be generalized into the following theorem whih states that, although the d-sepset ispairwise de�ned, the union of d-sepsets of a subDAG with other subDAGs globally d-separate the subDAGfrom the rest of the DAG. Note that when a d-sepset is indexed with two supersripts, their order isimmaterial.Theorem 5.3 Let a DAG D be setioned into fD1; : : : ; D�g and I ij = N i \N j be the d-sepset between Diand Dj . For eah i, [j 6=iI ij d-separates N i n [j 6=iI ij from N nN i.The theorem implies that the joint distribution on d-sepsets is the suÆient information to be exhangedbetween a Bayesian subnet and the rest of the network.Corollary 5.4 Let (D;P ) be a Bayesian net, D be setioned into fD1; : : : ; D�g, and I ij = N i \N j be thed-sepset between Di and Dj . When evidene is available at variables in N i, the propagation of the jointdistribution on [j 6=iI ij from Di to the rest is suÆient in order to obtain posterior distribution on N .Example 5.5 The DAG � in Figure 2 is setioned into f�1;�2;�3g in Figure 5. I12 = fH1; H2g is thed-sepset between �1 and �2; I13 = fH2; H3; H4g is the d-sepset between �1 and �3; and I23 = fH2g is thed-sepset between �2 and �3. I12 [ I13 = fH1; H2; H3; H4g d-separates the rest of �1 from the rest of �2and �3. 18
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H43E1 EFigure 5: The set f�1;�2;�3g of three subDAGs (top) forms a setioning of � in Figure 1. f�1;�2;�3g(middle) is the set of morali-triangulated graphs of f�1;�2;�3g, and � = f�1;�2;�3g (bottom) is theorresponding juntion forest. The ribbed bands indiate linkages.There is a lose relation between d-sepset and usual graph separator given in proposition 5.6. If Z isthe graph separator of X and Y then the removal of the set Z of nodes from the graph (together with theirassoiated links) would render the nodes in X disonneted from those in Y .Proposition 5.6 Let a DAG D be setioned into fD1; D2g. The set of nodes I = N1 \ N2 is a d-sepsetbetween D1 and D2 i� I is a graph separator in the moral graph of D.The properties of d-separation in the DAG representation of Bayesian networks have been studied exten-sively (Pearl 1988; Geiger, Verma and Pearl 1990). It an be used to derive Pearl's propagation algorithmin singly-onneted Bayesian nets (Neapolitan 1990). But to our knowledge, its impliation in seondarystruture has not been examined. The de�nition of the d-sepset now allows to do so.3By the de�nition of t, there an be no ars from D1 n I to D2 n I.19



5.2 Impliation of d-sepset in juntion treesRepresenting a multiply onneted Bayesian network in a seondary struture, namely a juntion tree,enables exible and eÆient belief propagation. With the d-sepset onept de�ned, we would like to knowhow information is passed in the juntion tree between nodes separated by the d-sepset in the originalBayesian network.Lemma 5.7 Let a DAG D be setioned into fD1; D2g and I = N1 \N2 be the d-sepset. A juntion tree Tan be onstruted from D, suh that the following statement is true.For all pairs of nodes A1 2 N1 n I and A2 2 N2 n I, if A1 is ontained in lique C1 and A2 inC2, then on the unique path between C1 and C2 in T , there exists a lique sepset Q ontainingonly d-sepnodes.The lemma an be generalized to the ase of any �nite number of subDAGs. This is the followingproposition. Its proof is similar to the lemma.Proposition 5.8 (belief relay) Let a DAG D be setioned into fD1; : : : ; D�g and I = [j 6=iI ij be the unionof d-sepsets between Di and other subDAGs. A juntion tree T an be onstruted from D, suh that thefollowing statement is true.For all pairs of nodes A1 2 N i n I and A2 2 N nN i, if A1 is ontained in lique C1 and A2 inC2, then on the unique path between C1 and C2 in T , there exists a lique sepset Q ontainingonly d-sepnodes in I.Example 5.9 Reall the DAG � in Figure 2 whih is setioned into f�1;�2;�3g in Figure 5 with I =fH2; H3; H4g being the d-sepset between �1 and �3. Consider the node A3 in lique fH3; H4; A3g and thenode E2 in lique fE4; E3; E2g in the juntion tree � in Figure 2. In the path between the two liques, thesepset fH3; H4g between liques fH3; H4; A3g and fH3; H4; E3g ontains only d-sepnodes.When new evidene is available, it an be propagated to the juntion tree through sepsets between liques(Jensen, Lauritzen and Olesen 1990). Therefore, the above proposition means that a juntion tree an beonstruted suh that evidene in N i n I must pass through at least one sepset ontaining only nodes in I inorder to be propagated to nodes in N nN i.Theorem 5.3 and Proposition 5.8 suggest that the lique hypergraph an be organized suh that theliques orresponding to di�erent subDAGs separated by d-sepsets an be organized into di�erent juntiontrees. Communiation between them an be aomplished through d-sepsets. This idea is formalized below.20



6 Multiply Setioned Bayesian Nets6.1 De�nition of MSBNDe�nition 6.1 (MSBN) Let S = (N;E; P ) be a Bayesian network. Suppose D = (N;E) is setioned intofD1; : : : ; D�g where Di = (N i; Ei). Suppose I ij = N i \ N j is the d-sepset between Di and Dj (1 � i; j ��; i 6= j).Eah d-sepnode A is assigned to a subDAGs in the following way:Let �i be the in-degree of A in subDAG Di. Choose some i suh that �i � �j (j = 1; : : : ; �)(breaking ties arbitrarily). Assign A to subDAG Di.A probability distribution P i is assigned to eah subDAG Di (i = 1; : : : ; �) in the following way.For eah node A 2 N i, if A is a d-sepnode and A is not assigned to Di, assign to A a uniformprobability table.4 Otherwise assign to A an idential probability table to that in (N;E; P ).Call Si = (Di; P i) = ((N i; Ei); P i) a set and all the set of sets fS1; : : : ; S�g a Multiply SetionedBayesian Network (MSBN).De�nition 6.2 (adjaent sets) Two sets in a MSBN are adjaent if their d-sepset is non-empty. Thetwo sets are also alled neighbour sets.The original Bayesian net S is alled as an `UnSetioned Bayesian Network (USBN)'. Note that thesetioning of a Bayesian network is essentially determined by the setioning of the orresponding DAG D.It doesn't matter whih way ties are broken. There will be no signi�ant di�erene in further proessing.Example 6.3 Suppose the variables in DAG � in Figure 2 are all binary. Assoiate the probability distri-bution P given in Table 1 with �. (�; P ) is an USBN.Given the USBN (�; P ), and orresponding three subDAGs �1, �2 and �3, a 3-set MSBN f(�1; P 1);(�2; P 2); (�3; P 3)g an be onstruted. First assign d-sepnodes H1; : : : ; H4 to the subDAGs. H2 and H4must be assigned to �1. H1 an be assigned to either �1 or �2, and H3 an be assigned to either �1 or �3.Here it is hosen to assign all 4 d-sepnodes to �1. Based on this assignment and P given, the probabilitydistribution for eah set an be determined (Table 2). Note the uniform probability tables assigned tod-sepnodes in �2 and �3.4This is neessary for two reasons. If a set does not ontain all a d-sepnode's parents, the size of probability table of thed-sepnode must be dereased. This assignment guarantees that the joint system belief onstruted in Setion 7.3 is proportionalto the joint probability distribution P . 21



P 1 P 2 P 3p(h11) = :15 p(h11) = :5 p(h21) = :5p(h21ja21a11) = :8696 p(h21) = :5 p(h31) = :5p(h21ja21a12) = :7p(h21ja22a11) = :6 p(f11jh11h21) = :7895 p(h41) = :5p(h21ja22a12) = :08 p(f11jh11h22) = :5p(f11jh12h21) = :6 p(e11jh41) = :8p(h31) = :3 p(f11jh12h22) = :05 p(e11jh42) = :15p(h41ja31) = :25 p(f21jf11) = :4 p(e21je31e11) = :9789p(h41ja32) = :4 p(f21jf12) = :75 p(e21je31e12) = :8p(e21je32e11) = :9p(a11jh11) = :8 p(e21je32e12) = :05p(a11jh12) = :1 p(e31jh21h31) = :7702p(a21jh31) = :8 p(e31jh21h32) = :35p(a21jh32) = :1 p(e31jh22h31) = :65p(e31jh22h32) = :01p(a31jh31) = :3p(a31jh32) = :8Table 2: Probability distribution assoiated with subDAGs �1, �2 and �3 in Figure 5.6.2 Soundness of SetioningIn order to perform eÆient inferene omputation in a multiply onneted Bayesian net, the juntion treetehnique transforms the Bayesian net into a lique hypergraph through moralization and triangulation.The hypergraph is organized into a juntion tree within whih eÆient inferene an take plae. Beause ofthe omputational advantage of juntion trees, in the ontext of a MSBN, we would like to transform eahset into a juntion tree. The immediate issue is to de�ne onditions on the transformation that guaranteethat orret inferene an take plae in the resultant set of juntion trees. The following reviews the majortheoretial results related to this question.Lauritzen, Speed and Vijayan (1984) showed that the lique hypergraph of a graph is deomposable i�the graph is triangulated. Jensen (1988) proved that a hypergraph has a juntion tree i� it is deomposable.Maier (1983) proved the same in the ontext of relational database. Jensen, Lauritzen, Olesen (1990) andPearl (1988) showed that a juntion tree representation of a Bayesian net is an equivalent representationin the sense that the information about joint probability distribution an be preserved. Finally, a moreexible algorithm (ompared to that by Lauritzen and Spiegelhalter (1988)) was devised on the juntion treerepresentation of multiply onneted Bayesian nets (Jensen, Lauritzen and Olesen 1990).The above results highlight the importane of lique hypergraphs resulted from triangulation of theoriginal graphs. Thus, as eah set in a MSBN is transformed into a juntion tree, it is neessary to preserve22



the intatness of the lique hypergraph resulting from the orresponding USBN. This is possible only if thesetioning of DAG D of the original USBN is sound as de�ned formally below.De�nition 6.4 (soundness of setioning) Let a DAG D be setioned intofD1; : : : ; D�g. If there exists a lique hypergraph from D suh that for every lique Ck in the hypergraphthere is at least one subDAG Di satisfying Ck � N i, then the setioning is sound. Di is said to be a hostsubDAG of lique Ck.Although the soundness of setioning is de�ned in terms of DAGs, the onept is used here in the ontextof MSBNs. When the setioning of a DAG is sound, it is said that the setioning of the orresponding USBNinto the MSBN is sound, or the MSBN is said to be sound.If the setioning of a DAG D is unsound, there is no host subDAG for at least one lique in all possiblehypergraphs from D. If a MSBN is based on suh a setioning, it is impossible to onsistently maintain theautonomous status of sets in the seondary representation.Example 6.5 In Figure 6, fD1; D2; D3g is an unsound setioning of D. The lique hypergraph for D musthave lique fA;B;Cg whih �nds no host subDAG from D1, D2, and D3.

Figure 6: Top left: A DAG D. Top right: The set of subDAGs from an unsound setioning of D. Bottomleft: The juntion tree T from D.The following develops a neessary and suÆient ondition for soundness of setioning.Lemma 6.6 Let A1� : : :�Ai�1�B1� : : :�Bj�1�C1� : : :�Ck�1� : : :�A1 be a yle onsisting of nodesfrom three or more sets: X = fA1; : : : ; Ai�1; B1g, Y = fB1; : : : ; Bj�1; C1g, and so on. The nodes from anyone set are adjaent in the yle, and two adjaent sets have a node in ommon. Then triangulation of thisyle must reate a triangle with its three nodes not belonging to any single set.23



If a MSBN has only two sets, the setioning is always sound. Unsoundness an arise only when thereare three or more sets. The following shows exatly the ase where a setioning is unsound.Theorem 6.7 (inter-subDAG yle) A setioning of a DAG D to a set of three or more subDAGs issound i� there exists no (undireted) yle in D whih onsists of nodes from three or more distint subDAGssuh that the nodes from eah subDAG are adjaent on the yle.6.3 Rules That Guarantee SoundnessGiven a DAG and a setioning, the searh for inter-subDAG yles relative to the setioning is expensive,espeially by loal omputation when spae is of onern. Just that a setioning is sound does not mean thatthe resultant MSBN has good omputational properties (see the latter part of this Setion, Setion 7.3, and9.5). Furthermore, in pratie, a large network (MSBN) is onstruted one set at a time. If a setioning isnot sound and it an only be disovered after all sets have been onstruted, the overall revision would bedisastrous. Thus, we would like to develop a simple guideline for sound setioning whih ould be followedduring inremental onstrution of MSBNs. The following overing subDAG rule is one suh guideline. Thisrule, if followed, gives good omputational properties, and allows to be heked loally as well.Theorem 6.8 (overing subDAG) Let a DAG D be setioned into fD1; : : : ; D�g. Let Ijk = N j \Nk bethe d-sepset between Dj and Dk. If there is a subDAG Di suh that N i � [j 6=kIjk then the setioning issound. The subDAG Di is alled the overing subDAG relative to the setioning.In the ontext of a MSBN, all the set orresponding to the overing subDAG the overing set. Notethat the overing set rule imposes a onditional independene onstraint at a maro level.Proposition 6.9 Let Si and Sj be any two sets in a MSBN with a overing set Sk (i 6= k, j 6= k). Thetwo sets of variables N i and N j are onditionally independent given Nk.Example 6.10 Consider the 3-set MSBN f(�1; P 1); (�2; P 2); (�3; P 3)g. (�1; P 1) is the overing set.Note, in general, the overing set of a MSBN may not be unique. As far as soundness is onerned, oneis as good as the others. Pratially, the one to be onsulted most often or the one with the least size ispreferred for the sake of omputational eÆieny whih will be lear later.The overing set is typially formed naturally. For example (Xiang et al. 1992), in a neuromusulardiagnosis system, the set ontaining knowledge about linial examination ontains all the disease hypothesesonsidered by the system. The EMG set or nerve ondution set ontains only a subset of the diseasehypotheses based on diagnosti importane of these tests to eah disease. Thus, the linial set is a naturalovering set with all the disease hypothesis as d-sepnodes interfaing the set with other sets.24



The overing subDAG rule an be repeatedly used to reate sophistiated MSBNs whih are sound. Whendoing so, a global overing subDAG requirement is replaed by a loal overing subDAG requirement.De�nition 6.11 (MSBN of hypertree struture) A MSBN of hypertree struture is one that is built bythe following proedure:Start with an empty MSBN. Reursively add a new subDAG Dk to the set of onstruted subDAGsfD1; : : : ; Dk�1g subjet to the onstraint:There exists Di (i < k) suh that, for all Dj (j < k; j 6= i), Ijk � N i where Ijk is the d-sepsetbetween Dj and Dk. Di is alled a loal overing subDAG relative to Dk.Theorem 6.12 (hypertree) A MSBN with a hypertree struture is sound.The following example illustrate the hypertree rule. It also explains why the setioning is sound.Example 6.13 Figure 7 depits part of a MSBN onstruted by the hypertree rule. Eah box represents asubDAG with boundaries between boxes representing d-sepsets. The supersripts of subDAGs represent theorder of their reation. D1; D4; D5 are loal overing subDAGs.

Figure 7: A MSBN with a hypertree struture.The inter-subDAG yle as desribed in theorem 6.7 annot happen in this MSBN due to its hypertreestruture, and hene the setioning is sound.Note that the hypertree rule also imposes a onditional independene onstraint at a maro level.Proposition 6.14 Let Si and Sj be any two sets with an empty d-sepset in a MSBN setioned by thehypertree rule. Let Sk be any set on the unique route mediating Si and Sj on the hypertree. The two setsof variables N i and N j are onditionally independent given Nk.25



It should be indiated that the overing subDAG rule and the hypertree rule do not over every asewhere setioning is sound.Example 6.15 The 3-set MSBN fD1; D2; D3g in Figure 8 has no overing subDAG. But the setioning issound.

Figure 8: Top left: A DAG D. Top right: A juntion tree T from D. Bottom left: fD1; D2; D3g forms asound setioning of D. Bottom right: The juntion trees from the MSBN in Bottom left.Note that, although the setioning of the MSBN in Figure 8 is sound, this kind of struture is restrited.For example, ars an be added between A and B in D1, between A and C in D2, but as soon as one morear is added between B and C in D3, the theorem 6.7 is violated and the setioning beome unsound. Thatis, when n subDAGs (n � 3) are interfaed in this style, there an be at most n� 1 of them being multiplyonneted. Further omputational problems with suh struture will be disussed in the appropriate lattersetions.Sine MSBNs onstruted by the overing subDAG rule or the hypertree rule have sound setioning, areless restrited, and have extra omputational advantages (Setion 7.3 and 9.5) over the MSBNs whih donot follow these rules, the following study is direted to only the MSBNs that follow these rules.Coneptually, all MSBNs onstruted by the hypertree rule an be viewed as MSBNs with overingsubDAGs when attention is direted to loal strutures. For example, onsider D1 in Figure 7 and its sur-rounding subDAGs. D2; D4; D6; D7; D8 an be onsidered as one subDAG, D3; D5; D9; D10; D11 as another,26



D12; D13 and D14; D15 as two others. Thus, the MSBN is viewed as one with a global overing subDAGD1. Likewise, when onerned with the relation between D14 and D15, the MSBN an be viewed as onesatisfying the overing subDAG rule with � = 2. Therefore, the omputation required for a MSBN of ahypertree struture is just the repetition of the omputation required for a MSBN with a global overingsubDAG. On the other hand, a MSBN with a global overing subDAG is a speial ase of the hypertreestruture. Hene, the following study is often simpli�ed by onsidering only one of the two ases.7 Transform MSBN Into Juntion ForestIn order to perform eÆient inferene in a general but sparse network, it is desirable to transform eah setof a MSBN into a juntion tree whih will stand as an inferene entity (Setion 4). The transformationtakes several steps to be disussed in this setion. The set of subDAGs of the MSBN are morali-triangulatedinto a set of morali-triangulated graphs from whih a set of lique hypergraphs are formed. Then the set oflique hypergraphs are organized into a set of juntion trees of liques. Afterwards, the linkages between thejuntion trees are reated. Finally, belief tables are assigned to liques and linkages and a juntion forest ofbelief universes is onstruted.7.1 Transform subDAGs into juntion trees by loal omputationThe key issue is morali-triangulating subDAGs of a MSBN into a set of morali-triangulated graphs. Onethis is done, the formation of the lique hypergraph and the organization of eah subDAG into a juntiontree are performed the same way as in the ase of a USBN and a single juntion tree (Andersen et al. 1989,Jensen, Lauritzen and Olesen 1990). As mentioned before, the riterion in morali-triangulation of a set ofsubDAGs of a MSBN into a set of lique hypergraphs is to preserve the `intatness' of the lique hypergraphresulted from the orresponding USBN. The onept of `intatness' is formalized below.De�nition 7.1 (invertible morali-triangulation) Let D be a DAG setioned intofD1; : : : ; D�g. Let N i be the set of nodes of Di. If there exists a morali-triangulated graph G of D, withthe lique hypergraph H, suh that G = t�i=1Gi where Gi is the subgraph of G indued by N i, or equiv-alently, H = t�i=1H i where H i is the lique hypergraph of Gi, then the set of morali-triangulated graphsfG1; : : : ; G�g is invertible. Also the transformation of fD1; : : : ; D�g into fG1; : : : ; G�g is said to be aninvertible morali-triangulation.The invertibility of morali-triangulation depends on the soundness in setioning. This is given by thefollowing theorem. 27



Theorem 7.2 (existene of invertible morali-triangulation) There exists an invertible morali-triangulationfor fD1; : : : ; D�g setioned from a DAG D, i� the setioning is sound.A set of invertible morali-triangulated graphs of a MSBN an be onstruted by �rst performing a globalomputation (moralization and triangulation) on D to �nd G, and then determining its subgraphs relativeto the setioning of the MSBN. The moralization and triangulation would be the same as in the juntiontree tehnique with are to be taken not to mix nodes in di�erent subDAGs into one lique. However, whenspae is of onern, the use of MSBNs o�ers the possibility of morali-triangulation by loal omputation atthe level of subDAGs of sets. In this method, eah subDAG in a MSBN is morali-triangulated separately(message passing may be involved) suh that the olletion of them is invertible. The following disusseshow this an be ahieved.Example 7.3 In the example depited in Figures 2 and 5, � is setioned intof�1;�2;�3g by a sound setioning and f�1;�2;�3g is a set of invertible morali-triangulated graphs relativeto the setioning. We want to �nd �i (i = 1; 2; 3) from �i (i = 1; 2; 3) by loal omputation.Sine subDAGs of a MSBN are interfaed through d-sepsets, the fous of �nding a set of invertiblemorali-triangulated graphs by loal omputation is to deide whether eah pair of d-sepnodes is to be linked.Coordination between adjaent subDAGs is neessary to ensure orret deisions. The following onsidersthis systematially.Call a link between two d-sepnodes a d-link. Call a simple path (A1; A2; : : : ; Ak) a d-path if there is somei; j, (1 � i < j � k) suh that A1; : : : ; Ai and Aj ; : : : ; Ak are all d-sepnodes, while all the other nodes on thepath are non-d-sepnodes. A d-link is a trivial d-path. There are six types of d-links:Ar type inherited from the subDAG. That is, if two d-sepnodes are onneted originally in the subDAG,there is a d-link between them in Gi.ML type reated by loal moralization. For example, the d-links (H1; H2) in �2 and (H2; H3) in �3. Noommuniation between subDAGs is required to add these d-links.ME type reated by moralization in neighbour subDAGs. For example, the d-links (H1; H2) and (H2; H3)in �1. Deiding to add this type of d-link requires ommuniation between neighbour subDAGs.Cy type reated to triangulate inter-subDAG yles. For example, the d-link (H3; H4) in �1 and �3.Deiding to add this type of d-links requires ommuniation between neighbour subDAGs.TL type reated during loal triangulation. After the above four types of d-links have been introduedto the moral graph of a subDAG, there may still be un-triangulated yles within the moral graph28



involving four or more d-sepnodes. The example used above is too simple to illustrate this and nexttype.TE type reated by loal triangulation in neighbour subDAGs. The triangulation of a yle of length > 3involving only d-sepnodes is not unique. If two neighbour subDAGs triangulate suh a yle by loalomputation without oordination, they may triangulate in di�erent ways and result in di�erent set ofliques for the nodes in the d-sepset. Therefore ommuniation is required suh that a subDAG mayadopt the d-links introdued by triangulation in adjaent subDAGs. The argument also applies to thease of triangulating yles onsisting of general d-paths.An algorithm for morali-triangulation of subDAGs of a MSBN into a set of invertible triangulated graphsunder the overing subDAG assumption is given below.Algorithm 7.4 (morali-triangulation with a overing subDAG) Let D1 be the overing subDAG inthe MSBN.1. Let MLi be the set of d-links added in the loal moralization of subDAG Di. Let Cyi be the set ofpairs of nodes that are andidates for beoming Cy type d-links in Di. For eah subDAG Di, do thefollowing:(a) Moralize Di to obtain its moral graph �i. Add new d-links to MLi.(b) Searh for pairs of d-sepnodes onneted by a d-path in �i. Add the pairs found to Cyi.2. For D1, do the following:(a) For eah pair of d-sepnodes in D1 also ontained in one of the MLi (i > 1), onnet the pair bya d-link in �1.(b) For eah pair of d-sepnodes ontained in both Cy1 and one of the Cyj (j > 1), onnet the pairby a d-link in �1.() Triangulate �1 to obtain the morali-triangulated graph �1.(d) Let DLINK be the set of d-links in �1.3. For eah Di (i = 2; : : : ; �), do the following:(a) For eah pair of d-sepnodes of �i also ontained in DLINK, onnet the pair by a d-link.(b) Triangulate �i to obtain the morali-triangulated graph �i.Note that Algorithm 7.4 has two passes through all the subDAGs. The following theorem shows theinvertibility of the morali-triangulation. 29



Theorem 7.5 (invertibility of Algorithm 7.4) The morali-triangulation onstruted in Algorithm 7.4is invertible.Example 7.6 The following desribe the morali-triangulation of t3i=1�i (Figure 5) by Algorithm 7.4.1. After step 1 of the algorithm, ML1 = �, ML2 = f(H1; H2)g, ML3 = f(H2; H3)g,Cy1 = f(H1; H2); (H2; H3); (H3; H4)g, Cy2 = f(H1; H2)g, and Cy3 = f(H2; H3); (H2; H4); (H3; H4)g.2. After step 2, the morali-triangulated graph �1 of �1 is ompleted by adding d-links (H1; H2); (H2; H3);(H3; H4) to �1's moral graph, and then triangulating (nothing is added). DLINK will ontainf(H1; H2); (H2; H3); (H3; H4)g.3. After step 3, the morali-triangulated graph �2 of �1 is ompleted without hange to its moral graph;the morali-triangulated graph �3 of �3 is ompleted by adding the d-link (H3; H4) to its moral graph,and then triangulating (with the link (E3; H4) added).As mentioned in Setion 4, after the morali-triangulation, the other steps in transformation of a MSBNinto a set of juntion trees of liques are: identifying liques of the morali-triangulated graphs to form aset of lique hypergraphs, and organizing eah hypergraph into a juntion tree. These steps are performedin the same way as in the juntion tree tehnique. Throughout the rest of the hapter, it is assumed thatjuntion trees are obtained through a set of invertible triangulated graphs, and it is said that the juntiontrees are obtained by an invertible transformation.Call a set of juntion trees of liques from an invertible transformation of subDAGs of a MSBN a juntionforest of liques denoted by F = fT 1; : : : ; T �g where T i is the juntion tree from the subDAG Di.7.2 Linkages between juntion treesJust as d-sepsets interfae subDAGs, linkages interfae juntion trees transformed from subDAGs and serveas information hannels between juntion trees during inferene. The reation of the linkages is an extensionto the juntion tree tehnique. The multiple linkages between pairs of juntion trees in a juntion forest allowthe preservation of loalization within juntion trees, and allow the avoidane of the exponential explosionof the sizes of lique state spaes assoiated with the brute fore method (Setion 3).De�nition 7.7 (linkage set) Let I be the d-sepset between two subDAGs Da and Db. Let T a and T b bethe juntion trees transformed from Da and Db respetively. A linkage of T a relative to T b is a set l ofnodes suh that the following two onditions hold.1. Boundary: there exists a lique Cx 2 T a suh that l = Cx \ I. Cx is alled a host lique of l;30



2. Maximum: there is no subset of l that is also a linkage.In general there may be more than one linkage between a pair of juntion trees. De�ne Lab to be the set ofall linkages of T a relative to T b.Proposition 7.8 (identity of linkages) Let T a and T b be the juntion trees from subDAGs Da and Dbrespetively. If Lab is the set of linkages of T a relative to T b and Lba is the set of linkages of T b relative toT a then Lab = Lba.Example 7.9 In Figure 5, linkages between juntion trees are indiated with ribbed bands onneting theorresponding host liques. The two linkages between �1 and �3 are fH3; H2g and fH3; H4g.Given a set of linkages between a pair of juntion trees, the onept of a redundany set an be de�ned. Asmentioned in Setion 4, redundany sets provide strutures whih allow redundant information to be removedduring inter-juntion tree information passing. The onept will be used for de�ning joint system belief inSetion 7.3 and de�ning the operation NonRedundanyAbsorption in Setion 9.2. To de�ne the redundanyset, we need to index linkages suh that the redundany sets de�ned based on the indexing possess ertaindesirable properties desribed below. We index a set Lab of linkages by the following algorithm.Algorithm 7.10 (indexing linkages) Let T a and T b be two juntion trees with a set Lab of linkages.1. Pik one of the juntion trees in the pair, say T a. Create a tree G with nodes labeled by linkages in Lab.Connet two nodes in G by a link if either the hosts of orresponding linkages are diretly onnetedin T a, or the hosts of orresponding linkages are (indiretly) onneted in T a by a path on whih allintermediate liques are not linkage hosts. Call this tree a linkage tree.2. Index the nodes (linkages in Lab) of G into L1; L2; : : : in any order that is onsistent with G, i.e., forevery i > j there is a unique predeessor j(i) < i suh that Lj(i) is adjaent to Li in G.Note, the seond step is always possible due to the tree struture of G. With linkages indexed this way,the redundany set an be de�ned as the following.De�nition 7.11 (redundany set) Let a set of linkages Lab = fL1; : : : ; Lgg be indexed by Algorithm 7.10.Then for this set of indexed linkages, a redundany set Ri for index i is de�ned asRi = � � if i = 1,Li \ Lj(i) i > 1; j(i) < i; Lj(i) is adjaent to Li in the linkage tree G.Lemma 7.12 A linkage tree is a juntion tree. The redundany sets are sepsets of the linkage tree.31



Example 7.13 There are two linkages between �1 and �3 in Figure 5. Consider juntion tree �3. Thelinkage tree G has two onneted nodes, one labeled by the linkage fH3; H2g and the other by fH3; H4g. Anindexing L1 = fH3; H2g and L2 = fH3; H4g de�nes two redundany sets R1 = � and R2 = fH3g.With linkages and redundany sets onstruted, we have a linked juntion forest of liques.7.3 Joint system belief of juntion forestThe following algorithm assoiates belief tables with eah lique, eah lique sepset, and eah linkage in ajuntion forest whose orresponding MSBN has a overing set. These data strutures speify a joint systembelief for the juntion forest.Algorithm 7.14 (reating data strutures for the joint system belief) Let(D;P ) be a USBN, S = fS1; : : : ; S�g be a orresponding MSBN with a overing set S1, and F = fT 1; : : : ; T �gbe the juntion forest from an invertible transformation. Let T i be the juntion tree of Di with liques Ciand sepsets Qi. Let I i (i > 1) be the d-sepset between Si and S1. Let Li (i > 1) be the set of linkagesbetween T i and T 1, and Ri (i > 1) be the orresponding set of redundany sets.1. For eah juntion tree T i in F , do the following:� Assign eah node nk 2 N i to a unique lique Cx 2 Ci suh that Cx ontains nk and its parents�k. Break ties arbitrarily.� Let Pk denote the probability table assoiated with node nk. For eah lique Cx that has nodesnk; : : : ; nl assigned to it, assoiate Cx with a belief table B(Cx) = Pk � : : : � Pl.� For eah lique sepset Qy 2 Qi, assoiate it with a onstant belief table B(Qy).2. For eah set of linkage Li, do the following:� For eah linkage Lz 2 Li, assoiate it with a onstant belief table B(Lz).De�nition 7.15 (belief on redundany set) Using the notations in Algorithm 7.14, for eah redundanyset Rz 2 Ri, its belief table is de�ned as B(Rz) = XLznRz B(Lz):De�nition 7.16 (belief on d-sepset) Using the notations in Algorithm 7.14 and De�nition 7.15, for eahd-sepset I i, its belief table is de�ned as B(I i) = QLz2Li B(Lz)QRz2Ri B(Rz) :32



De�nition 7.17 (belief on juntion tree) Using the notations in Algorithm 7.14, for eah juntion treeT i, its belief table is de�ned as B(T i) = QCx2Ci B(Cx)QQy2Qi B(Qy) :The above de�nition uses the notation B(T i) instead of B(N i) to emphasize that it is related to the juntiontree.Comparing the form of joint probability distribution for an USBN (Setion 2.2) and the assignment ofprobability tables for nodes in a set (De�nition 6.1), it an be seen that B(T i) is proportional to the jointprobability distribution of Si relative to that assignment.De�nition 7.18 (belief on juntion tree) Using the notations in Algorithm 7.14, De�nitions 7.16 and7.17, the joint system belief for the juntion forest F is de�ned asB(F ) = Q�i=1B(T i)Q�i=2 B(I i) :The notation B(F ) instead of B(N) is used for the same reason as above. Note that unlike B(Cx), B(Qy),B(Lz) and B(Rz), B(I i), B(T i) and B(F ) are mathematial objets whih do not have orresponding datastrutures in the knowledge base.We have the following lemma.Lemma 7.19 The joint belief B(F ) of a MSBN is proportional to the joint probability distribution P of theorresponding USBN.To see this is true, we indiate that eah d-sepnode, appearing in at least two sets, arries its originalprobability table as in (N;E; P ) exatly one by De�nition 6.1, and arries an uniform table for the rest.Example 7.20 Table 3 lists onstruted belief tables for belief universes of juntion forest F = f�1;�2;�3gin Figure 5. The belief tables for sepsets, linkages, and redundany sets are all onstant tables at this stage.Having onstruted belief tables for liques, sepsets, linkages, redundany sets and juntion forest, usingthe de�nition of world of Setion 2.3, we talk about belief universes, sepset worlds, linkage worlds, redundanyworlds, and juntion forest of belief universes. These terms will be used below.The preeding has an assumption of a overing set. The joint system belief of a juntion forest with ahypertree struture an be de�ned in a similar way. As the d-sepset/linkages between non-overing sets arenot onsidered in Algorithm 7.14, in the hypertree ase, there is no need to onsider the d-sepset/linkagesbetween neighbour sets overed by a loal overing set. In pratie, these linkages are not reated. This isanother omputational advantage of the overing set rule and the hypertree rule.33



B(�1) B(�2) B(�3)Clique NodeAss: Clique NodeAss: Clique NodeAss:fH2;H1; A1g H1; A1 fF2; F1g F2 fH3;H2; E3g H3;H2; E3Config: B() Config: B() Config: B()fh21; h11; h11g :12 ff21; f11g :4 fh31; h21; e31g :7702fh21; h11; h12g :03 ff21; f12g :75 fh31; h21; e32g :2298fh21; h12; h11g :085 ff22; f11g :6 fh31; h22; e31g :65fh21; h12; h12g :765 ff22; f12g :25 fh31; h22; e32g :35fh22; h11; h11g :12 Clique NodeAss: fh32; h21; e31g :35fh22; h11; h12g :03 fH2; F1;H1g H2; F1;H1 fh32; h21; e32g :65fh22; h12; h11g :085 Config: B() fh32; h22; e31g :01fh22; h12; h12g :765 fh21; f11; h11g :7895 fh32; h22; e32g :99Clique NodeAss: fh21; f11; h12g :6 Clique NodeAss:fH2; A2; A1g H2 fh21; f12; h11g :2105 fE2; E3; E1g E2Config: B() fh21; f12; h12g :4 Config: B()fh21; a21; a11g :8696 fh22; f11; h11g :5 fe21; e31; e11g :9789fh21; a21; a12g :7 fh22; f11; h12g :05 fe21; e31; e12g :8fh21; a22; a11g :6 fh22; f12; h11g :5 fe21; e32; e11g :9fh21; a22; a12g :08 fh22; f12; h12g :95 fe21; e32; e12g :05fh22; a21; a11g :1304 fe22; e31; e11g :0211fh22; a21; a12g :3 fe22; e31; e12g :2fh22; a22; a11g :4 fe22; e32; e11g :1fh22; a22; a12g :92 fe22; e32; e12g :95Clique NodeAss: Clique NodeAss:fH3;H2; A2g H3; A2 fE3; E1;H4g E1;H4Config: B() Config: B()fh31; h21; a21g :24 fe31; e11; h41g :8fh31; h21; a22g :06 fe31; e11; h42g :15fh31; h22; a21g :24 fe31; e12; h41g :2fh31; h22; a22g :06 fe31; e12; h42g :85fh32; h21; a21g :07 fe32; e11; h41g :8fh32; h21; a22g :63 fe32; e11; h42g :15fh32; h22; a21g :07 fe32; e12; h41g :2fh32; h22; a22g :63 fe32; e12; h42g :85Clique NodeAss: Clique NodeAss:fH3; A3;H4g A3;H4 fH3; E3;H4gConfig: B() Config: B()fh31; a31; h41g :075 fh31; e31; h41g 1fh31; a31; h42g :225 fh31; e31; h42g 1fh31; a32; h41g :28 fh31; e32; h41g 1fh31; a32; h42g :42 fh31; e32; h42g 1fh32; a31; h41g :2 fh32; e31; h41g 1fh32; a31; h42g :6 fh32; e31; h42g 1fh32; a32; h41g :08 fh32; e32; h41g 1fh32; a32; h42g :12 fh32; e32; h42g 1Table 3: Construted belief tables for belief universes of juntion forest F = f�1;�2;�3g in Figure 5. Con�g:Con�guration. Node Ass: Nodes Assigned.
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Algorithm 7.21 (linkage reation in a hypertree MSBN) Let S = fS1; : : : ; S�g be a MSBN on-struted aording to De�nition 6.11. Let F = fT 1; : : : ; T �g be the juntion forest from S where T i isthe juntion tree from Si.For eah T j, if Si is the loal overing set during the onstrution of S, then reate a set of linkagesbetween T i and T j.De�nition 7.22 (Neighbour juntion tree) A pair of juntion trees in a juntion forest are neighboursif linkages are reated between them.8 Consisteny and Separability of Juntion ForestIn order to perform eÆient inferene, we need to propagate the information stored in di�erent belief universesin di�erent juntion trees of a juntion forest to the whole system suh that marginal probability of variablesan be obtained from any universes ontaining them with loal omputation.5 More preisely, we need topropagate both prior knowledge in the form of produts of original probability tables from the orrespondingUSBN, and evidene entered from a set of universes possibly in di�erent juntion trees. The followingde�nes onsisteny and separability that are properties of juntion forests whih guarantee the orretnessof marginals obtained by loal omputation.8.1 Consisteny of juntion forestThis subsetion de�nes a property of onsisteny that partially guarantees the orretness of marginal prob-abilities obtained by loal omputation. In the ontext of the juntion forest, three levels of onsisteny anbe identi�ed.The �rst level onerns the internal onsisteny of eah juntion tree.De�nition 8.1 (loal onsisteny) Neighbor universes (Ci; B(Ci)) and (Cj ; B(Cj)) in a juntion tree T lwith sepset world (Qk; B(Qk)) (Setion 7.3) are onsistent ifXCinCj B(Ci) / B(Qk) / XCjnCiB(Cj)where `/' reads `proportional to'. When the relation holds among all neighbour universes, the juntion treeT l is said to be onsistent. When all juntion trees are onsistent, a juntion forest F is said to be loallyonsistent.The seond level onerns the onsisteny between linkage hosts.5Obtaining marginals by loal omputation is what the juntion tree tehnique is developed for. More is obtained fromjuntion forests, namely, exploiting loalization. 35



De�nition 8.2 (boundary onsisteny) Host universes (Cix; B(Cix)) and (Cjy ; B(Cjy)) of linkage world(Lk; B(Lk)) are onsistent if XCixnCjy B(Cix) / B(Lk) / XCjynCixB(Cjy)When the relation holds among all linkage host universes, a juntion forest is said to have reahed boundaryonsisteny.The third level onerns what the name of the following de�nition suggests.De�nition 8.3 (global onsisteny) A juntion forest is said to be globally onsistent if for any 2belief universes (possibly in di�erent juntion trees) (Cix; B(Cix)) and (Cjy ; B(Cjy))XCixnCjy B(Cix) / XCjynCixB(Cjy)Theorem 8.4 (onsistent juntion forest) A juntion forest is globally onsistent i� it reahes both loalonsisteny and boundary onsisteny.8.2 Separability of juntion forestsIn the juntion tree tehnique, onsisteny is all that is required in order to obtain marginals by loalomputation. In juntion forests, this is not suÆient due to the existene of multiple linkages. The funtionof multiple linkages between a pair of juntion trees is to pass the joint distribution on the d-sepset bypassing marginal distributions on subsets of the d-sepset. Doing so, avoids the exponential inrease in liquestate spae sizes as outlined in Setion 3. When breaking the joint into the marginals, we must ensure thatthe joint an be reassembled from the marginals, i.e., a orret version of the joint is passed. Otherwise, theorretness of loal omputation is not guaranteed. Sine passing the marginals is ahieved by passing thebelief tables on linkages and redundany sets, the struture of linkage hosts is the key fator. The followingde�nes separability of juntion forests in terms of the orretness of loal omputation. Then the struturalondition of linkage hosts is given under whih the separability holds.De�nition 8.5 (separability) Let F = fT ij1 � i � �g be a juntion forest with nodes N and joint systembelief B(F ). F is said to be separable if, when it is globally onsistent, for any T i over subdomain N iXNnNiB(F ) / B(T i)The following lemma, quoted from Jensen, is used to prove Proposition 8.10.Lemma 8.6 (Jensen 1988) 36



Let T be a juntion tree from lique hypergraph (N;C). Let C1 and C2 be two adjaent liques in T .Let T 0 be the graph resulting from T by making the union of C1 and C2 into one lique, and by keeping theoriginal sepsets. Then T 0 is a juntion tree for lique hypergraph (N; (C n fC1; C2g) [ fC1 [ C2g).De�nition 8.7 (host tree) Let a sound MSBN be transformed into a juntion forest. Let T i be a juntiontree and L be the set of linkages between T i and a neighbour juntion tree.A host tree of T i relative to L is the lique tree resulting from reursively removing from T i every leaflique whih is not a linkage host relative to L.The following is the strutural ondition for separability to be proved below.De�nition 8.8 (host omposition) Let a sound MSBN be transformed into a juntion forest. Let Si bea set in the MSBN, and T i be the juntion tree of Si. Let I be the d-sepset between Si and any distint setSj , and L be the set of linkages between T i and the juntion tree for Sj.T i satis�es a host omposition ondition relative to L if the following are true in the host tree of T irelative to L.1. No non-d-sepnode is ontained in more than one linkage host.2. Two non-d-sepnodes in some non-host lique are not ontained in di�erent linkage hosts.Example 8.9 The host omposition ondition is violated in the host trees of Figure 9. The following showsthe violation and the resultant problem. Assume both trees are onsistent.First onsider the top tree. Let L onsist of linkages L1 = fA;Dg and L2 = fA;Eg. Let their hostsbe C1 = fA;B;Dg and C2 = fA;B;Eg whih are adjaent in the tree. B is a ommon non-d-sepnode - aviolation of part 1 of the host omposition ondition. Even if all the belief tables are onsistent, in general,XB B(ABD)B(ABE)B(AB) 6/ B(AD)B(AE)B(A)That is, the joint distribution on the d-sepset fA;D;Eg onstruted from belief tables on linkages andredundany sets is inonsistent in general.Consider the bottom tree. Let L and C1 be the same. Let the host C2 = fA;E;Gg whih is onnetedto C1 through a non-host C3 = fA;B;Gg. fB;Gg is a set of non-d-sepnodes violating the part 2 of the hostomposition ondition. If C1 and C3 are united (forming lique C13) as desribed in lemma 8.6, the resultantgraph is still a juntion tree. If let B(C13) = B(C1)B(C3)=B(Q13)37



where Q13 (ontaining AB) is the sepset between C1 and C3, the joint belief for the new tree is exatly thesame as before and the new tree is onsistent. Now the ommon node G in C13 and C2 reates the sameproblem illustrated above.
Figure 9: Two partial trees to exemplify violation of the host omposition ondition. I : the d-sepset. Thethik bands indiate linkages.The following proposition shows that, if a juntion forest is globally onsistent and the host ompositionondition holds, then the belief table B(I) de�ned in Setion 7.3 is indeed the joint belief on d-sepset I .Proposition 8.10 Let a sound MSBN be transformed into a juntion forest F . Let Sx and Sy be setsin the MSBN, and T x and T y be the juntion trees of Sx and Sy in F , respetively. Let I be the d-sepsetbetween Sx and Sy, and L be the set of linkages between T x and T y. Let all belief tables be de�ned as inSetion 7.3.When F is globally onsistent, B(I) satis�esB(I) / XNxnI B(T x)i� T x satis�es the host omposition ondition relative to L.
Figure 10: Part of a host tree violating the host omposition ondition. I : the d-sepset. The thik bandsindiate linkages.Now we are ready for the following result on separability.Theorem 8.11 (host omposition) Let S = fS1; : : : ; S�g be a MSBN satisfying the hypertree ondition.Suppose S has been transformed into a juntion forest F = fT ij1 � i � �g, with linkages between the juntion38



trees reated by Algorithm 7.21. Let B(F ) be the joint system belief of F . F is separable i�, for every pairof neighbour juntion trees, the host omposition ondition holds.The host omposition ondition an usually be satis�ed naturally in an appliation system. Sine d-sepsetsare the only media for information exhange between sets, d-sepnodes usually involve many inter-subDAGyles. The onsequene is that they will be heavily onneted during morali-triangulation and form severallarge liques in the lique hypergraph as well as some small ones. On the other hand, non-d-sepnodes rarelyform onnetions with so many d-sepnodes simultaneously and hene will rarely be the elements of theselarge liques. To be an element of more than one suh large lique is even more unlikely. Beause linkagesare de�ned to be maximal, these large liques will beome linkage hosts.For example, in the PAINULIM expert system (Xiang et al. 1992), there are three sets and orrespond-ingly three juntion trees. The host omposition ondition is satis�ed naturally in all three trees. Figure 11gives one of them. The four linkage hosts ontain no non-d-sepnode at all.

Figure 11: T is a juntion tree in a juntion forest taken from an appliation system PAINULIM withvariable names revised to simplify. Upper ase letters represent d-sepnodes and lower ase letters representnon-d-sepnodes. The liques C1; C2; C3; C4 are linkage hosts.When the host omposition ondition annot be satis�ed naturally, dummy links an be added betweend-sepnodes in the moral graph before triangulation suh that linkage hosts will be enlarged and the onditionis satis�ed. Hene, given a MSBN, a separable juntion forest an always be realized. The penalty of addedlinks is inreased amount of omputation during belief propagation due to inreased sizes of liques andlinkages. In the worst ase, we may have to resort to the brute fore method disussed in Setion 3 in orderto satisfy the host omposition ondition for ertain pairs of juntion trees. If the system is large, setioning39



may still yield omputational savings on the whole even if liques are enlarged at a few juntion trees.One of the key results now follows.Theorem 8.12 (loal omputation) Let F be a onsistent and separable juntion forest with nodes Nand joint system belief B(F ). Let (Cx; B(Cx)) be any universe in F . ThenXNnCxB(F ) / B(Cx)With the above theorem, the marginal belief of any variable in a onsistent and separable juntion forestan be omputed by marginalization of the belief table of any universe whih ontains the variable. In thisrespet, a onsistent and separable juntion forest behaves the same as a onsistent juntion tree (Jensen,Lauritzen and Olesen 1990). It will be shown that in the ontext of juntion forests, additional omputationaladvantage is available. That is, the global onsisteny is not neessary to obtain marginal belief by loalomputation, whih allows the exploitation of loalization.9 Belief Propagation In Juntion ForestsGiven the importane of onsisteny of juntion forests, we need to introdue a set of operations whih bringa juntion forest into onsisteny. First, sine our purpose is to exploit loalization, only operations for loalomputation up to the level of juntion trees are onsidered. At any moment, we onsider only one juntiontree. This juntion tree is said to be ative.Seond, we present the operations in an objet-oriented fashion as does Jensen, Lauritzen and Olesen(1990) in desribing the juntion tree tehnique. As argued in the above referene, the purpose is to avoida global ontrol struture, and to exploit parallel proessing. Four levels of objets an be identi�ed in theontext of juntion forests.1. (Inside a juntion tree) The belief universes are objets, and sepsets are ommuniation hannels.2. (Between linkage hosts in neighbour juntion trees) The linkage host worlds are objets, and linkagesare ommuniation hannels.3. (Between neighbour juntion trees) The set of linkage host worlds in a juntion tree relative to aneighbour juntion tree is an objet, and the set of linkages between the two neighbour juntion treesis the ommuniation hannel.4. (Top level objet) A juntion forest is a top level objet.
40



Third, eah operation presented in this setion is assoiated with a partiular level of objets. Someoperations an be initiated by the objets they assoiate. Other operations an only be invoked (alled) byobjets at the higher level.The operations to be presented below are summarized in Figure 12.
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Figure 12: Summary of operations. The node at the right of eah operation is the type of objets with whihthe operation an assoiate. C: belief universe; H : linkage host; T : juntion tree; F : juntion forest. Arsindiate that the lower level operations provide servies to the higher level operations.9.1 SupportivenessJensen, Lauritzen and Olesen (1990) introdued the onept of supportiveness. Let (Z;B(Z)) be a world.The support of B(Z) is de�ned as �(B(Z)) = fz 2 	(Z)jbelief of z > 0g:A juntion tree is supportive, if, for any universe (Ci; B(Ci)) and for any neighbouring sepset world (Qj ; B(Qj)),�(B(Ci)) � �(B(Qj)). The underlying intuition is that, when beliefs are propagated in a supportive jun-tion tree, non-zero belief values will not be turned into zeros.Here the onept is extended to juntion forests. A juntion forest is supportive, if (1) all its juntiontrees are supportive and (2) for any linkage host (Ci; B(Ci)) and orresponding linkage world (Lj ; B(Lj)),�(B(Ci)) � �(B(Lj)).The onstrution in Setion 7.3 results in a supportive juntion forest.41



9.2 Basi operations9.2.1 Operations for onsisteny within a juntion treeThe following operation is used to ahieve onsisteny between a belief universe and its neighbours.Operation 9.1 (AbsorbThroughSepset) (Jensen, Lauritzen and Olesen 1990)Let U0 = (C0; B(C0)) be a belief universe in a juntion tree. Let Ui = (Ci; B(Ci)) (i = 1; : : : ; k) beneighbour universes of U0. Let (Qi; B(Qi)) (i = 1; : : : ; k) be the sepset world between U0 and Ui. Sup-pose �(B(C0)) � �(B(Qi)) (i = 1; : : : ; k). When AbsorbThroughSepset is initiated by U0 to absorbfrom U1; : : : ; Uk, the following updates are performed:1. For eah i, update sepset belief B0(Qi) = XCinC0B(Ci):2. Update belief in C0 B0(C0) = B(C0) kYi=1B0(Qi)=B(Qi):AbsorbThroughSepset is assoiated with belief universes.Jensen, Lauritzen and Olesen (1990) showed, in the ontext of a juntion tree, that AbsorbThroughSepsethanges neither the supportiveness of a juntion tree nor the joint system belief. We indiate that, in theontext of a juntion forest, the supportiveness is also invariant after AbsorbThroughSepset. This is beauseAbsorbThroughSepset does not inrease the support of any linkage host and does not hange linkage beliefsdiretly. The invariane of the joint system belief for the juntion forest is obvious given the de�nition ofthe joint system belief and the invariane of beliefs for juntion trees.The following three operations bring a juntion tree into onsisteny.Operation 9.2 (DistributeEvidene) (Jensen, Lauritzen and Olesen 1990)Let U0 = (C0; B(C0)) be a universe in a juntion tree. Let aller be either the juntion tree or a neighbouruniverse. When DistributeEvidene is alled in U0, the following are performed:1. If aller is a neighbour Ui, then U0 absorbs from Ui by AbsorbThroughSepset.2. U0 alls DistributeEvidene in all neighbours exept aller if aller is a neighbour.DistributeEvidene is assoiated with belief universes.Suppose a juntion tree T j is onsistent. The multipliation of B(C0) by another belief table may renderT j inonsistent. Suh multipliation is performed in evidene entering to be disussed in Setion 9.4. IfDistributeEvidene is then alled in U0, T j is again onsistent.42



Operation 9.3 (ColletEvidene) (Jensen, Lauritzen and Olesen 1990)Let U0 = (C0; B(C0)) be a universe in a juntion tree. Let aller be either the juntion tree or a neighbouruniverse. When ColletEvidene is alled in U0, the following are performed:1. U0 alls ColletEvidene in all neighbours exept aller if aller is a neighbour.2. After the neighbours being alled have �nished ColletEvidene, U0 absorbs from them by Ab-sorbThroughSepset.ColletEvidene is assoiated with belief universes.Both DistributeEvidene and ColletEvidene are omposed of just AbsorbThroughSepset. Thus they donot hange the supportiveness and the joint system belief of the juntion forest.The ombination of DistributeEvidene and ColletEvidene yields the following UnifyBelief. UnifyBeliefbrings a supportive juntion tree into onsisteny.Operation 9.4 (UnifyBelief) Let T i be a juntion tree in a juntion forest. When UnifyBelief is initi-ated by T i, the following are performed:1. A belief universe U0 = (C0; B(C0)) is arbitrarily seleted.2. ColletEvidene is alled in U0.3. When U0 has �nished ColletEvidene, DistributeEvidene is alled in U0.UnifyBelief is assoiated with juntion trees.9.2.2 Operations for belief exhange in belief initializationBelief initialization brings a juntion forest into global onsisteny before any evidene is available. Oneproblem arises when there are multiple linkages between juntion trees. Care must be taken not to ountthe same information multiple times by passing through di�erent linkages. The following two operationsperform information passing through multiple linkages during belief initialization. They ensure that theprior distribution on d-sepsets is exhanged between juntion trees without redundant information passing.Operation 9.5 (NonRedundanyAbsorption) Let Uax = (Cax ; B(Cax)) and U bx = (Cbx; B(Cbx)) be twolinkage host universes in juntion trees T a and T b respetively. Let (Lx; B(Lx)) and (Rx; B(Rx)) be theworlds for orresponding linkage and redundany set. Suppose �(B(Cax )) � �(B(Lx)). When NonRe-dundanyAbsorption is alled on Uax to absorb from U bx through linkage Lx, the following updates areperformed: 43



1. Update the linkage belief B0(Lx) = XCbxnLxB(Cbx):2. Update the belief on redundany set B0(Rx) = XLxnRxB0(Lx):3. Update the host belief B0(Cax) = B(Cax) � B0(Lx)=B0(Rx)B(Lx)=B(Rx) :The fator 1=B0(Rx) above has the funtion of redundany removal. NonRedundanyAbsorption isassoiated with linkage hosts.At initialization, the belief tables for linkages and redundany sets are in the state of onstrution andso onstant (see Algorithm 7.14 and De�nition 7.15). Thus, B(Lx) and B(Rx) above are onstant tables.There are three possible onsequenes of NonRedundanyAbsorption depending on the states of the twolinkage hosts involved.1. If B0(Lx) is onstant, whih is possible beause onstant probability tables are assigned to d-sepnodesin some sets in De�nition 6.1, then after NonRedundanyAbsorptionXCaxnLxB0(Cax) / XCaxnLxB(Cax):That is, if Cbx has no information to o�er, then Cax will not hange its belief.2. If PCaxnLx B(Cax) is onstant, then after NonRedundanyAbsorptionXCaxnLxB0(Cax) / 0� XCbxnLxB(Cbx)1A,0� XCbxnRxB(Cbx)1A :That is, if Cbx has new information and Cax ontains no non-trivial information, then the belief of Cbxwill be opied with redundany removed.3. If none of B0(Lx) and PCaxnLx B(Cax) is onstant, then after NonRedundanyAbsorptionXCaxnLxB0(Cax) / XCaxnLx0�B(Cax) �0� XCbxnLxB(Cbx)1A,0� XCbxnRxB(Cbx)1A1A :That is, if none of the above two ases is true, the belief from both sides will be ombined withredundany removed. 44



The supportiveness of a juntion forest is invariant under NonRedundanyAbsorption, sine�(B(Cbx)) � �( XCbxnLxB(Cbx)) = �(B0(Lx)):The joint system belief is invariant under NonRedundanyAbsorption sineB0(Cax)B0(Lx)=B0(Rx) = B(Cax)B(Lx)=B(Rx) :NonRedundanyAbsorption is assoiated with linkage hosts.Operation 9.6 (ExhangeBelief) Let L be the set of linkages between juntion trees T a and T b. WhenExhangeBelief is initiated in T a to exhange belief with T b, the following is performed:For eah linkage Lx 2 L with orresponding hosts Uax and U bx, NonRedundanyAbsorptionis alled in Uax to absorb from U bx.ExhangeBelief is assoiated with juntion trees.Sine ExhangeBelief is omposed of just NonRedundanyAbsorption, the supportiveness of the juntiontree and its joint system belief are invariant under ExhangeBelief. After ExhangeBelief, the non-trivialontent of joint distribution on d-sepset at T b is passed onto T a without redundany.9.2.3 Operations for belief update in evidential reasoningDuring evidential reasoning, it may be needed to propagate evidene obtained in a juntion tree T b to therest of the juntion forest. A juntion tree T a reeiving, from a neighbour juntion tree T b, the updated beliefon their d-sepset may be onfused due to multiple linkage evidene passing. The following two operationshandle the evidene propagation between juntion trees. AbsorbThroughLinkage propagates evidene fromT b to T a through one linkage. UpdateBelief propagates evidene from T b to T a through the set of linkagesbetween the two. UpdateBelief is used during evidential reasoning when both T a and T b are internallyonsistent but may not reah boundary onsisteny between them.Operation 9.7 (AbsorbThroughLinkage)Let Uax = (Cax ; B(Cax)) and U bx = (Cbx; B(Cbx)) be two linkage host universes in juntion trees T a and T brespetively. Let (Lx; B(Lx)) be the orresponding linkage world. Suppose �(B(Cax )) � �(B(Lx)). WhenAbsorbThroughLinkage is alled on Uax to absorb from U bx, the following updates are performed:1. Update the linkage belief B0(Lx) = XCbxnLxB(Cbx):45



2. Update the host belief B0(Cax) = B(Cax) �B0(Lx)=B(Lx):AbsorbThroughLinkage is assoiated with linkage hosts.After AbsorbThroughLinkage, XCaxnLxB0(Cax) = XCbxnLxB(Cbx):The supportiveness of a juntion forest is invariant after AbsorbThroughLinkage, sine�(B(Cbx)) � �( XCbxnLxB(Cbx)) = �(B0(Lx)):AbsorbThroughLinkage makes the belief of Cax up-to-date with respet to the belief of Cbx on their ommonvariables.Operation 9.8 (UpdateBelief) Let L = fL1; : : : ; Lkg be the set of linkages between juntion trees T aand T b with Uai being the linkage host universe in T a and U bi being the linkage host universe in T b. WhenUpdateBelief is initiated by T a or is alled in T a to update its belief relative to T b, the following isperformed:AbsorbThroughLinkage is alled in eah Uai to absorb from U bi through Li. After eah Ab-sorbThroughLinkage, DistributeEvidene is alled in Uai .UpdateBelief is assoiated with juntion trees.Sine UpdateBelief is omposed of AbsorbThroughLinkage and DistributeEvidene, the supportiveness ofthe juntion forest is invariant.After UpdateBelief, T a is onsistent andXCaxnLxB0(Cax) = XCbxnLxB(Cbx) x = 1; : : : ; k:Thus the e�et of the operation is B0(T a) = B(T a) �B0(I)=B(I)where I is the d-sepset between Sa and Sb. EquivalentlyB0(T a)=B0(I) = B(T a)=B(I);whih implies the joint system belief is invariant.Note that, in UpdateBelief, DistributeEvidene needs to be performed after eah AbsorbThroughLinkage.Reall that DistributeEvidene will restore the onsisteny in a juntion tree if hanges on belief are made on46



exatly one belief universe. If hanges on belief are made on more than one universe, DistributeEvidene willnot be able to restore the onsisteny. The following example shows what an happen if DistributeEvideneis not performed after eah AbsorbThroughLinkage.
Figure 13: An example illustrating the operation UpdateBelief.Example 9.9 Let juntion tree T i (Figure 13) have two linkage host C1 = L1 = X[Z and C2 = L2 = Y [Zwhere X;Y; Z are three disjoint sets of nodes. Let B(C1), B(C2) and B(Z) be the belief tables of thetwo hosts and their sepset, respetively. Suppose new information is passed over to T i through the twolinkages from its neighbour juntion tree. If AbsorbThroughLinkage is performed at C1 and then C2 withoutDistributeEvidene being arried out between the two operations, the belief on the two host liques will beupdated to B0(C1), B0(C2), while B(Z) is unhanged. If AbsorbThroughSepset is alled on C1 to absorbfrom C2 in the proess of propagating the new information to the rest of T i, the belief on C1 will beomeB00(C1) = B0(C1)(XY B0(C2)=B(Z)) 6/ B0(C1)whih is inorret beause PY B0(C2) 6/ B(Z).When DistributeEvidene is performed after eah AbsorbThroughLinkage, B0(Z) = PY B0(C2). Theresult of AbsorbThroughSepset isB00(C1) = B0(C1)(XY B0(C2)=B0(Z)) / B0(C1)whih is orret.9.3 Belief initializationBefore any evidene is available, an internal representation of beliefs is to be established. The establishmentof this representation is termed initialization by Lauritzen and Spiegelhalter (1988) for their method. Thefuntionality of initialization in the ontext of juntion forests is to propagate the prior knowledge storedin di�erent belief universes of di�erent juntion trees to the rest of the forest suh that (1) prior marginalprobability distribution for any variable an be obtained in any universe ontaining the variable, and (2)subsequent evidential reasoning an be performed. 47



We de�ne operations DistributeBelief and ColletBelief whih are analogous to DistributeEvidene andColletEvidene but are assoiated with juntion trees. The operation BeliefInitialization relates to Dis-tributeBelief and ColletBelief just as UnifyBelief relates to DistributeEvidene and ColletEvidene.Operation 9.10 (DistributeBelief) Let T i be a juntion tree in a juntion forest. Let aller be eitherthe juntion forest or a neighbour juntion tree. When DistributeBelief is alled in T i, the following areperformed:1. If aller is a neighbour T j, then T i updates its belief relative to T j by UpdateBelief.2. T i alls DistributeBelief in all neighbours exept aller if aller is a neighbour.DistributeBelief is assoiated with juntion trees.Operation 9.11 (ColletBelief) Let T i be a juntion tree in a juntion forest. Let aller be either thejuntion forest or a neighbour juntion tree. When ColletBelief is alled in T i, the following are performed:1. T i alls ColletBelief in all neighbours exept aller if aller is a neighbour.2. After eah neighbour being alled has �nished ColletBelief, T i exhanges belief respet to the neigh-bour by ExhangeBelief, followed by UnifyBelief in T i.ColletBelief is assoiated with juntion trees.Operation 9.12 (BeliefInitialization) When BeliefInitialization is initiated at a juntion forest F , thefollowing are performed:1. A juntion tree T i in F is arbitrarily seleted.2. ColletBelief is alled in T i.3. when T i has �nished ColletBelief. DistributeBelief is alled in T i.BeliefInitialization is assoiated with the juntion forest.All three operations do not hange the supportiveness and joint system belief. This gives us the followingtheorem.Theorem 9.13 (belief initialization with hypertree) Let fS1; : : : ; S�g be a MSBN with a hypertreestruture (De�nition 6.11). Let F = fT 1; : : : ; T �g be a juntion forest with T i being the juntion tree ofSi. Let B(F ) be the joint system belief onstruted as in Setion 7.3. After BeliefInitialization, the juntionforest is globally onsistent. 48



Example 9.14 After BeliefInitialization is initiated at the juntion forest in Figure 5, �1 is seleted andColletBelief is alled in it. It then alls ColletBelief in �2 and �3. Sine �2 and �3 do not have neighboursother than �1, only UnifyBelief is performed in �2 and �3. Table 4 lists the belief tables for belief universesin juntion trees �2 and �3 after their UnifyBeliefs.Table 5 gives the belief tables for belief universes of the juntion forest. Table 6 gives the (prior) marginalprobabilities for all variables of juntion forest after the ompletion of BeliefInitialization. The marginalprobabilities are idential to what would be derived from the USBN (�; P ) where � is given in Figure 2 andP is given in Table 1. B(�2) B(�3)Clique NodeAss: Clique NodeAss:fF2; F1g F2 fH3;H2; E3g H3;H2; E3Config: B() Config: B()ff21; f11g :7758 fh31; h21; e31g 1:54ff21; f12g 1:545 fh31; h21; e32g :4596ff22; f11g 1:164 fh31; h22; e31g 1:3ff22; f12g :5151 fh31; h22; e32g :7Clique NodeAss: fh32; h21; e31g :7fH2; F1;H1g H2; F1;H1 fh32; h21; e32g 1:3Config: B() fh32; h22; e31g :02fh21; f11; h11g :7895 fh32; h22; e32g 1:98fh21; f11; h12g :6 Clique NodeAss:fh21; f12; h11g :2105 fE2; E3; E1g E2fh21; f12; h12g :4 Config: B()fh22; f11; h11g :5 fe21; e31; e11g 1:656fh22; f11; h12g :05 fe21; e31; e12g 1:495fh22; f12; h11g :5 fe21; e32; e11g 1:898fh22; f12; h12g :95 fe21; e32; e12g :1165fe22; e31; e11g :0356fe22; e31; e12g :3738fe22; e32; e11g :2109fe22; e32; e12g 2:214Clique NodeAss:fE3; E1;H4g E1;H4Config: B()fe31; e11; h41g 1:424fe31; e11; h42g :2670fe31; e12; h41g :3560fe31; e12; h42g 1:513fe32; e11; h41g 1:776fe32; e11; h42g :3330fe32; e12; h41g :4440fe32; e12; h42g 1:887Clique NodeAss:fH3; E3;H4gConfig: B()fh31; e31; h41g 1:42fh31; e31; h42g 1:42fh31; e32; h41g :5798fh31; e32; h42g :5798fh32; e31; h41g :36fh32; e31; h42g :36fh32; e32; h41g 1:64fh32; e32; h42g 1:64Table 4: Belief tables for belief universes in juntion trees �2 and �3 in Figure 5 after ColletBelief duringBeliefInitialization.One belief initialization is ompleted, the juntion forest beomes the permanent representation whihwill be reused for eah query session. 49



9.4 Evidential reasoningThe joint system belief de�ned in Setion 7.3 is proportional to the prior joint distribution representing thebakground domain knowledge. Initialization allows us to obtain prior marginal probabilities with eÆientloal omputation. When evidene about a partiular ase beomes available, we want the prior distributionto hange into the posterior distribution. Call the overall proess of entering evidene and propagatingevidene evidential reasoning.B(�1) B(�2) B(�3)Clique NodeAss: Clique NodeAss: Clique NodeAss:fH2;H1; A1g H1; A1 fF2; F1g F2 fH3;H2; E3g H3;H2; E3Config: B() Config: B() Config: B()fh21; h11; h11g :8203 ff21; f11g 1:160 fh31; h21; e31g 1:444fh21; h11; h12g :08166 ff21; f12g 5:324 fh31; h21; e32g :4310fh21; h12; h11g :5810 ff22; f11g 1:741 fh31; h22; e31g :731fh21; h12; h12g 2:082 ff22; f12g 1:775 fh31; h22; e32g :3936fh22; h11; h11g :3797 Clique NodeAss: fh32; h21; e31g :5915fh22; h11; h12g :2183 fH2; F1;H1g H2; F1;H1 fh32; h21; e32g 1:098fh22; h12; h11g :2690 Config: B() fh32; h22; e31g :0531fh22; h12; h12g 5:568 fh21; f11; h11g :7121 fh32; h22; e32g 5:257Clique NodeAss: fh21; f11; h12g 1:598 Clique NodeAss:fH2; A2; A1g H2 fh21; f12; h11g :1899 fE2; E3; E1g E2Config: B() fh21; f12; h12g 1:065 Config: B()fh21; a21; a11g :5526 fh22; f11; h11g :2990 fe21; e31; e11g 1:020fh21; a21; a12g 1:725 fh22; f11; h12g :2918 fe21; e31; e12g 1:422fh21; a22; a11g :8487 fh22; f12; h11g :2990 fe21; e32; e11g 2:182fh21; a22; a12g :4388 fh22; f12; h12g 5:545 fe21; e32; e12g :2378fh22; a21; a11g :08289 fe22; e31; e11g :02194fh22; a21; a12g :7394 fe22; e31; e12g :3555fh22; a22; a11g :5658 fe22; e32; e11g :2424fh22; a22; a12g 5:047 fe22; e32; e12g 4:518Clique NodeAss: Clique NodeAss:fH3;H2; A2g H3; A2 fE3; E1;H4g E1;H4Config: B() Config: B()fh31; h21; a21g 1:763 fe31; e41; h11g :7622fh31; h21; a22g :1120 fe31; e41; h12g :2801fh31; h22; a21g :6366 fe31; e42; h11g :1906fh31; h22; a22g :4880 fe31; e42; h12g 1:587fh32; h21; a21g :5143 fe32; e41; h11g 1:658fh32; h21; a22g 1:176 fe32; e41; h12g :7662fh32; h22; a21g :1857 fe32; e42; h11g :4145fh32; h22; a22g 5:124 fe32; e42; h12g 4:342Clique NodeAss: Clique NodeAss:fH3; A3;H4g A3;H4 fH3; E3;H4gConfig: B() Config: B()fh31; a31; h41g :225 fh31; e31; h41g :7723fh31; a31; h42g :675 fh31; e31; h42g 1:403fh31; a32; h41g :84 fh31; e32; h41g :2927fh31; a32; h42g 1:26 fh31; e32; h42g :5319fh32; a31; h41g 1:4 fh32; e31; h41g :1805fh32; a31; h42g 4:2 fh32; e31; h42g :4641fh32; a32; h41g :56 fh32; e32; h41g 1:780fh32; a32; h42g :84 fh32; e32; h42g 4:576Table 5: Belief tables for belief universes of juntion forest F = f�1;�2;�3g in Figure 5 obtained after theompletion of BeliefInitialization.A piee of evidene is a onjuntion of values of variables suh that the variables are ontained in the sameset (loalization), and the values are obtained at one time. As the value of a variable, we allow evidene tospeify a disjuntion of outomes (e.g. only one outome, or ruling out one outome). There may be multiplepiees of evidene, in a query session, that may involve di�erent sets and may be obtained at di�erent time(inremental evidene). We assume that, after eah piee of evidene is available, the posterior distribution50



p(h11) = :15 p(a11) = :205 p(f11) = :2901 p(e11) = :3466p(h21) = :3565 p(a21) = :31 p(f21) = :6485 p(e21) = :4862p(h31) = :3 p(a31) = :65 p(e31) = :282p(h41) = :3025Table 6: Prior marginal probabilities from juntion forest F = f�1;�2;�3g in Figure 5 obtained after theompletion of BeliefInitialization.on the variables in the urrent set is to be omputed.Evidene is represented in terms of evidene funtions in the same manner as Jensen, Olesen and Andersen(1990). A evidene funtion maps the outomes of one variable to f0; 1g. `0' stands for the fat that theorresponding outome is impossible and `1' stands for the fat that the orresponding outome is stillpossible. An evidene funtion an be entered to a juntion forest by multiplying the prior distribution withthe evidene funtion.Operation 9.15 (EnterEvidene) (Jensen, Lauritzen and Olesen 1990)Let T be a juntion tree in a juntion forest. When EnterEvidene is initiated at T to enter a pieeof evidene E, the following are performed:1. For eah variable Ai involved in E a belief universe Uj = (Cj ; B(Cj)) suh that Ai 2 Cj is arbitrarilyseleted, and B(Cj) is multiplied by the evidene funtion for Ai.2. If Uj is the only universe that is a�eted by the above step, DistributeEvidene is alled in Uj ,otherwise UnifyBelief is alled in any universe Uk.EnterEvidene is assoiated with juntion trees.After EnterEvidene, the juntion T is updated with respet to the evidene and is onsistent internally.As far as a single juntion tree is onerned, this omputation is the same as the juntion tree tehnique wherethe onsisteny within a juntion tree onstitutes the global onsisteny. However, in order to obtain orretposterior marginal distributions on variables in the urrently ative juntion tree, the global onsisteny ofthe juntion forest is not neessary. Before a formal treatment, several onepts are de�ned below.Here only juntion forests transformed from MSBNs with hypertree strutures are onsidered. Whena user wants to obtain marginal distributions or add evidene on variables not ontained in the urrentlyative juntion tree, it is said that there is an attention shift. The juntion tree whih ontains the desiredvariables is alled the destination tree.De�nition 9.16 (intermediate tree) Let Si, Sj , Sk be three di�erent sets in a MSBN with a hypertreestruture, and T i, T j, T k be their juntion trees in the orresponding juntion forest F , respetively. T j isthe intermediate tree between T i and T k if the removal of T j would disonnet T i from T k in F .51



Due to the hypertree struture, we have the following lemma.Lemma 9.17 Suppose a juntion forest has been transformed from a MSBN with a hypertree struture. LetT i and T j be two di�erent juntion trees in the forest. The set of intermediate juntion trees between T iand T j is unique.The following de�nes an operation ShiftAttention at the juntion forest level. It is performed when theuser's attention shifts.Operation 9.18 (ShiftAttention) Let F be a juntion forest whose orresponding MSBN has a hypertreestruture. Let T j0 be the urrently ative tree and T jm+1 be the destination tree in F . Let fT j1 ; : : : ; T jmgbe the set of m intermediate trees between T j0 and T jm+1 suh that T j0 ; T j1 ; : : : ; T jm ; T jm+1 form a hain ofneighbours. When ShiftAttention is initiated at F to shift attention from T j0 to T jm+1, the following areperformed:For i = 1 to m+ 1, UpdateBelief is alled in T ji to update its belief with respet to T ji�1 .ShiftAttention is assoiated with the juntion forest.Before eah attention shift, several piees of evidene an be entered to the urrently ative tree. When anattention shift happens, ShiftAttention swaps in and out only the intermediate trees between the urrentlyative tree and destination tree without the partiipation of the rest of the forest. The following theoremshows that this is suÆient in order to obtain the orret marginal distributions in the destination tree.Theorem 9.19 (multiple attention shifts) Let F be a onsistent juntion forest whose orrespondingMSBN has a hypertree struture. Start with any ative juntion tree. Repeat the following yle a �nitenumber of times:1. Use EnterEvidene to enter evidene to the urrently ative tree a �nite number of times.2. Use ShiftAttention to shift attention to any destination tree.The marginal distributions obtained in the �nal ative tree are idential as would be obtained when the forestis globally onsistent.Example 9.20 Let us ontinue the example with the juntion forest (Figure 5) F = f�1;�2;�3g by demon-stration of evidential reasoning. Suppose the outome of variable E3 in �3 is observed to be e31. Table 7lists B0(�3), whih is obtained after EnterEvidene, and also B0(�1) and B0(�2), whih are obtained afterShiftAttention with destination �2. Table 8 lists the posterior marginal probability of eah variable afterShiftAttention. 52



B0(�3) B0(�1) B0(�2)Clique NodeAss: Clique NodeAss: Clique NodeAss:fH3;H2; E3g H3;H2; E3 fH2;H1; A1g H1; A1 fF2; F1g F2Config: B() Config: B() Config: B()fh31; h21; e31g 14:44 fh21; h11; h11g 4:105 ff21; f11g 5:523fh31; h21; e32g 0 fh21; h11; h12g :5036 ff21; f12g 10:79fh31; h22; e31g 7:31 fh21; h12; h11g 2:908 ff22; f11g 8:285fh31; h22; e32g 0 fh21; h12; h12g 12:84 ff22; f12g 3:598fh32; h21; e31g 5:915 fh22; h11; h11g :4627 Clique NodeAss:fh32; h21; e32g 0 fh22; h11; h12g :2661 fH2; F1;H1g H2; F1;H1fh32; h22; e31g :5310 fh22; h12; h11g :3278 Config: B()fh32; h22; e32g 0 fh22; h12; h12g 6:785 fh21; f11; h11g 3:638Clique NodeAss: Clique NodeAss: fh21; f11; h12g 9:450fE2; E3; E1g E2 fH2; A2; A1g H2 fh21; f12; h11g :9702Config: B() Config: B() fh21; f12; h12g 6:300fe21; e31; e11g 1:020 fh21; a21; a11g 3:732 fh22; f11; h11g :3644fe21; e31; e12g 1:422 fh21; a21; a12g 11:65 fh22; f11; h12g :3556fe21; e32; e11g 0 fh21; a22; a11g 3:281 fh22; f12; h11g :3644fe21; e32; e12g 0 fh21; a22; a12g 1:696 fh22; f12; h12g 6:757fe22; e31; e11g :02194 fh22; a21; a11g :4190fe22; e31; e12g :3555 fh22; a21; a12g 3:737fe22; e32; e11g 0 fh22; a22; a11g :3715fe22; e32; e12g 0 fh22; a22; a12g 3:313Clique NodeAss: Clique NodeAss:fE3; E1;H4g E1;H4 fH3;H2; A2g H3; A2Config: B() Config: B()fe31; e11; h41g 7:622 fh31; h21; a21g 13:58fe31; e11; h42g 2:801 fh31; h21; a22g :8623fe31; e12; h41g 1:906 fh31; h22; a21g 4:138fe31; e12; h42g 15:87 fh31; h22; a22g 3:172fe32; e11; h41g 0 fh32; h21; a21g 1:800fe32; e11; h42g 0 fh32; h21; a22g 4:115fe32; e12; h41g 0 fh32; h22; a21g :01857fe32; e12; h42g 0 fh32; h22; a22g :5124Clique NodeAss: Clique NodeAss:fH3; E3;H4g fH3; A3;H4g A3;H4Config: B() Config: B()fh31; e31; h41g 7:723 fh31; a31; h41g 1:632fh31; e31; h42g 14:03 fh31; a31; h42g 4:895fh31; e32; h41g 0 fh31; a32; h41g 6:091fh31; e32; h42g 0 fh31; a32; h42g 9:137fh32; e31; h41g 1:805 fh32; a31; h41g 1:289fh32; e31; h42g 4:641 fh32; a31; h42g 3:867fh32; e32; h41g 0 fh32; a32; h41g :5157fh32; e32; h42g 0 fh32; a32; h42g :7735Table 7: Belief tables updated after entering evidene for F = f�1;�2;�3g where �is are as in Figure 5.First, B0(�3) is obtained after E3 = e31 is entered to �3 by EnterEvidene in �3. B0(�1) and B0(�2) areobtained afterwards by ShiftAttention.
p(h11) = :1893 p(a11) = :2767 p(f11) = :4897 p(e11) = :3696p(h21) = :7219 p(a21) = :6928 p(f21) = :5786 p(e21) = :8661p(h31) = :7714 p(a31) = :4143 p(e31) = 1p(h41) = :3379Table 8: Posterior probabilities from juntion forest F = f�1;�2;�3g in Figure 5 after evidene E3 = e31 ispropagated by ShiftAttention.
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Before losing this subsetion, the following example demonstrates the omputational advantage, duringattention shift, provided by the overing sets.Example 9.21 In Figure 8, D is setioned into fD1; D2; D3g by sound setioning without a overing set.The MSBN is transformed into the juntion forest fT 1; T 2; T 3g by an invertible transformation. If evideneabout E and then about G omes, the �rst piee of evidene will be entered to T 1 and then T 1 will sendmessage to T 2. After entering the seond piee of evidene, T 2 will be the only one up-to-date. Now if weare interested in the belief on H , the belief tables on fB;Fg and fC;Fg in T 3 have to be updated. However,T 2 annot provide distribution on fB;Fg. Thus, T 2 has to send message to T 3 about fC;Fg and then sendmessage to T 1. T 1 an then beome up-to-date and send distribution on fB;Fg to T 3. Three instanesof message passing are neessary, and linkages between eah pair of juntion trees have to be reated andmaintained. More message passing and more linkages are needed when there are more sets organized inthis struture. When n sets are interonneted and there is a overing set, only n-1 sets of linkages needto be reated; and a maximum of two message passings are needed to update the belief in any destinationtree.9.5 Computational omplexityTheorem 9.19 shows the most important haraterization of the MSBN and juntion forests, namely, theapability of exploiting loalization to redue the omputational omplexity.Under the assumption of loalization, the user interest and new evidene remain in the sphere of onejuntion tree for a period of time. Thus the time and spae requirement, while reasoning within a juntiontree, is bounded above by what is required by the largest juntion tree. The judgments obtained, however,are at the knowledge level of the overall juntion forest. Compared to the USBN and the single juntiontree representation where the evidene has to be propagated to the entire system, this leads to savings whenloalization is valid.When the user shifts interest to another set of variables ontained in a di�erent destination tree, only theintermediate trees need to be updated. The time required is linear to the number of intermediate trees andto the number of linkages between eah pair of neighbours. No matter how large the entire juntion forest,the time requirement for attention shift is �xed one the destination tree and mediating trees are �xed. Forexample, in a MSBN with a overing set, no matter how many sets are in the MSBN, the attention shiftupdates a maximum of two sets. The spae requirement is bounded above by what is needed by the largestjuntion tree on the path between the starting and destination trees. Under the loalization assumption, theomputational ost for attention shift is inurred only oasionally.Given the above analysis, the omputational omplexity of evidential reasoning in a MSBN with � sets54



of equal size is about 1=� of the orresponding USBN system when loalization is valid. The atual timerequirement is a little more than 1=� due to the omputation required for attention shift. The atual spaerequirement is a little more than 1=� due to the repetition of d-sepnodes and the set of linkages required forattention shift.The MSBN and the juntion forest tehnique has been implemented in PAINULIM (Xiang et al. 1992)- a system for diagnosis of neuromusular diseases haraterized by a painful impaired upper limb. Thesystem has three sets: the linial, the EMG, and the nerve ondution with the linial set being theovering set. Aording to the statistis in Xiang et al. (1992), about 27% of patients in this ategoryneed nerve ondution studies only, and about 60% of patients need EMG tests only. Thus, for about 87%of the patients, about one third of the juntion forests will not be omputed at all, and there is only oneattention shift (from the linial set to either the nerve ondution or the EMG set). There are �ve linial�ndings on an average patient. The number of tests performed on an average patient is about four fornerve ondution and about six for EMG. After eah linial �nding and eah test, users would like to knowposterior probabilities for diseases and outomes of possible examinations or tests not yet performed. Thus,the loalization assumption works well in the PAINULIM domain. The overall omputational savings inPAINULIM by applying the MSBN and the juntion forest tehnique is about half.10 SummaryThis paper presents MSBNs and juntion forests as a exible knowledge representation and as an eÆientinferene formalisms to exploit loalization naturally existing in large knowledge-based systems. The sys-tems whih an bene�t from the tehnique are those that are reusable, representable by general but sparsenetworks, and haraterized by inremental evidential reasoning and where loalization is valid.The MSBNs allow the partition of a large appliation domain into smaller natural subdomains suh thateah of them an be represented as a Bayesian subnetwork (a set), and an be tested and re�ned individually.This makes the representation of a omplex domain easier for knowledge engineers and potentially makesthe resultant system more natural and more understandable to system users. The modularity failitatesimplementation of large systems in an inremental fashion. When partitioning, a knowledge engineer hasto take into aount the tehnial onstraints imposed by the MSBN, namely that the interfaes must bed-sepsets and the setioning must be sound. These onstraints are not very restritive.Two important guidelines, the overing subDAG rule and the hypertree rule, for sound setioning arederived. MSBNs that follow the rules an have multiply onneted sets, do not require expensive omputa-tion to verify soundness of setioning, and have additional omputational advantage during attention shiftin evidential reasoning. 55



Eah set in the MSBN is transformed into a juntion tree suh that the MSBN is transformed into ajuntion forest representation where evidential reasoning takes plae. The onstraints on transformation arethe invertibility of morali-triangulation and separability.Eah set/juntion tree in the MSBN/juntion forest stands as a separate omputational objet. Sinethe tehnique allows transformation of sets into juntion trees through loal omputation at the set level,and allows reasoning to be onduted with juntion trees as units, the spae requirement is governed by thesize of one set/juntion tree. Hene large appliations an be built and run on relatively small omputerswherever hardware resoures are of onern. This was, in fat, our original motivation to develop the MSBNtehnique.For large appliation domains, an average ase may involve only a portion of the total knowledge enodedin a system, and one portion may be used repeatedly over a period of time. A MSBN and a juntion forestrepresentation allows the `interesting' or `relevant' set/juntion tree to be loaded while the rest of thejuntion forest remains inative and uses no omputational resoures. The judgments made on variables inthe ative juntion tree are onsistent with all the knowledge available, inluding both prior knowledge andall the evidene ontained in the entire juntion forest. When the user's attention shifts, inative juntiontrees an be made ative and previous aumulation of evidene is preserved. This is ahieved by passing thejoint beliefs on d-sepsets. The overall omputational resoure required is governed by the size of the largestset, and not by the size of the appliation domain.The tehnique of the MSBN and the juntion forest has been applied to an appliation knowledge-basedsystem PAINULIM apable of diagnosing neuromusular diseases haraterized by a painful impaired upperlimb. Our experiene with PAINULIM supports the signi�ane of the tehnique (Xiang et al. 1992).AknowledgementsThis work is supported by Operating Grants A3290, OGPOO44121 from NSERC and a UBC GraduateFellowship to Y. Xiang. Revision of the �nal draft is partially supported by the University College ofthe Cariboo. The authors would like to thank Andrew Eisen and Bhanu Pant, whose ooperation in thePAINULIM projet has inspired many of the ideas inluded in this paper. Our thanks are also direted toFinn V. Jensen who was kind enough to send us his papers. We are grateful to Lianwen Zhang for his helpfulomments on the earlier draft of this paper.ReferenesAndersen, S.K., Olesen, K.G., Jensen, F.V. and Jensen, F. 1989. HUGIN - a shell for buildingBayesian belief universes for expert systems. Proeedings of the Eleventh International Joint Con-56
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