Multiply Sectioned Bayesian Networks
and Junction Forests
for Large Knowledge-Based Systems

(Published in: Computational Intelligence, Vol.9, No.2, 171-220, 1993)

Yang Xiang

Department of Computing Science
University College of the Cariboo, Kamloops, B.C. Canada, V2C 5N3
David Poole

Department of Computer Science
University of British Columbia, Vancouver, B.C., Canada, V6T 172
Michael P. Beddoes

Department of Electrical Engineering
University of British Columbia, Vancouver, B.C., Canada, V6T 1W5

Abstract

Bayesian networks provide a natural, concise knowledge representation method for building knowledge-
based systems under uncertainty. We consider domains representable by general but sparse networks and
characterized by incremental evidence where the probabilistic knowledge can be captured once and used
for multiple cases. Current Bayesian net representations do not consider structure in the domain and
lump all variables into a homogeneous network. In practice, one often directs attention to only part
of the network within a period of time, i.e., there is “localization” of queries and evidence. In such
case, propagating evidence through a homogeneous network is inefficient since the entire network has to
be updated each time. This paper derives reasonable constraints, which can often be easily satisfied,
that enable a natural (localization preserving) partition of a domain and its representation by separate
Bayesian subnets. The subnets are transformed into a set of permanent junction trees such that eviden-
tial reasoning takes place at only one of them at a time; and marginal probabilities obtained are identical
to those that would be obtained from the homogeneous network. We show how to swap in a new junction
tree, and absorb previously acquired evidence. Although the overall system can be large, computational
requirements are governed by the size of one junction tree.

Key words Knowledge representation, Expert systems, Knowledge-based systems, Bayesian network,

Probabilistic reasoning, Reasoning under uncertainty.

1 Introduction

Over the last decade, Bayesian belief networks, combining a graphic representation of a causal domain model
and probability theory, have gained increasing popularity as a natural, concise knowledge representation
method and a consistent inference formalism for building knowledge-based systems which require reasoning
under uncertainty.

Cooper (1990) has shown that probabilistic inference in a general Bayesian net is NP-hard. Several
different approaches have been pursued to avoid combinatorial explosion in computation for typical cases,
and thus to reduce computational cost. Two classes of approaches can be identified.

One class of approaches explore approzimation. Stochastic simulation is proposed as one approximate
inference scheme (Henrion 1988). Annihilating very small numbers in secondary structures of Bayesian nets
is another way to reduce consumption of computer resources (Jensen and Andersen 1990).

Another class of approaches Exploit the structure of the problem to gain efficiency in computing ezact
probabilities. The approach of this paper belongs to this second class. Efficient algorithms have been devel-
oped for inference in Bayesian nets with special topologies (Pearl 1986; Heckerman 1990a). Unfortunately
many domain models cannot be represented by these special types of Bayesian nets. For general but sparse
nets, efficient computation has been achieved by creating a secondary structure with a directed tree topology
(Lauritzen and Spiegelhalter 1988) or with an undirected tree topology (Jensen, Lauritzen and Olesen 1990,
Shafer and Shenoy 1988). The secondary structures offer also the advantage of trading compile time with
running time for systems to be used repeatedly. However, for large applications, the run time overhead
(both space and time) is still forbidding. Pruning Bayesian nets with respect to each query instance is yet
another exact method with savings in computational cost (Baker and Boult 1990). However, it is hard to
know what is relevant a priori where incremental evidence absorption is required. A portion of a Bayesian
net may not be relevant given a set of evidence and a set of queries, and therefore can be pruned away before
computation. But in light of a piece of new evidence, it may become relevant and could not be restored
within the pruning algorithm. Furthermore, the advantage of trading compile time with running time is lost
in systems for repeated usage if the network has to be pruned for each set of queries. It is this problem that
this paper addresses.

We consider domains representable by general but sparse networks and characterized by incremental
evidence. We address reusable systems where the probabilistic knowledge can be captured once and be used
for multiple cases. Current Bayesian net representations do not consider structure in the domain and lump
all variables into a homogeneous network. For small applications, this may be appropriate. For a large

application domain where evidence arrives incrementally, in practice one often directs attention to only part

of the network within a period of time, i.e., there is “localization” of queries and evidence. More precisely,
“localization” means two things. For each phase of a query session, only certain parts of a large network are
interesting'; and new evidence and queries are directed to a small part of a large network repeatedly within
a period of time. When this is the case, propagating evidence in the homogeneous network is inefficient since
the newly arrived evidence has to be propagated to the entire network before queries can be answered.

A large application domain can often be partitioned naturally in terms of localization. For example (Xiang
et al. 1992), a neurologist, assisted by a knowledge-based system, examining a patient with a painful impaired
upper limb, may temporarily consider only his findings’ implications on a set of possible neuromuscular
diseases. He may not start to consider the diagnostic significance of each available laboratory test until he
has finished the clinical examination. That is, during the clinical examination, queries and new evidence are
repeatedly directed towards a set of clinical symptoms and disease hypotheses. We do not need to consider
other parts of the network. After the clinical examination of the patient, the findings highlight certain disease
candidates and make others less likely, which may suggest that further nerve conduction studies are of no
help at all, and thus no attention will be paid to variables about nerve conduction throughout the diagnosis
of this patient. Instead EMG tests form the second stage of the doctor’s diagnostic practice. Here evidence
and queries for the patient are localized within the clinical and EMG portions. Since EMG tests are usually
not comfortable for patients, the neurologist would not perform a test unless it is diagnostically necessary.
Thus, he would like to know the updated likelihood of disease hypotheses after each test to see if further
tests are necessary and which one can yield the most diagnostic benefit. During this test period, queries and
new evidence are localized within a set of EMG tests and disease variables. Therefore, in a knowledge-based
system for neuromuscular diagnosis, knowledge about the clinical symptoms and a set of diseases forms a
natural subdomain. Knowledge about EMG test results and a subset of diseases forms another subdomain,
and knowledge about nerve conduction study results and a different subset of diseases forms yet another
subdomain. If this domain is represented in a homogeneous network, each piece of clinical findings has to be
propagated to all the EMG and nerve conduction variables which are not relevant at the moment. Likewise,
after each EMG test, the entire net has to be updated even though the neurologist is only interested in
planning the next EMG test.

Clearly, the problem is because current Bayesian net representations do not provide means to distinguish
variables according to natural subdomains. (Heckerman 1990b) partitions Bayesian nets into small groups of
naturally related variables to ease the construction of large networks. But once the construction is finished,
the run time representation is still homogeneous.

It can be argued that if groups of naturally related variables in a domain can be identified and represented,

L«Interesting” is more restrictive than “relevant”. We may not be interested in something even though it is relevant.

the run time computation can be restricted to one group at any given stage of a query session due to the
localization. In particular, we may not need to propagate new evidence beyond the current group. Along
with the arrival of new evidence, attention can be shifted from one group to another. Chunks of knowledge
not required for the current focus of attention remain inactive (but are not thrown away) until the focus
of attention shifts and they are activated. This way, the run time overhead is governed by the size of the
group of naturally related variables, not the size of the application domain. Large computational savings
can be achieved when uncertainty about current group needs to be updated repeatedly. As demonstrated
by Heckerman (1990b), grouping of variables can also help in ease and accuracy in construction of Bayesian
networks.

Partitioning a large domain into separate knowledge bases and coordinating them in problem solving have
a long history for rule-based expert systems termed blackboard architectures (Nii 1986a; 1986b). However, a
proper parallel for Bayesian network technology has not appeared yet.

Pearl, in his influential book (1988, page 319), expressed the following ideal:

“Instead of propagating all the information everywhere, it is possible to assess first the poten-
tial impact of every updating operation on the belief of the target node and to limit the updating
process so that only relevant information is propagated. Doing so will decrease the amount of
data traffic in the network and the amount of computation expended on inference. However, it
is important that the information we choose not to propagate be allowed to accumulate at the
boundaries and discharge its impact to new areas of knowledge once our current set of belief

becomes stagnant.”

The technique that we present in this paper provides a computational model to implement this ideal.

This paper derives constraints, which can often be satisfied easily, that enable a natural (localization
preserving) partition of a domain and its representation by separate Bayesian subnets. Such a representation
is termed multiply sectioned Bayesian network (MSBN). In order to perform efficient evidential reasoning in
a general but sparse network, the set of subnets are transformed into a set of junction trees as a secondary
representation which is termed a junction forest. The junction forest becomes the permanent representation
for the reusable system where incremental evidential reasoning takes place. Since the junction trees preserve
localization, each of them stands as a computational object which can be used alone during reasoning.
Multiple linkages between the junction trees are introduced to allow evidence acquired from previously
active junction trees to be absorbed into the newly active junction tree which is of current interest. In this
way, the localization naturally existing in the domain can be exploited and the above illustrated idea is

realized. The MSBN technique can be viewed as an extension to the d-separation concept (Pearl 1888) and

the junction tree technique (Andersen et al. 1989, Jensen, Lauritzen and Olesen 1990).

Section 2 briefly summarizes the background knowledge and previous research. Section 3 explains why
“obvious” solutions to exploit localization do not work, and Section 4 gives an overview of the MSBNs and
the junction forests technique. We hope that these two sections will motivate and guide readers into the
subsequent sections which present the mathematical theory necessary to the technique. Due to limited space,
we have omitted all the proofs in this paper. Readers who are interested in the proofs are referred to Xiang,

Poole and Beddoes (1992).

2 Background

2.1 Graphs and hypergraphs

A graph G is a pair (N, E) where N = {4;,...,A,} is a set of nodes and E C {(A;, Aj)|A:, Aj € N;i # j}
is a set of links between pairs of nodes in N. A directed graph is a graph where links in E are ordered pairs
and an undirected graph is a graph where links in E are unordered pairs. Links in directed graphs are called
arcs when their directions are of concern. A subgraph of a graph (N, E) is any graph (N*, E¥) satisfying
N* C N and E* C E. Given a subset of nodes N' C N of a graph (N, E), the subgraph induced by N' is
(NY, E') where E' = {(A;i, A;) € E|A; € N' & A; € N'}. The union graph of subgraphs G* = (N1, E') and
G? = (N?,E?) is the graph (N' U N% E' U E?) denoted G' U G*.

A path in graph (N, E) is a sequence of nodes Ay, As,..., A (k > 1) such that (4;,4;41) € E. A
path in a directed graph can be directed or undirected (i.e. each arc is considered undirected). A simple
path is a path with no repeated node except that A; is allowed to equal Agx. A cycle is a simple path with
A; = Ay. Directed graphs without a directed cycle are called DAGs (directed acyclic graphs). A graph
(N, E) is connected if for any pair of nodes in N there is an undirected path between them. A graph is singly
connected, or is a tree, if there is a unique undirected path between any pair of nodes. If a graph consists of
several unconnected trees, it is called a forest. A graph is multiply connected if there is a pair of nodes with
more than one undirected path between them.

This paper considers only connected DAGs since an unconnected DAG can always be treated as several
connected ones. A subDAG of a DAG D = (N, E) is defined as any connected subgraph of D. A DAG D is
the union DAG of subDAG D' and D? if D = D' U D2

If there is an arc (A;, As) from node Ay to Aa, Ay is called a parent of As, and As a child of A;. Similarly,
if there is a directed path from A; to Ay, the two nodes are called, respectively, ancestor and descendent,
relative to each other. The in-degree of a node is the number of parents it has.

If for each node in a DAG, links are added between all its parents and the directions on the arcs are

dropped, the resultant is the moral graph of the DAG. A graph is triangulated if every cycle of length > 3

has a chord. A chord is a link connecting two nonadjacent nodes. A maximal set of nodes all of which are
pairwise linked is called a clique.

A hypergraph is a pair (N, C) where N is a set and C C 2V (power set of N) is a set of subsets of N.
The union of hypergraphs is defined similarly to the union of graphs. The union hypergraph of (N*, Ct)
and (N2,C?) is (N' U N2,C! U C?) denoted (N',C!) U (N2, C?). Let (N, E) be a graph, and C be the
set of cliques of (N,E). Then (N,C) is a cligue hypergraph of graph (N, E). If a clique hypergraph is
organized into a tree where the nodes of the tree are labeled with cliques such that for any pair of cliques,
their intersection is contained in each of the cliques on the unique path between them then the tree is called
a junction tree or a join tree. The intersection of two adjacent cliques in a junction tree is called the sepset
of the two cliques.

For formal treatment of the graph theoretical concepts introduced, see Golumbic (1980), Jensen (1988),

Lauritzen, Speed and Vijayan (1984).

2.2 Bayesian networks

Figure 1: A DAG ©

A Bayesian network (Pearl 1988) is a triplet (N, E, P).

e N is a set of nodes each of which is labeled with a random variable having a set of mutually ezclusive and

exhaustive outcomes. In the context of Bayesian nets, ‘node’ and ‘variable’ are used interchangeably.

Uppercase letters (possibly subscripted) in the beginning of the alphabet are used to denote variables,
corresponding script letters to denote their sample spaces, and corresponding lowercase letters with
subscripts to denote their outcomes. For example, in binary case, a variable A has its sample space
A = {a1,as}, and H; has its sample space H; = {h;1, hi2}. Uppercase letters towards the end of the
alphabet are used to denote a set of variables. If X C N is a set of variables, the space ¥(X) of X is
the cross product of sample spaces of the variables U(X) = X 4cx.A. 7; is used to denote the set of

parent variables of A; € N.

For example, Figure 1 shows the DAG of a Bayesian net with a set of nodes
{A17A27A37E17E27E37F17F27H17H27H37H4}
. In binary case, the sample space of Az is A3 = {a31,a32}.

e E is a set of arcs such that (N, E) is a DAG. The arcs signify the existence of direct causal influences
between the linked variables. The basic dependency assumption embedded in Bayesian nets is that a

variable is independent of its non-descendants given its parents.

For example, the arcs in Figure 1 signify the direct causal influences from F; and F3 to E,. The

topology conveys the assumption p(Ez2|Ey EsHy) = p(E2|E1 E3).

e P is a joint probability distribution quantifying the strengths of the causal influences signified by
the arcs. P is specified by, for each A; € N, the distribution of the random variable labeled at A;
conditioned by the values of A;’s parents m; in the form of a conditional probability table p(A;|m;).
p(A;|m;) is a normalized function mapping ¥({A4;} U m;) to [0,1]. The joint probability distribution P
is

P =p(Ay ... Aa) = [] p(Ailmi)

For example, Table 1 lists the conditional distributions needed to fully specify P for the Bayesian net
(0, P).
If we sum a joint distribution over all possible outcomes of the variables in N \ {A4;}, the resultant

distribution is the marginal distribution over the variable A;.

p(h11) = .15 p(az1]hs1) = .8 p(ei1|ha1) = .8
p(asi|hz2) = .1 plei1]haz) = .15
p(h21|a21a11) = .8696
p(hz1lazia12) = .7 p(asi|hz1) = .3 p(ez1leziern) = .9789
p(hz1]|azza11) = .6 p(asi|hzz) = .8 p(ez1lezierz) = .8
p(h21]azz2a12) = .08 p(ez1eszern) = .9
p(fi1lhitha1) = 7895 p(e21lesze12) = .05
p(h31) = .3 p(fi1|lhi1he2) = 5
p(fi1|hizh21) = .6 p(es1|harhz1) = 7702
p(harlaz1) = .25 p(fi1|hizha2) = .05 p(es1|harhs2) = .35
p(hailaz2) = .4 p(es1|ha2h3z1) = .65
p(fe1|fi1) = 4 p(es1|hazhs2) = .01
p(ai1|hi1) = .8 p(fe1]fiz) = .75
p(air|hiz) = .1

Table 1: Probability distribution associated with DAG O in Figure 1.

2.3 Operations on belief tables

A belief table (Andersen et al. 1989; Jensen, Olesen, and Andersen 1990) or a potential (Lauritzen and

Spiegelhalter 1988) denoted as B() is a non-normalized probability distribution. It can be viewed as a

function from the space of a set of one of more variables to the reals. For example, the belief table B(X) of
a set X of variables maps ¥(X) to the reals. If x € ¥(X), the belief value of x is denoted by B(x). Denote
a set X of variables and corresponding belief table B(X) with an ordered pair (X, B(X)) and call the pair
a world.

For Y C X, the projection y € ¥(Y') of x € ¥(X) to the space ¥(Y') is denoted as Prjy(y)(x). Denote
the marginalization of B(X) to Y C X by }_y\y B(X) which specifies a belief table on Y. The operation
is defined as the following: if B(Y) = }_ vy B(X) then for all y € ¥(Y),

Bly)= Y Bx).

Prjgy)(x)=y

Similarly, denote the multiplication of B(X) and B(Y') by B(X) x B(Y) which specifies a belief table on
XUY. If B(XUY) = B(X) % B(Y) then for all z € ¥(X UY), B(z) = B(x) # B(y) where x = Prjy(x) (z)
and y = Prjy(y)(z). Denote the division of B(X) over B(Y') by B(X)/B(Y') which specifies a belief table
on XUY. If B(XUY) = B(X)/B(Y) then for all z € ¥(X UY), B(z) = B(x)/B(y) if B(y) # 0 where
x = Prjgx) (z) and y = Prjy(y) (z).
2.4 Transform Bayesian nets into junction trees
The MSBN technique is an extension to the junction tree technique (Andersen et al. 1989; Jensen, Lauritzen
and Olesen 1990) which transforms a Bayesian net into an equivalent secondary structure where inference
is conducted (Figure 4). Because of this restructuring, belief propagation in multiply connected Bayesian

nets can be performed in a similar manner as in singly connected nets. The following briefly summarizes the

junction tree technique.

Moralization Transform the DAG into its moral graph, e.g. ® in Figure 2 (with respect to © in Figure 1).

Triangulation Triangulate the moral graph. Call the resultant graph a morali-triangulated graph, e.g. A

of Figure 2.

Clique hypergraph formation Identify cliques of the morali-triangulated graph, e.g. the nodes in I' of

Figure 2, and obtain a clique hypergraph.

Junction tree construction Organize the clique hypergraph into a junction tree of cliques, e.g. T' of

Figure 2.

Node assignment Assign each node in the DAG to a clique in the junction tree of cliques. For example,

H, is assigned to either clique 7 or 8, and Hj is assigned to clique 5, 6, 7 or 8.

Figure 2: The moral graph ® of the DAG © in Figure 1, one of ®’s triangulated graphs A, and the
corresponding junction tree I'. Each clique in T" is numbered (the number is separated from clique members
by a ‘").

Belief universes formation For each clique C; in the junction tree of cliques, obtain its belief table B(C};)
by multiplication of the conditional probability tables of its assigned nodes. Call (C;, B(C;)) a belief
universe. When it is clear from the context, no distinction is made between a junction tree of cliques

and a junction tree of belief universes.

Inference is conducted through the junction tree representation. An absorption operation is defined
for local belief propagation. Global belief propagation is achieved by a forward propagation operation

DistributeEvidence and a backward propagation operation CollectEvidence.

Belief initialization Before any evidence can be entered to the junction tree, the belief tables are made
consistent by CollectEvidence and DistributeEvidence such that prior marginal probability for a variable
(of the original Bayesian net) can be obtained by marginalization of a belief table in any universe which

contains it.

Evidential reasoning When evidence about a set of variables (of the original Bayesian net) is available,
the evidence is entered into universes which contain the variables. Then the belief tables of the junction
tree are made consistent again by CollectEvidence and DistributeEvidence such that posterior marginal

probability for a variable can be obtained from any universe containing the variable.

The computational complexity of evidential reasoning in junction trees is about the same as the reasoning
method by Lauritzen and Spiegelhalter (1988) which can be viewed as performed on a (secondary) directed
tree structure (Shachter 1988; Neapolitan 1990). But junction trees are undirected and allow more flexible
computation. The junction tree representation is explored in this paper since its flexibility is of crucial

importance to the MSBN extension.
2.5 d-separation

The concept of d-separation introduced by Pearl (1988, page 116-118) is fundamental in probabilistic rea-
soning in Bayesian networks. It permits easy determination, by inspection, of which sets of variables are
considered independent of each other given a third set, thus making any DAG an unambiguous representation

of dependency and independence. It plays an important role in our partitioning of Bayesian networks.

Definition 2.1 (d-separate (Pearl 1988)) If X, Y, and Z are three disjoint subsets of nodes in a DAG,
then Z is said to d-separate X from Y, if there is no path between a node in X and a node in Y along
which two conditions hold: (1) every node with converging arcs (head-to-head node) is in Z or has a
descendent in Z and (2) every other node (non-head-to-head node) is outside Z.

A path satisfying the conditions above is said to be active; otherwise it is said to be blocked by Z.

For example (Figure 1), {F}} d-separates {F>} from {Hy, H>}. {H», Hs, Hy} d-separates {E1, Es, E3}
from the rest. The path between A3 and E; is blocked by Hy. Detailed illustrations of d-separation can be
found in Neapolitan (1990, page 192-207).

The importance of d-separation is that, in a Bayesian network, X and Y are conditionally independent

given Z iff Z d-separates X from Y (Geiger, Verma and Pearl 1990).

3 “Obvious” Ways to Explore Localization

“Localization” means the following: (1) For an average query session, only certain parts of a large network
are interesting. We would like to concentrate on the part of current interest without the overhead of the
uninteresting parts. We don’t want to remove those parts a priori as what seemed initially uninteresting may

become interesting, and we would like to pay only a small cost to ‘swap’ those parts in. (2) New evidence

10

and queries are directed to a small part of a large network repeatedly within a period of time. Making use
of this, we only want to incur the swapping cost occasionally.

An obvious way to explore localization in multiply connected networks is to preserve localization within
subtrees of a junction tree by clever choice of triangulation and junction tree construction. If this can be
done, the junction tree can be split and each subtree can be used as a separate computational object. The
following example shows that this is not always workable. Consider the DAG © in Figure 2. Suppose

variables in the DAG form three groups naturally related which satisfy localization:

Gy = {A1,A4y,A3,H,,H>, Hs, Hy}

Gs {F1,F>,H,, H>}

Gs = {E\,E; E3,Hy Hs, Hy}

We would like to construct a junction tree which preserves the localization within three subtrees. The graph
® in Figure 2 is the moral graph of ©. Only the cycle A3 — H3 — E5 — Ey — Hy — A3 needs to be triangulated.
There are six distinct ways of triangulation out of which only two do not mix nodes in different groups.
The two triangulations have the link (Hs, Hy) in common and which is chosen does not make a significant
difference in the following analysis. The A in Figure 2 shows one of the two triangulations. The nodes of
graph T are all the cliques in A.

The junction tree I' does not preserve localization since cliques 3, 4, 5 and 8 correspond to group G but
are connected via cliques 6 and 7 which contains E3 from group G5. This is unavoidable. When there is
evidence towards A; or As in A, updating the belief in group G3 requires passing the joint distribution over
H, and Hs. But updating the belief in A3 only requires passing the marginal distribution of Hz. That is
to say, updating the belief in A3 needs less information than group G3. In the junction tree representation,
this becomes a path from cliques 3, 4 and 5 to clique 8 via cliques 6 and 7.

In general, let X and Y be two sets of variables in the same natural group, and let Z be a set of variables
in a distinct group. Suppose the information exchange between pairs of them requires the exchange of
distribution on sets Ixy, Ixz and Iy of variables respectively. Sometime Ixy is a subset of both Ixz and
Iy 7. When this is the case, a junction tree representation will always indirectly connect cliques corresponding
to X and Y through cliques corresponding to Z if the method in Andersen et al. (1989), Jensen, Lauritzen
and Olesen (1990) is followed.

However, there is a way around the problem with a brute force method. In the above example, when
there is evidence towards A; or As, the brute force method pretends that updating the belief in A3 needs
as much information as G3. A dummy link (Hs, A3) is added to the moral graph ® in Figure 2. Then

triangulating the augmented graph gives the graph A’ in Figure 3. The resultant junction tree I’ in Figure 3

11

does have three subtrees which correspond to the three groups desired. However, the largest cliques now
have size four instead of three as before. In the binary case, the size of the total state space is 84 instead of

76 as before.

Figure 3: A’ is a triangulated graph. I is a junction tree of A'.

In general, the brute force method preserves natural localization by congregation of the set of interfacing
nodes (nodes H», H3, Hy above) between natural groups. In this way, the joint distribution on interfacing
nodes? can be passed between groups, and preservation of localization and preservation of tree structure can
be compatible. However, in a large application domain with the original network sparse, this will greatly
increase the amount of computation in each group due to the exponential enlargement of the clique state
space. The computation amount increased could outweigh the savings gained by exploring localization in
general.

The trouble illustrated in the above two situations can be traced to the tree structure of a junction tree
representation which insists on single path between any two cliques in the tree. The normal triangulation
case has small cliques but loses localization. The brute force case preserves localization but does not have
small cliques. To summarize, we have shown that the preservation of natural localization and small cliques
cannot coexist by the method of Andersen et al. (1989), Jensen, Lauritzen and Olesen (1990). It is claimed

here that this is due to a single information channel between local groups of variables. In the following, it

2Tt will be shown later that when the set of interfacing nodes possesses a certain property, the joint distribution on the set
is the sufficient information to be exchanged.

12

is shown that by introducing multiple information channels between groups and by exploring conditional
independence, the joint distribution on a set of interfacing variables can be passed between groups by passing

only marginal distributions on subsets of the set.

4 Overview of MSBNs and the Junction Forest Technique

A USBN A MSEN
Morali—Triangulate
Horalize
¥ by local computation
| A moral graph | v
Triangulate ¢ A zet of morali—
A morali—triangulated triangulated graphs
graph
Identify Tdentify
. li
cliques ¥ cliques ¥
A clique A set of clique
hypergraph hypergraphs
Organize into Organize each
a tree into a tree
¥ ¥
A junction tree A junction forest
of cliques of cliques
Create
linkages
h i
A linked junction
forest of cliques
Aszsign belief Aszsign belief
tabhles tabhles
¥ ¥
A junction tree of A junction forest of
helief universes helief universes
Belief Belief
initialization initialization
¥ ¥
A consistent junction A consistent junction
tree of belief forest of belief
universes universes

Figure 4: Left: major steps in transformation of a USBN into a junction tree. Right: major steps in
transformation of a MSBN into a junction forest.

As demonstrated in Section 3, in order to explore localization, the tree structure and the single channel
requirement must be relaxed. Since the computational advantage offered by a tree structure has also been
demonstrated repeatedly, it is not desirable to totally abandon the tree structure. Rather, we keep the tree
structure within each natural group, but to allow multiple channels between groups. To implement this

idea, the MSBN and the junction forest representations extend the d-separation concept and the junction

13

tree technique. This section outlines the development of these representations. Each major step involved is
described in terms of its functionality. The problems possibly encountered and the hints for solutions are
discussed. The details are presented in the subsequent sections. Since the technique extends the junction
tree technique reviewed in Section 2.4, the parallels and the differences are indicated. Figure 4 illustrates
the major steps in the transformation of the original representation into the secondary representation for

both techniques.

The d-sepset We want to partition a large domain according to natural localization into subdomains such
that each can be represented separately by a Bayesian subnet; and that these subnets can cooperate with
each other during inference by exchanging small amount of information between them. We discuss here
the technical constraints which have to be followed during the partition in order to solve these goals. This
problem can be formulated conceptually in the opposite direction. Suppose the domain has been represented
with a homogeneous network. The task is to find the necessary technical constraints to be followed when
the net is partitioned into subnets according to natural localization. Section 5 defines d-sepsets whose joint
distribution is the sufficient information to be exchanged to keep ‘adjacent’ subnets informed. It is shown that
in the junction tree representation of the homogeneous net, the nodes in d-sepsets can serve as information
passageways between nodes in different subnets. Thus, the d-sepsets form the interfaces between pairs of

subnets.

Sectioning Continuing in the conceptual direction, Section 6 describes how to section a homogeneous
Bayesian net into subnets called sects. The collection of these sects forms a MSBN. It is described how the
probability distribution should be assigned to sects relative to the distribution in the homogeneous network.
Particularly, it is necessary to assign the original probability table of a d-sepnode to a unique sect which
contains the d-sepnode and all its parent nodes, and to assign the same d-sepnode in other sects a uniform
table.

In order to perform efficient inference in a general but sparse network, each sect is transformed into a
separate junction tree which will stand as an inference entity. When doing so, it is necessary to preserve
the intactness of the clique hypergraph resulting from the corresponding homogeneous net. That is, we have
to ensure that each clique in the original hypergraph will find at least one host sect. This imposes another
constraint, termed soundness of sectioning, on the overall organization of the sects. Section 6.2 discusses
this constraint.

In addition to a necessary and sufficient condition for soundness of sectioning, two sufficient and natural

conditions, that can easily be checked, are provided. The conditions are specified by two rules, the covering

14

subDAG rule and the hypertree rule, which, if followed, guarantee sound sectioning. The two rules plus the
d-sepset interface impose conditional independence constraints at a macro level (at the level of the sects as
opposed to conditional independence at the level of the nodes). This is discussed in Section 6.3. Although
there exists MSBNs of sound sectioning which do not follow the two rules, it is shown that computational
advantages are obtained in MSBNs sectioned according to the rules. Further discussion will therefore only

be directed to MSBNSs satisfying the two rules.

Moralization and triangulation To transform a MSBN into a set of junction trees requires moralization
and triangulation as reviewed in Section 2.4. In the MSBN context, the transformation can be performed
globally or by local computation at the level of the sects. The global computation performs moralization and
triangulation in the same way as in the junction tree technique with care not to mix the nodes of distinct
sects into one clique. An additional mapping of the resultant morali-triangulated graph into subgraphs
corresponding to the sects is needed. But where space saving is concerned, local computation is desired.
The pitfalls and procedures involved in moralization and triangulation by local computation are discussed.

Since the number of parents for a d-sepnode may be different for different sects, the moralization in
MSBN cannot be achieved by “pure” local computation in each sect. Communication between the sects is
required to ensure parent d-sepnodes are moralized identically in different sects.

The criterion of triangulation in the MSBN is to ensure the “intactness” of a resulting hypergraph from
the corresponding homogeneous net. Problems arise if we insist on triangulation by local computation at
the level of sects. One problem is that an inter-sect cycle will be triangulated in the homogeneous net, but
the cycle cannot be identified by examining each of the sects involved individually. Another problem is that
d-sepnodes may be triangulated differently in different sects. The solution is to let the sects communicate
during triangulation. Since moralization and triangulation both involve adding links and both require com-
munication between sects, the corresponding local operations in each sect can be performed together and
messages to other sects can be sent together. Therefore, operationally, moralization and triangulation in
MSBN are not separate steps as in the junction tree technique. The corresponding integrated operation is
termed morali-triangulation to reflect this.

In Section 7.1, the above concept of “intactness” of the hypergraph is formalized in terms of invertibility
of morali-triangulation. It is shown that if the sectioning of a MSBN is sound then there exists an invertible
morali-triangulation such that the “intactness” of the hypergraph is preserved. Section 7.1 provides an

algorithm for an invertible morali-triangulation assuming a covering subDAG.

15

Next steps in the junction tree technique In the junction tree technique, after triangulation, further
steps of the transformation are the identification of cliques in the morali-triangulated graph (clique hyper-
graph formation) and the junction tree construction. In MSBNs, these steps are performed in a similar way
for each sect as in the junction tree technique. A MSBN is thus transformed into a set of junction trees
called a junction forest of cliques. Readers are referred to Andersen et al. (1989), Jensen, Lauritzen and

Olesen (1990) for technique details involving these steps.

Linkage formation An important extension of MSBNs and junction forests to the junction tree technique
is the formation of multiple information channels between junction trees (in a junction forest) such that a
joint distribution on a d-sepset can be passed between a pair of junction trees by passing through marginal
distributions on subsets of the d-sepset. In this way, the exponential enlargement of the clique state space
caused by the brute force method (Section 3) can be avoided. These channels are termed linkages (Sec-
tion 7.2). Each linkage is a set of d-sepnodes which links two cliques. The two cliques are from the pair of
junction trees involved, respectively. During inference, if evidence is obtained from previously active junction
tree, it can then be propagated to the newly active junction tree through linkages between them.

If we built this naively, multiple linkages could cause redundant information passing or could confuse
the information receiver. The problem can be avoided by coordination among linkages during information
passing. Since the problem manifests differently during belief initialization and evidential reasoning, the two
cases are treated separately. In both cases, information passing is performed one linkage at a time. During
initialization, (redundant) information already passed through other linkages is removed from the linkage
belief table before the latter is passed over. Operationally, the linkages are ordered. The intersection of
a linkage with the union of those linkages ordered before is called the redundancy set of the linkage. The
redundancy set tells a linkage what portion of the information has to be removed during information passing.
During evidential reasoning, the operation DistributeEvidence (Section 2.4) is performed after information
passing. The junction forest of cliques with linkages and redundancy sets, forms a linked junction forest of

cliques.

Formation of joint system belief of junction forest The joint system belief of the junction forest,
defined (Section 7.3) in terms of the belief on each of the junction trees, is proportional to the joint probability
distribution of the homogeneous net. The junction forest with the joint system belief defined, forms a
junction forest of belief universes. When it is clear from the context, only “junction forest” is used, without

differentiating between its different stages.

16

Consistency and separability of junction forest Asin the case of the junction tree technique, we would
like to obtain the marginal probability of a variable by marginalization of the belief in any belief universe
of any junction tree which contains the variable. In the case of the junction tree technique, this requires
the consistency property which can be satisfied by DistributeEvidence and CollectEvidence as reviewed
in Section 2.4. In the context of a junction forest, an additional property called separability is required
(Section 8) due to multiple linkages between junction trees. It imposes a host composition constraint on the
composition of linkage host cliques. The function of linkages is to pass the joint belief of the corresponding
d-sepset. It is shown that if all the junction trees in a junction forest satisfy the host composition condition
then separability is guaranteed. Why these conditions usually hold naturally is explained. The remedy when
the condition does not hold is also discussed. A junction forest structure satisfying separability, and with a
set of operations performed to bring the forest into consistency, can obtain marginal probabilities by local

computation.

Belief initialization Belief initialization (Section 9.3) in a junction forest is achieved by first bringing
the belief universes in each junction tree into consistency, and then exchanging prior belief between junction
trees to bring the junction forest into global consistency. When exchanging beliefs, care is to be taken on
two issues. First, non-trivial information (recall that d-sepnodes in some sects are assigned uniform tables
during sectioning) could be contained in either side of the two junction trees involved. Second, redundant
information could be passed through multiple linkages. Section 9 defines several levels of operations to

initialize belief of a junction forest by local computation at the level of junction trees.

Evidential reasoning Only one junction tree in a junction forest needs to be active. Whenever new
evidence becomes available to the currently active junction tree, it is entered and the tree is made consistent
such that queries can be answered. Thus, the computation complexity of evidential reasoning is governed
by the size of one sect. When the user shifts attention, a new junction tree replaces the currently active
tree and all previously acquired evidence is absorbed through an operation ShiftAttention. The operation
requires only a chain of ‘intermediate’ junction trees to be updated. During the inter-junction tree updating,

we need to ensure no confusion results from multi-linkage information passing.

5 The d-sepset and the Junction Tree

5.1 The d-sepset

As discussed in Section 4, the problem of partitioning a Bayesian net by natural localization can be concep-

tually formulated as though the domain has been represented with a homogeneous network. The task is to

17

find the technical constraint to partition the net into subnets such that the subnets can be used separately
and cooperatively during inference with small amount of information exchange. This section defines the most
important concept for partitioning, namely, d-sepset. Then some insights are provided into its implication

in the secondary structure of DAGs.

Definition 5.1 (d-sepset) Let D = D! U D? be a DAG. The set of nodes I = N' N N? is a d-sepset
between subDAG D' and D? if the following condition holds®.

For every A; € T with its parents m; in D, either m; C N, or m; C N2.

Elements of a d-sepset are called d-sepnodes. When the above condition holds, D is said to be sectioned

into {D', D?}.

Note that in general a DAG D = D' LU D? does not imply the sectioning of D into {D', D?}. This is

because the intersection of the corresponding two sets of nodes may not be a d-sepset.

Lemma 5.2 Let a DAG D be sectioned into {D*, D?} and I = N' N N? be a d-sepset. I d-separates N'\ I
from N2\ I.

The lemma can be generalized into the following theorem which states that, although the d-sepset is
pairwise defined, the union of d-sepsets of a subDAG with other subDAGs globally d-separate the subDAG
from the rest of the DAG. Note that when a d-sepset is indexed with two superscripts, their order is

immaterial.

Theorem 5.3 Let a DAG D be sectioned into {D',...,D®} and IV = N'N N7 be the d-sepset between D'

and DJ. For each i, Uj; 1% d-separates N\ Uj ;I from N\ N°.

The theorem implies that the joint distribution on d-sepsets is the sufficient information to be exchanged

between a Bayesian subnet and the rest of the network.

Corollary 5.4 Let (D, P) be a Bayesian net, D be sectioned into {D*, ..., DP}, and I¥ = N*N N7 be the
d-sepset between D' and D7. When evidence is available at variables in N?, the propagation of the joint

distribution on Uj; I from D' to the rest is sufficient in order to obtain posterior distribution on N.

Example 5.5 The DAG O in Figure 2 is sectioned into {©!,0% 0%} in Figure 5. I'? = {H;,H,} is the
d-sepset between ©! and ©%; I3 = {H,, H3, Hy} is the d-sepset between ©! and ©2; and I** = {H,} is the
d-sepset between ©% and ©3. ['?2 U I'® = {H,, Hy, H3, Hy} d-separates the rest of ©; from the rest of ©,

and Os3.

18

Ho
Ao
E:
= 3
Az 3 =)
ot Hz E1 O3

! E>
Ex N3

N EE e T
o) T
TP e T T

Figure 5: The set {©!,0% 03} of three subDAGs (top) forms a sectioning of © in Figure 1. {A', A% A3}
(middle) is the set of morali-triangulated graphs of {©!,02,03}, and = = {I'},I'?,T3} (bottom) is the
corresponding junction forest. The ribbed bands indicate linkages.

There is a close relation between d-sepset and usual graph separator given in proposition 5.6. If Z is
the graph separator of X and Y then the removal of the set Z of nodes from the graph (together with their

associated links) would render the nodes in X disconnected from those in Y.

Proposition 5.6 Let a DAG D be sectioned into {D*, D*}. The set of nodes I = N* N N? is a d-sepset

between D' and D? iff I is a graph separator in the moral graph of D.

The properties of d-separation in the DAG representation of Bayesian networks have been studied exten-
sively (Pearl 1988; Geiger, Verma and Pearl 1990). It can be used to derive Pearl’s propagation algorithm
in singly-connected Bayesian nets (Neapolitan 1990). But to our knowledge, its implication in secondary

structure has not been examined. The definition of the d-sepset now allows to do so.

3By the definition of LI, there can be no arcs from D\ T to D\ I.

19

5.2 Implication of d-sepset in junction trees

Representing a multiply connected Bayesian network in a secondary structure, namely a junction tree,
enables flexible and efficient belief propagation. With the d-sepset concept defined, we would like to know
how information is passed in the junction tree between nodes separated by the d-sepset in the original

Bayesian network.

Lemma 5.7 Let a DAG D be sectioned into {D*, D?} and I = N' N N? be the d-sepset. A junction tree T

can be constructed from D, such that the following statement is true.

For all pairs of nodes Ay € N*\ I and Ay € N*\ I, if Ay is contained in cliqgue C1 and Ay in
Cs, then on the unique path between Cy and Cy in T, there exists a clique sepset () containing

only d-sepnodes.

The lemma can be generalized to the case of any finite number of subDAGs. This is the following

proposition. Its proof is similar to the lemma.

Proposition 5.8 (belief relay) Let a DAG D be sectioned into {D*, ..., DP} and I = U; ;1" be the union
of d-sepsets between D' and other subDAGs. A junction tree T can be constructed from D, such that the

following statement is true.

For all pairs of nodes Ay € N*\ I and A> € N\ N¢, if Ay is contained in cliqgue C1 and Az in
Cs, then on the unique path between Cy and Cy in T, there exists a clique sepset (Q containing

only d-sepnodes in I.

Example 5.9 Recall the DAG © in Figure 2 which is sectioned into {©!, 02,03} in Figure 5 with I =
{H,,H3, H,} being the d-sepset between ©! and ©3. Consider the node A3 in clique {H3, Hy, A3} and the
node Es in clique {E4, E3, Es} in the junction tree I' in Figure 2. In the path between the two cliques, the
sepset {Hs, Hy} between cliques {Hs, Hy, A3} and {Hs, Hy, E5} contains only d-sepnodes.

When new evidence is available, it can be propagated to the junction tree through sepsets between cliques
(Jensen, Lauritzen and Olesen 1990). Therefore, the above proposition means that a junction tree can be
constructed such that evidence in N\ I must pass through at least one sepset containing only nodes in I in
order to be propagated to nodes in N \ N¢.

Theorem 5.3 and Proposition 5.8 suggest that the clique hypergraph can be organized such that the
cliques corresponding to different subDAGs separated by d-sepsets can be organized into different junction

trees. Communication between them can be accomplished through d-sepsets. This idea is formalized below.

20

6 Multiply Sectioned Bayesian Nets
6.1 Definition of MSBN

Definition 6.1 (MSBN) Let S = (N, E, P) be a Bayesian network. Suppose D = (N, E) is sectioned into
{D*,...,DP} where D' = (N%, E?). Suppose [V = NN N7 is the d-sepset between D' and D’ (1 < i,j <
Byi # j)-

Each d-sepnode A is assigned to a subDAGs in the following way:

Let n* be the in-degree of A in subDAG D!. Choose some i such that n* > 1/ (j = 1,...,5)

(breaking ties arbitrarily). Assign A to subDAG D',
A probability distribution P is assigned to each subDAG D! (i = 1,...,5) in the following way.

For each node A € N, if A is a d-sepnode and A is not assigned to D*, assign to A a uniform

probability table.* Otherwise assign to A an identical probability table to that in (N, E, P).

Call S* = (D, P%) = ((N%, E%), P%) a sect and call the set of sects {S*,..., 5%} a Multiply Sectioned

Bayesian Network (MISBN).

Definition 6.2 (adjacent sects) Two sects in a MSBN are adjacent if their d-sepset is non-empty. The

two sects are also called neighbour sects.

The original Bayesian net S is called as an ‘UnSectioned Bayesian Network (USBN)’. Note that the
sectioning of a Bayesian network is essentially determined by the sectioning of the corresponding DAG D.

It doesn’t matter which way ties are broken. There will be no significant difference in further processing.

Example 6.3 Suppose the variables in DAG O in Figure 2 are all binary. Associate the probability distri-
bution P given in Table 1 with ©. (0, P) is an USBN.

Given the USBN (0, P), and corresponding three subDAGs ©!, ©2 and ©3, a 3-sect MSBN {(0%, P!),
(02, P?), (3, P3)} can be constructed. First assign d-sepnodes Hy,...,H, to the subDAGs. Hy and H,
must be assigned to ©'. H; can be assigned to either @' or ©2, and Hs can be assigned to either ©' or ©3.
Here it is chosen to assign all 4 d-sepnodes to ©'. Based on this assignment and P given, the probability
distribution for each sect can be determined (Table 2). Note the uniform probability tables assigned to

d-sepnodes in ©, and O3.

4This is necessary for two reasons. If a sect does not contain all a d-sepnode’s parents, the size of probability table of the
d-sepnode must be decreased. This assignment guarantees that the joint system belief constructed in Section 7.3 is proportional
to the joint probability distribution P.

21

P! P? pP3
p(hn) = .15 p(hn) = D p(hgl) = 5
p(h21|a21a11) = 8696 p(hZI) = 5 p(hgl) = 5
p(hailazia1z) = .7
p(hotlazeair) = .6 p(fi1|hi1he1) = 7895 plha) = 5
p(ha1|ageaiz) = .08 p(fi1|hi1he2) = 5
p(fi1|hizh2) = .6 pleirlha) = .8
plhs) = .3 p(fi1|hizh2e) = .05 plerrlhaz) = .15
p(hat]asi) = .25 p(forlfu1) = 4 plezilesierr) = 9789
p(hat]as:) = 4 p(farlfiz) = .75 plesilesier2) = .8
p(ez1leszerr) = .9
plaiilhi) = .8 p(ez1leszerz) = .05
plaii|hiz) = 1
p(€31|h21h31) = 7702
plazlhs) = .8 plesilharhs2) = .35
plasilhs2) = .1 p(esilhazhs) = .65
p(esilhaohsz) = .01
plasi|hs;) = .3
plasi|hs2) = .8

Table 2: Probability distribution associated with subDAGs ©', ©2 and ©? in Figure 5.

6.2 Soundness of Sectioning

In order to perform efficient inference computation in a multiply connected Bayesian net, the junction tree
technique transforms the Bayesian net into a clique hypergraph through moralization and triangulation.
The hypergraph is organized into a junction tree within which efficient inference can take place. Because of
the computational advantage of junction trees, in the context of a MSBN, we would like to transform each
sect into a junction tree. The immediate issue is to define conditions on the transformation that guarantee
that correct inference can take place in the resultant set of junction trees. The following reviews the major
theoretical results related to this question.

Lauritzen, Speed and Vijayan (1984) showed that the clique hypergraph of a graph is decomposable iff
the graph is triangulated. Jensen (1988) proved that a hypergraph has a junction tree iff it is decomposable.
Maier (1983) proved the same in the context of relational database. Jensen, Lauritzen, Olesen (1990) and
Pearl (1988) showed that a junction tree representation of a Bayesian net is an equivalent representation
in the sense that the information about joint probability distribution can be preserved. Finally, a more
flexible algorithm (compared to that by Lauritzen and Spiegelhalter (1988)) was devised on the junction tree
representation of multiply connected Bayesian nets (Jensen, Lauritzen and Olesen 1990).

The above results highlight the importance of clique hypergraphs resulted from triangulation of the

original graphs. Thus, as each sect in a MSBN is transformed into a junction tree, it is necessary to preserve

22

the intactness of the clique hypergraph resulting from the corresponding USBN. This is possible only if the

sectioning of DAG D of the original USBN is sound as defined formally below.

Definition 6.4 (soundness of sectioning) Let a DAG D be sectioned into

{D*,...,DP}. If there exists a clique hypergraph from D such that for every clique Cj, in the hypergraph
there is at least one subDAG D' satisfying Cy C N, then the sectioning is sound. D' is said to be a host
subDAG of clique Cy.

Although the soundness of sectioning is defined in terms of DAGs, the concept is used here in the context
of MSBNs. When the sectioning of a DAG is sound, it is said that the sectioning of the corresponding USBN
into the MSBN is sound, or the MSBN is said to be sound.

If the sectioning of a DAG D is unsound, there is no host subDAG for at least one clique in all possible
hypergraphs from D. If a MSBN is based on such a sectioning, it is impossible to consistently maintain the

autonomous status of sects in the secondary representation.

Example 6.5 In Figure 6, { D', D? D3} is an unsound sectioning of D. The clique hypergraph for D must
have clique {A, B, C'} which finds no host subDAG from D', D? and D3.

E]cj F E D2 c DS F
ABD
< ABC >
A CE> B C F
T

Figure 6: Top left: A DAG D. Top right: The set of subDAGs from an unsound sectioning of D. Bottom
left: The junction tree 7" from D.

The following develops a necessary and sufficient condition for soundness of sectioning.

Lemma 6.6 Let Ay —...—A;_1—B1—...—Bj_1 —Ci—...— Cy—1—...— Ay be a cycle consisting of nodes
from three or more sets: X = {A1,...,Aj_1,B1}, Y ={B1,...,Bj_1,C1}, and so on. The nodes from any
one set are adjacent in the cycle, and two adjacent sets have a node in common. Then triangulation of this

cycle must create a triangle with its three nodes not belonging to any single set.

23

If a MSBN has only two sects, the sectioning is always sound. Unsoundness can arise only when there

are three or more sects. The following shows ezactly the case where a sectioning is unsound.

Theorem 6.7 (inter-subDAG cycle) A sectioning of a DAG D to a set of three or more subDAGs is
sound iff there exists no (undirected) cycle in D which consists of nodes from three or more distinct subDAGs

such that the nodes from each subDAG are adjacent on the cycle.
6.3 Rules That Guarantee Soundness

Given a DAG and a sectioning, the search for inter-subDAG cycles relative to the sectioning is expensive,
especially by local computation when space is of concern. Just that a sectioning is sound does not mean that
the resultant MSBN has good computational properties (see the latter part of this Section, Section 7.3, and
9.5). Furthermore, in practice, a large network (MSBN) is constructed one sect at a time. If a sectioning is
not sound and it can only be discovered after all sects have been constructed, the overall revision would be
disastrous. Thus, we would like to develop a simple guideline for sound sectioning which could be followed
during incremental construction of MSBNs. The following covering subDAG rule is one such guideline. This

rule, if followed, gives good computational properties, and allows to be checked locally as well.

Theorem 6.8 (covering subDAG) Let a DAG D be sectioned into {D',...,D?}. Let I'"* = NI N N¥ be
the d-sepset between DI and D*. If there is a subDAG D' such that N* D Uj,I% then the sectioning is

sound. The subDAG D' is called the covering subDAG relative to the sectioning.

In the context of a MSBN, call the sect corresponding to the covering subDAG the covering sect. Note

that the covering sect rule imposes a conditional independence constraint at a macro level.

Proposition 6.9 Let S* and S7 be any two sects in a MSBN with a covering sect S* (i # k, j # k). The

two sets of variables N* and N7 are conditionally independent given N*.
Example 6.10 Consider the 3-sect MSBN {(0%, P'), (02, P?),(©3, P3)}. (©', P!) is the covering sect.

Note, in general, the covering sect of a MSBN may not be unique. As far as soundness is concerned, one
is as good as the others. Practically, the one to be consulted most often or the one with the least size is
preferred for the sake of computational efficiency which will be clear later.

The covering sect is typically formed naturally. For example (Xiang et al. 1992), in a neuromuscular
diagnosis system, the sect containing knowledge about clinical examination contains all the disease hypotheses
considered by the system. The EMG sect or nerve conduction sect contains only a subset of the disease
hypotheses based on diagnostic importance of these tests to each disease. Thus, the clinical sect is a natural

covering sect with all the disease hypothesis as d-sepnodes interfacing the sect with other sects.

24

The covering subDAG rule can be repeatedly used to create sophisticated MSBNs which are sound. When

doing so, a global covering subDAG requirement is replaced by a local covering subDAG requirement.

Definition 6.11 (MSBN of hypertree structure) A MSBN of hypertree structure is one that is built by
the following procedure:
Start with an empty MSBN. Recursively add a new subDAG D* to the set of constructed subDAGs

{D*,...,D*=1} subject to the constraint:

There exists D' (i < k) such that, for all DI (j < k;j # i), I'"* C N* where I’ is the d-sepset

between D7 and D*. D' is called a local covering subDAG relative to DF.
Theorem 6.12 (hypertree) A MSBN with a hypertree structure is sound.
The following example illustrate the hypertree rule. It also explains why the sectioning is sound.

Example 6.13 Figure 7 depicts part of a MSBN constructed by the hypertree rule. Each box represents a
subDAG with boundaries between boxes representing d-sepsets. The superscripts of subDAGs represent the

order of their creation. D', D*, D5 are local covering subDAGs.

D6 v 9 Di8
D 5
D2 D3 Dt
D8
Dl

D1z ' D14

13 nis

Figure 7: A MSBN with a hypertree structure.

The inter-subDAG cycle as described in theorem 6.7 cannot happen in this MSBN due to its hypertree

structure, and hence the sectioning is sound.
Note that the hypertree rule also imposes a conditional independence constraint at a macro level.

Proposition 6.14 Let S* and S7 be any two sects with an empty d-sepset in a MSBN sectioned by the
hypertree rule. Let S* be any sect on the unique route mediating S* and S’ on the hypertree. The two sets

of variables N* and N7 are conditionally independent given N*.

25

It should be indicated that the covering subDAG rule and the hypertree rule do not cover every case

where sectioning is sound.

Example 6.15 The 3-sect MSBN {D*', D? D3} in Figure 8 has no covering subDAG. But the sectioning is

sound.

o D> w D Cor < oe
T (oo

Figure 8: Top left: A DAG D. Top right: A junction tree T from D. Bottom left: {D', D? D3} forms a
sound sectioning of D. Bottom right: The junction trees from the MSBN in Bottom left.

Note that, although the sectioning of the MSBN in Figure 8 is sound, this kind of structure is restricted.
For example, arcs can be added between A and B in D!, between A and C in D2, but as soon as one more
arc is added between B and C in D3, the theorem 6.7 is violated and the sectioning become unsound. That
is, when n subDAGs (n > 3) are interfaced in this style, there can be at most n — 1 of them being multiply
connected. Further computational problems with such structure will be discussed in the appropriate latter
sections.

Since MSBNs constructed by the covering subDAG rule or the hypertree rule have sound sectioning, are
less restricted, and have extra computational advantages (Section 7.3 and 9.5) over the MSBNs which do
not follow these rules, the following study is directed to only the MSBNs that follow these rules.

Conceptually, all MSBNs constructed by the hypertree rule can be viewed as MSBNs with covering
subDAGs when attention is directed to local structures. For example, consider D! in Figure 7 and its sur-

rounding subDAGs. D2, D* D® D7, D8 can be considered as one subDAG, D3, D% D% D9 D! as another,

26

D2, D'3 and D', D'5 as two others. Thus, the MSBN is viewed as one with a global covering subDAG
D'. Likewise, when concerned with the relation between D'* and D'®, the MSBN can be viewed as one
satisfying the covering subDAG rule with 8 = 2. Therefore, the computation required for a MSBN of a
hypertree structure is just the repetition of the computation required for a MSBN with a global covering
subDAG. On the other hand, a MSBN with a global covering subDAG is a special case of the hypertree

structure. Hence, the following study is often simplified by considering only one of the two cases.

7 Transform MSBN Into Junction Forest

In order to perform efficient inference in a general but sparse network, it is desirable to transform each sect
of a MSBN into a junction tree which will stand as an inference entity (Section 4). The transformation
takes several steps to be discussed in this section. The set of subDAGs of the MSBN are morali-triangulated
into a set of morali-triangulated graphs from which a set of clique hypergraphs are formed. Then the set of
clique hypergraphs are organized into a set of junction trees of cliques. Afterwards, the linkages between the
junction trees are created. Finally, belief tables are assigned to cliques and linkages and a junction forest of

belief universes is constructed.

7.1 Transform subDAGs into junction trees by local computation

The key issue is morali-triangulating subDAGs of a MSBN into a set of morali-triangulated graphs. Once
this is done, the formation of the clique hypergraph and the organization of each subDAG into a junction
tree are performed the same way as in the case of a USBN and a single junction tree (Andersen et al. 1989,
Jensen, Lauritzen and Olesen 1990). As mentioned before, the criterion in morali-triangulation of a set of
subDAGs of a MSBN into a set of clique hypergraphs is to preserve the ‘intactness’ of the clique hypergraph

resulted from the corresponding USBN. The concept of ‘intactness’ is formalized below.

Definition 7.1 (invertible morali-triangulation) Let D be a DAG sectioned into
{D*,...,DP}. Let N’ be the set of nodes of D'. If there exists a morali-triangulated graph G of D, with
the clique hypergraph H, such that G = I_IleGi where G is the subgraph of G induced by N°¢, or equiv-
alently, H = I_IleHi where H' is the clique hypergraph of G, then the set of morali-triangulated graphs
{G',...,G?} is invertible. Also the transformation of {D',... D%} into {G*,...,G"} is said to be an

invertible morali-triangulation.

The invertibility of morali-triangulation depends on the soundness in sectioning. This is given by the

following theorem.

27

Theorem 7.2 (existence of invertible morali-triangulation) There ezists an invertible morali-triangulation

for {D',... D"} sectioned from a DAG D, iff the sectioning is sound.

A set of invertible morali-triangulated graphs of a MSBN can be constructed by first performing a global
computation (moralization and triangulation) on D to find G, and then determining its subgraphs relative
to the sectioning of the MSBN. The moralization and triangulation would be the same as in the junction
tree technique with care to be taken not to mix nodes in different subDAGs into one clique. However, when
space is of concern, the use of MSBNs offers the possibility of morali-triangulation by local computation at
the level of subDAGs of sects. In this method, each subDAG in a MSBN is morali-triangulated separately
(message passing may be involved) such that the collection of them is invertible. The following discusses

how this can be achieved.

Example 7.3 In the example depicted in Figures 2 and 5, O is sectioned into
{0!,02,03} by a sound sectioning and {A!, A%, A3} is a set of invertible morali-triangulated graphs relative

to the sectioning. We want to find A? (i = 1,2, 3) from ©! (i = 1,2,3) by local computation.

Since subDAGs of a MSBN are interfaced through d-sepsets, the focus of finding a set of invertible
morali-triangulated graphs by local computation is to decide whether each pair of d-sepnodes is to be linked.
Coordination between adjacent subDAGs is necessary to ensure correct decisions. The following considers
this systematically.

Call a link between two d-sepnodes a d-link. Call a simple path (A;, As, ..., Ax) a d-path if there is some
i,7, (1 <i<j<k)suchthat A;,...,A; and A;,..., Ay are all d-sepnodes, while all the other nodes on the

path are non-d-sepnodes. A d-link is a trivial d-path. There are six types of d-links:

Arc type inherited from the subDAG. That is, if two d-sepnodes are connected originally in the subDAG,

there is a d-link between them in G".

ML type created by local moralization. For example, the d-links (Hy, Hs) in A? and (H,, H3) in A®. No

communication between subDAGs is required to add these d-links.

ME type created by moralization in neighbour subDAGs. For example, the d-links (H;, H2) and (Hs, H3)

in Al. Deciding to add this type of d-link requires communication between neighbour subDAGs.

Cy type created to triangulate inter-subDAG cycles. For example, the d-link (Hz, Hs) in A' and A3.

Deciding to add this type of d-links requires communication between neighbour subDAGs.

TL type created during local triangulation. After the above four types of d-links have been introduced

to the moral graph of a subDAG, there may still be un-triangulated cycles within the moral graph

28

involving four or more d-sepnodes. The example used above is too simple to illustrate this and next

type.

TE type created by local triangulation in neighbour subDAGs. The triangulation of a cycle of length > 3
involving only d-sepnodes is not unique. If two neighbour subDAGs triangulate such a cycle by local
computation without coordination, they may triangulate in different ways and result in different set of
cliques for the nodes in the d-sepset. Therefore communication is required such that a subDAG may
adopt the d-links introduced by triangulation in adjacent subDAGs. The argument also applies to the

case of triangulating cycles consisting of general d-paths.

An algorithm for morali-triangulation of subDAGs of a MSBN into a set of invertible triangulated graphs

under the covering subDAG assumption is given below.

Algorithm 7.4 (morali-triangulation with a covering subDAG) Let D! be the covering subDAG in
the MSBN.

1. Let ML' be the set of d-links added in the local moralization of subDAG D'. Let Cy® be the set of
pairs of nodes that are candidates for becoming Cy type d-links in D'. For each subDAG D', do the
following:

(a) Moralize D' to obtain its moral graph ®'. Add new d-links to ML,

(b) Search for pairs of d-sepnodes connected by a d-path in ®. Add the pairs found to Cyt.
2. For D', do the following:

(a) For each pair of d-sepnodes in D' also contained in one of the ML (i > 1), connect the pair by
a d-link in ®'.

(b) For each pair of d-sepnodes contained in both Cy' and one of the Cy’ (j > 1), connect the pair
by a d-link in ®'.

(¢) Triangulate ®* to obtain the morali-triangulated graph A*.

(d) Let DLINK be the set of d-links in A'.
3. For each D' (i =2,...,03), do the following:

(a) For each pair of d-sepnodes of ®¢ also contained in DLIN K, connect the pair by a d-link.

(b) Triangulate ®' to obtain the morali-triangulated graph A*.

Note that Algorithm 7.4 has two passes through all the subDAGs. The following theorem shows the

invertibility of the morali-triangulation.

29

Theorem 7.5 (invertibility of Algorithm 7.4) The morali-triangulation constructed in Algorithm 7.4

is invertible.

Example 7.6 The following describe the morali-triangulation of U3_, ©% (Figure 5) by Algorithm 7.4.

1. After step 1 of the algorithm, M L' = ¢, ML? = {(H,, H>)}, ML?® = {(H, H3)},
Cyl = {(H17H2)7 (H27H3)7 (H37H4)}7 Cy2 = {(HDHZ)}: and Cy3 = {(H27H3)7 (H27H4)7 (H37H4)}

2. After step 2, the morali-triangulated graph A® of ©! is completed by adding d-links (H;, Hz), (Hs, H3),
(Hs, Hy) to ©'s moral graph, and then triangulating (nothing is added). DLINK will contain
{(H17 H2)7 (H27 H3)7 (H37 H4)}

3. After step 3, the morali-triangulated graph A2 of ©! is completed without change to its moral graph;
the morali-triangulated graph A3 of ©3 is completed by adding the d-link (Hs, Hy) to its moral graph,
and then triangulating (with the link (E3, Hy) added).

As mentioned in Section 4, after the morali-triangulation, the other steps in transformation of a MSBN
into a set of junction trees of cliques are: identifying cliques of the morali-triangulated graphs to form a
set of clique hypergraphs, and organizing each hypergraph into a junction tree. These steps are performed
in the same way as in the junction tree technique. Throughout the rest of the chapter, it is assumed that
junction trees are obtained through a set of invertible triangulated graphs, and it is said that the junction
trees are obtained by an invertible transformation.

Call a set of junction trees of cliques from an invertible transformation of subDAGs of a MSBN a junction

forest of cliques denoted by F = {T*,... T”} where T is the junction tree from the subDAG D°.
7.2 Linkages between junction trees

Just as d-sepsets interface subDAGs, linkages interface junction trees transformed from subDAGs and serve
as information channels between junction trees during inference. The creation of the linkages is an extension
to the junction tree technique. The multiple linkages between pairs of junction trees in a junction forest allow
the preservation of localization within junction trees, and allow the avoidance of the exponential explosion

of the sizes of clique state spaces associated with the brute force method (Section 3).

Definition 7.7 (linkage set) Let I be the d-sepset between two subDAGs D and D®. Let T and T® be
the junction trees transformed from D® and DY respectively. A linkage of T® relative to T® is a set 1 of

nodes such that the following two conditions hold.

1. Boundary: there exists a clique Cy, € T® such that | = C, NI. C, is called a host clique of [;

30

2. Mazimum: there is no subset of l that is also a linkage.

In general there may be more than one linkage between a pair of junction trees. Define L® to be the set of

all linkages of T® relative to T".

Proposition 7.8 (identity of linkages) Let T and T® be the junction trees from subDAGs D* and D°
respectively. If L is the set of linkages of T* relative to T® and L is the set of linkages of T relative to
T® then L = Lb®.

Example 7.9 In Figure 5, linkages between junction trees are indicated with ribbed bands connecting the

corresponding host cliques. The two linkages between I't and I'® are {H3, Ho} and {Hs, Hy}.

Given a set of linkages between a pair of junction trees, the concept of a redundancy set can be defined. As
mentioned in Section 4, redundancy sets provide structures which allow redundant information to be removed
during inter-junction tree information passing. The concept will be used for defining joint system belief in
Section 7.3 and defining the operation NonRedundancyAbsorption in Section 9.2. To define the redundancy
set, we need to index linkages such that the redundancy sets defined based on the indexing possess certain

desirable properties described below. We index a set L of linkages by the following algorithm.
Algorithm 7.10 (indexing linkages) Let T and T® be two junction trees with a set L of linkages.

1. Pick one of the junction trees in the pair, say T®. Create a tree G with nodes labeled by linkages in L.
Connect two nodes in G by a link if either the hosts of corresponding linkages are directly connected
in T, or the hosts of corresponding linkages are (indirectly) connected in T® by a path on which all

intermediate cliques are not linkage hosts. Call this tree a linkage tree.

2. Index the nodes (linkages in L**) of G into Ly, Lo, ... in any order that is consistent with G, i.e., for

every i > j there is a unique predecessor j(i) < i such that Lj is adjacent to L; in G.

Note, the second step is always possible due to the tree structure of G. With linkages indexed this way,

the redundancy set can be defined as the following.

Definition 7.11 (redundancy set) Let a set of linkages L** = {L,..., Ly} be indezed by Algorithm 7.10.

Then for this set of indexed linkages, a redundancy set R; for index i is defined as

R, — ¢ ifi=1,
" LinLju 0> 1;§(i) <i; Ly is adjacent to Ly in the linkage tree G.

Lemma 7.12 A linkage tree is a junction tree. The redundancy sets are sepsets of the linkage tree.

31

Example 7.13 There are two linkages between I'' and I'® in Figure 5. Consider junction tree I'*. The
linkage tree G has two connected nodes, one labeled by the linkage { H3, H2} and the other by {Hs, Hy}. An
indexing Ly = {H3, Hy} and Ly = {H3, H4} defines two redundancy sets R; = ¢ and Ry = {H3}.

With linkages and redundancy sets constructed, we have a linked junction forest of cliques.

7.3 Joint system belief of junction forest

The following algorithm associates belief tables with each clique, each clique sepset, and each linkage in a
junction forest whose corresponding MSBN has a covering sect. These data structures specify a joint system

belief for the junction forest.

Algorithm 7.14 (creating data structures for the joint system belief) Let

(D,P) bea USBN, S = {S',...,S"} be a corresponding MSBN with a covering sect S*, and F = {T",..., T5}
be the junction forest from an invertible transformation. Let T* be the junction tree of D with cliques C°
and sepsets Q'. Let I' (i > 1) be the d-sepset between S* and S'. Let L' (i > 1) be the set of linkages

between T and T*, and R® (i > 1) be the corresponding set of redundancy sets.
1. For each junction tree T? in F, do the following:
e Assign each node n, € N to a unique cliqgue C, € C' such that C, contains nj and its parents

my. Break ties arbitrarily.

o Let P, denote the probability table associated with node ny. For each cliqgue C, that has nodes

Nk, - - -,y assigned to it, associate Cy with a belief table B(Cy) = Py x ... x P.

e For each clique sepset Q, € Q°, associate it with a constant belief table B(Q,).
2. For each set of linkage L?, do the following:

e For each linkage L. € L, associate it with a constant belief table B(L.).

Definition 7.15 (belief on redundancy set) Using the notations in Algorithm 7.14, for each redundancy
set R, € R, its belief table is defined as

Definition 7.16 (belief on d-sepset) Using the notations in Algorithm 7.14 and Definition 7.15, for each

d-sepset I, its belief table is defined as

_ HLzeLi B(Lz)

B([i) - HRZGRi BR.)

32

Definition 7.17 (belief on junction tree) Using the notations in Algorithm 7.14, for each junction tree

T, its belief table is defined as
B(T) = He.ec: B(C:)
lg,cq B(@y)

The above definition uses the notation B(7T") instead of B(NN?) to emphasize that it is related to the junction
tree.

Comparing the form of joint probability distribution for an USBN (Section 2.2) and the assignment of
probability tables for nodes in a sect (Definition 6.1), it can be seen that B(T) is proportional to the joint

probability distribution of S? relative to that assignment.

Definition 7.18 (belief on junction tree) Using the notations in Algorithm 7.14, Definitions 7.16 and

7.17, the joint system belief for the junction forest F is defined as

[T, B
The notation B(F') instead of B(IV) is used for the same reason as above. Note that unlike B(C3), B(Q,),
B(L,) and B(R.), B(I'), B(T?) and B(F) are mathematical objects which do not have corresponding data
structures in the knowledge base.

We have the following lemma.

Lemma 7.19 The joint belief B(F') of a MSBN is proportional to the joint probability distribution P of the

corresponding USBN.

To see this is true, we indicate that each d-sepnode, appearing in at least two sects, carries its original

probability table as in (N, E, P) exactly once by Definition 6.1, and carries an uniform table for the rest.

Example 7.20 Table 3 lists constructed belief tables for belief universes of junction forest F = {I'!, 2,3}

in Figure 5. The belief tables for sepsets, linkages, and redundancy sets are all constant tables at this stage.

Having constructed belief tables for cliques, sepsets, linkages, redundancy sets and junction forest, using
the definition of world of Section 2.3, we talk about belief universes, sepset worlds, linkage worlds, redundancy
worlds, and junction forest of belief universes. These terms will be used below.

The preceding has an assumption of a covering sect. The joint system belief of a junction forest with a
hypertree structure can be defined in a similar way. As the d-sepset/linkages between non-covering sects are
not considered in Algorithm 7.14, in the hypertree case, there is no need to consider the d-sepset/linkages
between neighbour sects covered by a local covering sect. In practice, these linkages are not created. This is

another computational advantage of the covering sect rule and the hypertree rule.

33

B(rh)
Clique
{Hz,H, A1}
Config.
{h21,h11,h11}
{h21,h11, h12}
{h21, h12, h11}
{h21, h12, h12}
{h22,h11,h11}
{h22, h11, h12}
{h22, h12, h11}
{h22, h12, h12}
Clique
{H2, A2, A1}
Config.
{h21,a21,a11}
{h21,a21,a12}
{h21,a22,a11}
{h21, a22,a12}
{ha2,a21,a11}
{h22,az21,a12}
{h22, azz2,a11}
{ha2, a2z, a12}
Clique
{Hs,Hz, Az}
Config.
{h31, ho1,a21}
{h31,h21,a22}
{h31,h22,a21}
{h31, ho2, a2}
{h32, ho1,a21}
{h32, ho1,a22}
{h32, ho2,a21}
{h32, ho2,a22}
Clique
{Hs, A3, Hy}
Config.
{h31,a31,ha1}
{h31,a31, haz}
{h31,a32, ha1}
{h31,a32, haz}
{h32,a31,ha1}
{h32,a31, haz}
{h32,a32, ha1 }
{h32, a3z, haz}

Table 3: Constructed belief tables for belief universes of junction forest F = {I',I'2, T3} in Figure 5. Config:

NodeAss.
Hp, Ay
B()

12

765

B(?)
Clique
{F2, F1}
Config.
{f21, f11}
{fo1, f12}
{fo2, f11}
{f22, f12}
Clique
{H2,F1,H:}
Config.
{h21, f11,h11}
{h21, f11, h12}
{h21, fi2, h11}
{h21, f12, h12}
{h22, f11,h11}
{h22, f11, h12}
{ha2, f12, h11}
{ha2, f12, h12}

Configuration. Node Ass: Nodes Assigned.

34

NodeAss.
Fy
B()

4
.75
.6
.25
NodeAss.
H», F1,H
B()
.7895
.6
.2105
4
.5
.05
5
.95

B(I?®)
Clique
{H3,H2, E3}
Config.
{h31,h21,e31}
{h31, ho1,e32}
{h31, hoz2,e31}
{h31, hoz2,e32}
{h32,h21,e31}
{h32,h21,e32}
{h32, hoz,e31}
{h3z2, hoz2, e32}
Clique
{E2,E3,E:1}
Config.
{e21,e31,€11}
{e21,€31, €12}
{e21,e32,€e11}
{e21,e32,€e12}
{e22,€e31,€e11}
{e22, €31, €12}
{e22,e32, €11}
{e22,e32,€e12}
Clique
{E3,E1, Ha}
Config.
{es1,e11, ha1}
{e31,€11, hao}
{e31,€e12,ha1}
{es1,e12, haz}
{es2,e11, ha1}
{e32,€11, hao}
{e32, €12, ha1}
{e32, €12, hao}
Clique
{H3,Es3, Hs}
Config.
{h31,€31,ha1}
{h31,€31, haz}
{h31,e32, ha1}
{h31,e32, haa}
{h32,e31, ha1}
{h32, €31, haz}
{h32,e32, ha1}
{h32, e32, haa}

NodeAss.
Hs, Hz, E3

.99
NodeAss.
Es
B()
.9789

e e

Algorithm 7.21 (linkage creation in a hypertree MSBN) Let S = {S!,...,S%} be a MSBN con-
structed according to Definition 6.11. Let F = {T',...,T5} be the junction forest from S where T® is
the junction tree from S*.

For each T, if St is the local covering sect during the construction of S, then create a set of linkages

between T and T7.

Definition 7.22 (Neighbour junction tree) A pair of junction trees in a junction forest are neighbours

if linkages are created between them.

8 Consistency and Separability of Junction Forest

In order to perform efficient inference, we need to propagate the information stored in different belief universes
in different junction trees of a junction forest to the whole system such that marginal probability of variables
can be obtained from any universes containing them with local computation.® More precisely, we need to
propagate both prior knowledge in the form of products of original probability tables from the corresponding
USBN, and evidence entered from a set of universes possibly in different junction trees. The following
defines consistency and separability that are properties of junction forests which guarantee the correctness

of marginals obtained by local computation.

8.1 Consistency of junction forest

This subsection defines a property of consistency that partially guarantees the correctness of marginal prob-
abilities obtained by local computation. In the context of the junction forest, three levels of consistency can
be identified.

The first level concerns the internal consistency of each junction tree.

Definition 8.1 (local consistency) Neighbor universes (C;, B(C;)) and (Cj, B(C;)) in a junction tree T'
with sepset world (Qr, B(Qr)) (Section 7.3) are consistent if

> B(Cy) x B(Qx) x Y B(C))

Ci\Cj Ci\Ci
where ‘o’ reads ‘proportional to’. When the relation holds among all neighbour universes, the junction tree
T! is said to be consistent. When all junction trees are consistent, a junction forest F is said to be locally

consistent.

The second level concerns the consistency between linkage hosts.

50Obtaining marginals by local computation is what the junction tree technique is developed for. More is obtained from
junction forests, namely, exploiting localization.

35

Definition 8.2 (boundary consistency) Host universes (C%, B(CL)) and (Cj,B(C})) of linkage world
(Lk, B(Ly,)) are consistent if
> B(Ci) x B(Ly) x »_ B(C))

CiNCy CH\Ci
When the relation holds among all linkage host universes, a junction forest is said to have reached boundary

consistency.
The third level concerns what the name of the following definition suggests.

Definition 8.3 (global consistency) A junction forest is said to be globally consistent if for any 2

belief universes (possibly in different junction trees) (CL, B(CL)) and (CJ, B(C3))

> B(CH)x > B(C))

ciNCy Oj\Ci
Theorem 8.4 (consistent junction forest) A junction forest is globally consistent iff it reaches both local

consistency and boundary consistency.

8.2 Separability of junction forests

In the junction tree technique, consistency is all that is required in order to obtain marginals by local
computation. In junction forests, this is not sufficient due to the existence of multiple linkages. The function
of multiple linkages between a pair of junction trees is to pass the joint distribution on the d-sepset by
passing marginal distributions on subsets of the d-sepset. Doing so, avoids the exponential increase in clique
state space sizes as outlined in Section 3. When breaking the joint into the marginals, we must ensure that
the joint can be reassembled from the marginals, i.e., a correct version of the joint is passed. Otherwise, the
correctness of local computation is not guaranteed. Since passing the marginals is achieved by passing the
belief tables on linkages and redundancy sets, the structure of linkage hosts is the key factor. The following
defines separability of junction forests in terms of the correctness of local computation. Then the structural

condition of linkage hosts is given under which the separability holds.

Definition 8.5 (separability) Let F = {T%|1 <i < 3} be a junction forest with nodes N and joint system

belief B(F). F is said to be separable if, when it is globally consistent, for any T* over subdomain N

> B(F) x B(T")

N\N

The following lemma, quoted from Jensen, is used to prove Proposition 8.10.

Lemma 8.6 (Jensen 1988)

36

Let T be a junction tree from clique hypergraph (N,C). Let Cy and Co be two adjacent cliques in T'.
Let T' be the graph resulting from T by making the union of C1 and Cs into one clique, and by keeping the

original sepsets. Then T' is a junction tree for clique hypergraph (N, (C\ {C1,C2}) U {C1 U C2}).

Definition 8.7 (host tree) Let a sound MSBN be transformed into a junction forest. Let T® be a junction
tree and L be the set of linkages between T and a neighbour junction tree.
A host tree of T? relative to L is the clique tree resulting from recursively removing from T® every leaf

clique which is not a linkage host relative to L.

The following is the structural condition for separability to be proved below.

Definition 8.8 (host composition) Let a sound MSBN be transformed into a junction forest. Let S be
a sect in the MSBN, and T? be the junction tree of S*. Let I be the d-sepset between S* and any distinct sect
S7, and L be the set of linkages between T and the junction tree for S7.

T? satisfies a host composition condition relative to L if the following are true in the host tree of T*?

relative to L.
1. No non-d-sepnode is contained in more than one linkage host.

2. Two non-d-sepnodes in some non-host clique are not contained in different linkage hosts.

Example 8.9 The host composition condition is violated in the host trees of Figure 9. The following shows
the violation and the resultant problem. Assume both trees are consistent.

First consider the top tree. Let L consist of linkages L; = {4,D} and Ly, = {A,E}. Let their hosts
be C1 = {A,B,D} and Cy = {A, B, E} which are adjacent in the tree. B is a common non-d-sepnode - a
violation of part 1 of the host composition condition. Even if all the belief tables are consistent, in general,

B(AD)B(AE)
B(4)

B(ABD)B(ABE
) (ABD)B(ABE)

B(AB) *

B

That is, the joint distribution on the d-sepset {A, D, E} constructed from belief tables on linkages and
redundancy sets is inconsistent in general.

Counsider the bottom tree. Let L and C; be the same. Let the host C; = {A, E,G} which is connected

to C through a non-host C5 = {4, B,G}. {B, G} is a set of non-d-sepnodes violating the part 2 of the host

composition condition. If C and C5 are united (forming clique Ci3) as described in lemma 8.6, the resultant

graph is still a junction tree. If let

3(013) = 3(01)3(03)/B(Q13)

37

where ()13 (containing AB) is the sepset between C; and C3, the joint belief for the new tree is exactly the
same as before and the new tree is consistent. Now the common node G in Ci3 and C5 creates the same

problem illustrated above.

Figure 9: Two partial trees to exemplify violation of the host composition condition. I: the d-sepset. The
thick bands indicate linkages.

The following proposition shows that, if a junction forest is globally consistent and the host composition

condition holds, then the belief table B(I) defined in Section 7.3 is indeed the joint belief on d-sepset I.

Proposition 8.10 Let a sound MSBN be transformed into a junction forest F'. Let S* and SY be sects
in the MSBN, and T® and TY be the junction trees of S* and SY in F, respectively. Let I be the d-sepset
between S* and SY, and L be the set of linkages between T® and TY. Let all belief tables be defined as in
Section 7.3.
When F is globally consistent, B(I) satisfies
B(I)x Y B(T")
N=\TI

iff T* satisfies the host composition condition relative to L.

€y

Ly=CNI = XUY Ly=CoNI = XUZ

Figure 10: Part of a host tree violating the host composition condition. I: the d-sepset. The thick bands
indicate linkages.

Now we are ready for the following result on separability.

Theorem 8.11 (host composition) Let S = {S',... S%} be a MSBN satisfying the hypertree condition.

Suppose S has been transformed into a junction forest F = {T%|1 < i < 8}, with linkages between the junction

38

trees created by Algorithm 7.21. Let B(F) be the joint system belief of F. F is separable iff, for every pair

of neighbour junction trees, the host composition condition holds.

The host composition condition can usually be satisfied naturally in an application system. Since d-sepsets
are the only media for information exchange between sects, d-sepnodes usually involve many inter-subDAG
cycles. The consequence is that they will be heavily connected during morali-triangulation and form several
large cliques in the clique hypergraph as well as some small ones. On the other hand, non-d-sepnodes rarely
form connections with so many d-sepnodes simultaneously and hence will rarely be the elements of these
large cliques. To be an element of more than one such large clique is even more unlikely. Because linkages
are defined to be maximal, these large cliques will become linkage hosts.

For example, in the PAINULIM expert system (Xiang et al. 1992), there are three sects and correspond-
ingly three junction trees. The host composition condition is satisfied naturally in all three trees. Figure 11

gives one of them. The four linkage hosts contain no non-d-sepnode at all.

AEGI Jdg L H

Figure 11: T is a junction tree in a junction forest taken from an application system PAINULIM with
variable names revised to simplify. Upper case letters represent d-sepnodes and lower case letters represent
non-d-sepnodes. The cliques C1,Cs, Cs,Cy are linkage hosts.

When the host composition condition cannot be satisfied naturally, dummy links can be added between
d-sepnodes in the moral graph before triangulation such that linkage hosts will be enlarged and the condition
is satisfied. Hence, given a MSBN;, a separable junction forest can always be realized. The penalty of added
links is increased amount of computation during belief propagation due to increased sizes of cliques and
linkages. In the worst case, we may have to resort to the brute force method discussed in Section 3 in order

to satisfy the host composition condition for certain pairs of junction trees. If the system is large, sectioning

39

may still yield computational savings on the whole even if cliques are enlarged at a few junction trees.

One of the key results now follows.

Theorem 8.12 (local computation) Let F' be a consistent and separable junction forest with nodes N
and joint system belief B(F'). Let (Cy, B(Cy)) be any universe in F. Then

> B(F) x B(C,)

N\C,

With the above theorem, the marginal belief of any variable in a consistent and separable junction forest
can be computed by marginalization of the belief table of any universe which contains the variable. In this
respect, a consistent and separable junction forest behaves the same as a consistent junction tree (Jensen,
Lauritzen and Olesen 1990). It will be shown that in the context of junction forests, additional computational
advantage is available. That is, the global consistency is not necessary to obtain marginal belief by local

computation, which allows the exploitation of localization.

9 Belief Propagation In Junction Forests

Given the importance of consistency of junction forests, we need to introduce a set of operations which bring
a junction forest into consistency. First, since our purpose is to exploit localization, only operations for local
computation up to the level of junction trees are considered. At any moment, we consider only one junction
tree. This junction tree is said to be active.

Second, we present the operations in an object-oriented fashion as does Jensen, Lauritzen and Olesen
(1990) in describing the junction tree technique. As argued in the above reference, the purpose is to avoid
a global control structure, and to exploit parallel processing. Four levels of objects can be identified in the

context of junction forests.

1. (Inside a junction tree) The belief universes are objects, and sepsets are communication channels.

2. (Between linkage hosts in neighbour junction trees) The linkage host worlds are objects, and linkages

are communication channels.

3. (Between neighbour junction trees) The set of linkage host worlds in a junction tree relative to a
neighbour junction tree is an object, and the set of linkages between the two neighbour junction trees

is the communication channel.

4. (Top level object) A junction forest is a top level object.

40

Third, each operation presented in this section is associated with a particular level of objects. Some
operations can be initiated by the objects they associate. Other operations can only be invoked (called) by
objects at the higher level.

The operations to be presented below are summarized in Figure 12.

ShiftAttention (F) BdliefInitialization(F)

DistributeBelief (T) CollectBelief (T)

UpdateBelief (T) ExchangeBélief (T)
EnterEwdence@ /
NonRedundancyAbsorption@

AbsorbThroughLinkage (H) Un|fyBeI|ef @

DistributeEvidence @ CollectEvidence (C)

AbsorbThroughSepset @

Figure 12: Summary of operations. The node at the right of each operation is the type of objects with which
the operation can associate. C: belief universe; H: linkage host; T: junction tree; F': junction forest. Arcs
indicate that the lower level operations provide services to the higher level operations.

9.1 Supportiveness

Jensen, Lauritzen and Olesen (1990) introduced the concept of supportiveness. Let (Z, B(Z)) be a world.

The support of B(Z) is defined as
A(B(Z)) = {z € ¥(Z)|belief of z > 0}.

A junction tree is supportive, if, for any universe (C;, B(C;)) and for any neighbouring sepset world (Q;, B(Q;)),
A(B(Ci)) C A(B(®j))- The underlying intuition is that, when beliefs are propagated in a supportive junc-
tion tree, non-zero belief values will not be turned into zeros.

Here the concept is extended to junction forests. A junction forest is supportive, if (1) all its junction
trees are supportive and (2) for any linkage host (C;, B(C;)) and corresponding linkage world (L;, B(L;)),
A(B(Ci)) € A(B(L))).

The construction in Section 7.3 results in a supportive junction forest.

41

9.2 Basic operations

9.2.1 Operations for consistency within a junction tree
The following operation is used to achieve consistency between a belief universe and its neighbours.

Operation 9.1 (AbsorbThroughSepset) (Jensen, Lauritzen and Olesen 1990)
Let Uy = (Co, B(Co)) be a belief universe in a junction tree. Let U; = (C;,B(C;)) (i = 1,...,k) be
neighbour universes of Uy. Let (Q;, B(Q;)) (i = 1,...,k) be the sepset world between Uy and U;. Sup-
pose A(B(Cp)) C A(B(Q;)) (i = 1,...,k). When AbsorbThroughSepset is initiated by Uy to absorb

from Uy, ..., Uy, the following updates are performed:

1. For each i, update sepset belief

B'(Qi)= Y B(C).

C;\Co

2. Update belief in Cy
k

B'(Gy) = B(Co) [[B'(Qi)/B(Qi)-

i=1
AbsorbThroughSepset is associated with belief universes.

Jensen, Lauritzen and Olesen (1990) showed, in the context of a junction tree, that Absord ThroughSepset
changes neither the supportiveness of a junction tree nor the joint system belief. We indicate that, in the
context of a junction forest, the supportiveness is also invariant after Absorb ThroughSepset. This is because
AbsorbThroughSepset does not increase the support of any linkage host and does not change linkage beliefs
directly. The invariance of the joint system belief for the junction forest is obvious given the definition of
the joint system belief and the invariance of beliefs for junction trees.

The following three operations bring a junction tree into consistency.

Operation 9.2 (DistributeEvidence) (Jensen, Lauritzen and Olesen 1990)
Let Uy = (Co, B(Cy)) be a universe in a junction tree. Let caller be either the junction tree or a neighbour

universe. When DistributeEvidence is called in Uy, the following are performed:

1. If caller is a neighbour U;, then Uy absorbs from U; by AbsorbThroughSepset.

2. Uy calls DistributeEvidence in all neighbours except caller if caller is a neighbour.
DistributeEvidence is associated with belief universes.

Suppose a junction tree TV is consistent. The multiplication of B(Cp) by another belief table may render
T7 inconsistent. Such multiplication is performed in evidence entering to be discussed in Section 9.4. If

DistributeEvidence is then called in Uy, 77 is again consistent.

42

Operation 9.3 (CollectEvidence) (Jensen, Lauritzen and Olesen 1990)
Let Uy = (Cy, B(Cy)) be a universe in a junction tree. Let caller be either the junction tree or a neighbour

universe. When CollectEvidence is called in Uy, the following are performed:

1. Uy calls CollectEvidence in all neighbours except caller if caller is a neighbour.

2. After the neighbours being called have finished CollectEvidence, Uy absorbs from them by Ab-

sorbThroughSepset.
CollectEvidence is associated with belief universes.

Both DistributeFEvidence and CollectEvidence are composed of just Absord ThroughSepset. Thus they do
not change the supportiveness and the joint system belief of the junction forest.
The combination of DistributeEvidence and CollectEvidence yields the following UnifyBelief. UnifyBelief

brings a supportive junction tree into consistency.

Operation 9.4 (UnifyBelief) Let T¢ be a junction tree in a junction forest. When UnifyBelief is initi-

ated by T, the following are performed:
1. A belief universe Uy = (Cy, B(Cy)) is arbitrarily selected.
2. CollectEvidence is called in Uy.
3. When Uy has finished CollectEvidence, DistributeEvidence is called in Up.

UnifyBelief is associated with junction trees.
9.2.2 Operations for belief exchange in belief initialization

Belief initialization brings a junction forest into global consistency before any evidence is available. One
problem arises when there are multiple linkages between junction trees. Care must be taken not to count
the same information multiple times by passing through different linkages. The following two operations
perform information passing through multiple linkages during belief initialization. They ensure that the

prior distribution on d-sepsets is exchanged between junction trees without redundant information passing.

Operation 9.5 (NonRedundancyAbsorption) Let U2 = (C%, B(C%)) and U’ = (C%,B(CY)) be two
linkage host universes in junction trees T® and T® respectively. Let (L,, B(L;)) and (R, B(R;)) be the
worlds for corresponding linkage and redundancy set. Suppose A(B(C%)) C A(B(L;)). When NonRe-
dundancyAbsorption is called on U2 to absorb from UL through linkage L., the following updates are

performed:

43

1. Update the linkage belief

2. Update the belief on redundancy set

3. Update the host belief

B'(L.)/B'(R.)

B'(C%) = B(C%) ¥ ———"— 72,
(o) = B B L) BlR.)

The factor 1/B'(R,) above has the function of redundancy removal. NonRedundancyAbsorption is

associated with linkage hosts.

At initialization, the belief tables for linkages and redundancy sets are in the state of construction and
so constant (see Algorithm 7.14 and Definition 7.15). Thus, B(L,) and B(R,) above are constant tables.
There are three possible consequences of NonRedundancyAbsorption depending on the states of the two

linkage hosts involved.

1. If B'(L,) is constant, which is possible because constant probability tables are assigned to d-sepnodes

in some sects in Definition 6.1, then after NonRedundancyAbsorption
Y B(CHox Y B(CH).
Ca\La Ca\La

That is, if C° has no information to offer, then C¢ will not change its belief.

2. 1If > oy 1, B(C}) is constant, then after NonRedundancyAbsorption

S B« | Y B / > B(C)

Ci\Le Ci\Le Ci\Ra
That is, if C® has new information and C¢ contains no non-trivial information, then the belief of C?

will be copied with redundancy removed.
3. If none of B'(L;) and ZC“\LE B(C?%) is constant, then after NonRedundancyAbsorption

Y B(CHx Y [BECHx| > B(CY / > B(CY)

Ci\La Ce\La Ci\La C2\Rq
That is, if none of the above two cases is true, the belief from both sides will be combined with

redundancy removed.

44

The supportiveness of a junction forest is invariant under NonRedundancyAbsorption, since
A(B(CY)) CA(Y B(CY) = A(B'(Lx)).
Ci\Lo

The joint system belief is invariant under NonRedundancyAbsorption since

B'(C:) _ _ B(CD)

€T

B'(Ly)/B'(R.) ~ B(Ls)/B(R.)’

NonRedundancyAbsorption is associated with linkage hosts.

Operation 9.6 (ExchangeBelief) Let L be the set of linkages between junction trees T® and T®. When

ExchangeBelief is initiated in T to exchange belief with T°, the following is performed:

For each linkage L, € L with corresponding hosts U% and U, NonRedundancyAbsorption

is called in U2 to absorb from U?L.
ExchangeBelief is associated with junction trees.

Since FzchangeBelief is composed of just NonRedundancyAbsorption, the supportiveness of the junction
tree and its joint system belief are invariant under FzchangeBelief. After ExchangeBelief, the non-trivial

content of joint distribution on d-sepset at 7" is passed onto 7'* without redundancy.
9.2.3 Operations for belief update in evidential reasoning

During evidential reasoning, it may be needed to propagate evidence obtained in a junction tree T to the
rest of the junction forest. A junction tree T'* receiving, from a neighbour junction tree T, the updated belief
on their d-sepset may be confused due to multiple linkage evidence passing. The following two operations
handle the evidence propagation between junction trees. AbsorbThroughLinkage propagates evidence from
T® to T through one linkage. UpdateBelief propagates evidence from T° to T through the set of linkages
between the two. UpdateBelief is used during evidential reasoning when both T and T° are internally

consistent but may not reach boundary consistency between them.

Operation 9.7 (AbsorbThroughLinkage)
Let U = (C% B(C%)) and UL = (C%, B(CY)) be two linkage host universes in junction trees T® and T®
respectively. Let (L, B(L,)) be the corresponding linkage world. Suppose A(B(C%)) C A(B(Ly)). When

AbsorbThroughLinkage is called on U2 to absorb from UL, the following updates are performed:

1. Update the linkage belief

2. Update the host belief
B'(C3) = B(C}) x B'(Lg) [B(La).

AbsorbThroughLinkage is associated with linkage hosts.

After AbsorbThroughLinkage,

> B'(CH= Y B(CY).

Ca\L, Cb\L,

The supportiveness of a junction forest is invariant after Absorb ThroughLinkage, since
A(B(CY) CA(Y B(CY) = A(B'(Lz)).
Co\Ly
Absorb ThroughLinkage makes the belief of C2 up-to-date with respect to the belief of C® on their common

variables.

Operation 9.8 (UpdateBelief) Let L = {L;,...,L} be the set of linkages between junction trees T
and T® with U® being the linkage host universe in T® and U} being the linkage host universe in T®. When
UpdateBelief is initiated by T® or is called in T* to update its belief relative to T, the following is

performed:

Absorb ThroughLinkage is called in each U? to absorb from U through L;. After each Ab-

sorbThroughLinkage, DistributeEvidence is called in U}.
UpdateBelief is associated with junction trees.

Since UpdateBelief is composed of AbsorbThroughLinkage and DistributeFEvidence, the supportiveness of
the junction forest is invariant.

After UpdateBelief, T® is consistent and

> B(CH= Y B(CY) z=1,...,k
Ce\L. C\L,
Thus the effect of the operation is
B'(T") = B(T*") = B'(I)/B(I)

where I is the d-sepset between S® and S°. Equivalently

BY(T*)/B'(I) = B(T*)/B(I),

which implies the joint system belief is invariant.
Note that, in UpdateBelief, DistributeEvidence needs to be performed after each Absorb ThroughLinkage.

Recall that DistributeEvidence will restore the consistency in a junction tree if changes on belief are made on

46

exactly one belief universe. If changes on belief are made on more than one universe, Distribute Evidence will
not be able to restore the consistency. The following example shows what can happen if DistributeFEvidence

is not performed after each Absord ThroughLinkage.

[

Ly=YUZ

Figure 13: An example illustrating the operation UpdateBelief.

Example 9.9 Let junction tree T (Figure 13) have two linkage host C, = Ly = XUZ and Cy = Ly, =Y UZ
where X,Y, Z are three disjoint sets of nodes. Let B(Cy), B(C3) and B(Z) be the belief tables of the
two hosts and their sepset, respectively. Suppose new information is passed over to T through the two
linkages from its neighbour junction tree. If AbsorbThroughLinkage is performed at C and then Cy without
DistributeEvidence being carried out between the two operations, the belief on the two host cliques will be
updated to B'(C1), B'(C;), while B(Z) is unchanged. If AbsorbThroughSepset is called on C; to absorb

from Cs in the process of propagating the new information to the rest of T, the belief on C} will become

B"(C1) = B'(C1)()_ B'(C2)/B(Z)) % B'(C1)
Y

which is incorrect because), B'(Cs) % B(Z).
When DistributeEvidence is performed after each AbsorbThroughLinkage, B'(Z) =)., B'(C2). The
result of AbsorbThroughSepset is

B"(C1) = B'(C1)()_ B'(C2)/B'(2)) < B'(C1)

Y

which is correct.
9.3 Belief initialization

Before any evidence is available, an internal representation of beliefs is to be established. The establishment
of this representation is termed énitialization by Lauritzen and Spiegelhalter (1988) for their method. The
functionality of initialization in the context of junction forests is to propagate the prior knowledge stored
in different belief universes of different junction trees to the rest of the forest such that (1) prior marginal
probability distribution for any variable can be obtained in any universe containing the variable, and (2)

subsequent evidential reasoning can be performed.

47

We define operations DistributeBelief and CollectBelief which are analogous to DistributeEvidence and
CollectEvidence but are associated with junction trees. The operation BeliefInitialization relates to Dis-

tributeBelief and CollectBelief just as UnifyBelief relates to DistributeEvidence and CollectEvidence.

Operation 9.10 (DistributeBelief) Let T¢ be a junction tree in a junction forest. Let caller be either
the junction forest or a neighbour junction tree. When DistributeBelief is called in T°¢, the following are

performed:
1. If caller is a neighbour T7, then T* updates its belief relative to T7 by UpdateBelief.
2. T? calls DistributeBelief in all neighbours except caller if caller is a neighbour.
DistributeBelief is associated with junction trees.

Operation 9.11 (CollectBelief) Let T be a junction tree in a junction forest. Let caller be either the

junction forest or a neighbour junction tree. When CollectBelief is called in T?, the following are performed:

1. T? calls CollectBelief in all neighbours except caller if caller is a neighbour.

2. After each neighbour being called has finished CollectBelief, T exchanges belief respect to the neigh-
bour by ExchangeBelief, followed by UnifyBelief in T°.

CollectBelief is associated with junction trees.

Operation 9.12 (BeliefInitialization) When BeliefInitialization is initiated at a junction forest F, the

following are performed:

1. A junction tree T* in F is arbitrarily selected.

2. CollectBelief is called in T".

3. when T? has finished CollectBelief. DistributeBelief is called in T".
Belieflnitialization is associated with the junction forest.

All three operations do not change the supportiveness and joint system belief. This gives us the following

theorem.

Theorem 9.13 (belief initialization with hypertree) Let {S',...,S?} be a MSBN with a hypertree
structure (Definition 6.11). Let F = {T*,....T?} be a junction forest with T* being the junction tree of
Si. Let B(F) be the joint system belief constructed as in Section 7.3. After BeliefInitialization, the junction

forest is globally consistent.

48

Example 9.14 After BeliefInitialization is initiated at the junction forest in Figure 5, I'! is selected and
CollectBelief is called in it. It then calls CollectBelief in I'> and I'®. Since I'> and I'® do not have neighbours
other than I'', only UnifyBelief is performed in I'> and I'®. Table 4 lists the belief tables for belief universes
in junction trees I'> and ' after their UnifyBeliefs.

Table 5 gives the belief tables for belief universes of the junction forest. Table 6 gives the (prior) marginal
probabilities for all variables of junction forest after the completion of BeliefInitialization. The marginal
probabilities are identical to what would be derived from the USBN (T, P) where I is given in Figure 2 and

P is given in Table 1.

B(I?) B(I?)

Clique NodeAss. Clique NodeAss.
{F2, F1} F> {Hs,H>,E3} H3,H2, E3
Config. B() Config. B()
{f21, f11} .T758 {h31, ho1,e31} 1.54
{f21, f12} 1.545 {h31, ho1,e32} .4596
{f22, f11} 1.164 {h31, ha2,e31} 1.3
{fa22, f12} 5151 {h31,ho2,€e32} 7

Clique NodeAss. {h32, ha1, €31} T

{H2,F1,H} H2,F1,H; {hsz, h21,e32} 1.3

Config. B() {h327 h22, 631} .02

{h21, f11,h11} .7895 {h32, ho2, €32} 1.98
{h21, f11, h12} .6 Clique NodeAss.
{h21, fi2, h11} .2105 {E2, E3, E1} Iop)
{h217f127h12} 4 Config. B()
{ho2, f11,h11} 5 {e21,€31,€11} 1.656
{h22, f11, h12} .05 {e21,€e31,€12} 1.495
{ho2, f12, h11} 5 {e21,€32,€11} 1.898
{h22, fi2, h12} .95 {e21,e32,€e12} 1165
{e22,e31,€e11} .0356
{6227631,612} .3738
{6227632,611} .2109
{6227632,612} 2.214
Clique NodeAss.
{Es,E1,Ha} Ey,Hy
Config. B()
{e31,e11,ha1} 1.424
{es1,e11, haz} .2670
{es1,e12, ha1} .3560
{63176127’142} 1.513
{es2, €11, ha1} 1.776
{632,6117}142} .3330
{es2, e12, ha1} .4440
{63276127’142} 1.887
Clique NodeAss.
{Hs, E3, Hy}
Config. B()
{h31,e31,ha1} 1.42
{h31,e31,haz} 1.42
{h31,632,h41} .5798
{h31,632,h42} .5798
{h32,e31,ha1} .36
{h32, e31, haz} .36
{h32,e32,ha1} 1.64
{h32, €32, haa} 1.64

Table 4: Belief tables for belief universes in junction trees I'> and I'* in Figure 5 after CollectBelief during
BeliefInitialization.

Once belief initialization is completed, the junction forest becomes the permanent representation which

will be reused for each query session.

49

9.4 Evidential reasoning

The joint system belief defined in Section 7.3 is proportional to the prior joint distribution representing the
background domain knowledge. Initialization allows us to obtain prior marginal probabilities with efficient
local computation. When evidence about a particular case becomes available, we want the prior distribution
to change into the posterior distribution. Call the overall process of entering evidence and propagating

evidence evidential reasoning.

B(TY) B(I'?) B(I'®)

Clique NodeAss. Clique NodeAss. Clique NodeAss.
{Hz, H1, A1} Hy, Ay {F2, F1} Fs {Hs,H2,E3} Hs,Hs, E3
Config. B() Config. B() Config. B()
{hz21,h11,h11} 8203 {f21, f11} 1.160 {h31,h21,€31} 1.444
{hz21,h11, h12} 08166 {f21, f12} 5.324 {h31,h21,€e32} .4310
{h21,h12, h11} .5810 {f22, f11} 1.741 {h31,ho2,€31} 731
{h21, h12, h12} 2.082 {f22, f12} 1.775 {ha1, ho2,e32} .3936
{hzz,h11,h11} 3797 Clique NodeAss. {hgz,h21,631} .5915
{hz22, h11, h12} 2183 {H>,F1,H1} H2,Fi1,H; {hsz,ho1,e32} 1.098
{hzz, h127 ”L11} 2690 Config. B() {h32, hzz, 631} .0531
{h22, h12, h12} 5.568 {h21, fi1,h11} 7121 {h32,ho2, €32} 5.257

Clique NodeAss. {h21, fi1,hi2} 1.598 Clique NodeAss.
{Hz2, A2, A1} H, {ha1, f12, h11} .1899 {E2, B3, E1} Es

Config. B() {h217 f127 ”L12} 1.065 Config. B()
{h21,0a21,011} .5526 {h2z, fi1,h11} .2990 {e21,e31,e11} 1.020
{h21,a21,a12} 1.725 {h22, f11, h12} 2918 {e21,e31,e12} 1.422
{h21, a22,a11} .8487 {h22, f12, h11} .2990 {e21,e32,e11} 2.182
{h21, 022,012} .4388 {h2z, f12, h12} 5.545 {e21,e32,e12} .2378
{h227a217a11} 08289 {622,6317811} .02194
{h227a217a12} 7394 {622,6317812} .3555
{ha2, a22,a11} 5658 {e22, €32, €11} .2424
{h22, az2,a12} 5.047 {e22,€e32,€12} 4.518

Clique NodeAss. Clique NodeAss.
{H3,Hz, A2} Hsz, Az {Es,E1,Hs} E.,H,

Config. B() Clonfig. B()
{h31,ho1,a21} 1.763 {e31,€41,h11} 7622
{h317h217a22} 1120 {631,641,]112} .2801
{h31yh22ya21} .6366 {831,6427’111} .1906
{h31yh22ya22} .4880 {831,6427’112} 1.587
{h32,ho1,a21} .5143 {e32,€41,h11} 1.658
{h32,ho1,a22} 1.176 {e32, €41, h12} 7662
{h32, h22,a21} 1857 {es2,ea2, h11} .4145
{hs2, h22,a22} 5.124 {es2, ean, h12} 4.342

Clique NodeAss. Clique NodeAss.
{H3, A3, Ha} Az, Hy {H3,E3,Hs}

Config. B() Config. B()
{h317a317h41} .225 {h31,631,h41} 7723
{h31ya31yh42} .675 {”L31,6317h42} 1.403
{h31ya32yh41} .84 {”L31,6327h41} .2927
{h317a327h42} 1.26 {h31,632,h42} .5319
{h327a317h41} 1.4 {h32,631,h41} .1805
{h32,a31, haz} 4.2 {h32, €31, haz} 4641
{h32ya32yh41} .56 {”L32,6327h41} 1.780
{h32ya32yh42} .84 {”L32,6327h42} 4.576

Table 5: Belief tables for belief universes of junction forest F' = {I't, 2, T3} in Figure 5 obtained after the
completion of BeliefInitialization.

A piece of evidence is a conjunction of values of variables such that the variables are contained in the same
sect (localization), and the values are obtained at one time. As the value of a variable, we allow evidence to
specify a disjunction of outcomes (e.g. only one outcome, or ruling out one outcome). There may be multiple
pieces of evidence, in a query session, that may involve different sects and may be obtained at different time

(incremental evidence). We assume that, after each piece of evidence is available, the posterior distribution

30

p(hll) = 15 p(all) = .205 p(fll) = .2901 p(ell) = .3466
p(h21) = 3565 p(a21) = .31 p(f21) = .6485 p(621) = 4862
p(h31) = 3 p((l31) = .65 p(631) = .282
p(h41) = 3025

Table 6: Prior marginal probabilities from junction forest F = {I'!,I'?,'*} in Figure 5 obtained after the
completion of BeliefInitialization.
on the variables in the current sect is to be computed.

Evidence is represented in terms of evidence functions in the same manner as Jensen, Olesen and Andersen
(1990). A evidence function maps the outcomes of one variable to {0,1}. ‘0’ stands for the fact that the
corresponding outcome is impossible and ‘1’ stands for the fact that the corresponding outcome is still
possible. An evidence function can be entered to a junction forest by multiplying the prior distribution with

the evidence function.

Operation 9.15 (EnterEvidence) (Jensen, Lauritzen and Olesen 1990)
Let T be a junction tree in a junction forest. When EnterEvidence is initiated at T to enter a piece

of evidence E, the following are performed:

1. For each variable A; involved in E a belief universe U; = (C;, B(C;)) such that A; € C; is arbitrarily

selected, and B(C}) is multiplied by the evidence function for A;.

2. If U; is the only universe that is affected by the above step, DistributeEvidence is called in Uj,

otherwise UnifyBelief is called in any universe Uy,.
EnterEvidence is associated with junction trees.

After EnterEvidence, the junction T is updated with respect to the evidence and is consistent internally.
As far as a single junction tree is concerned, this computation is the same as the junction tree technique where
the consistency within a junction tree constitutes the global consistency. However, in order to obtain correct
posterior marginal distributions on variables in the currently active junction tree, the global consistency of
the junction forest is not necessary. Before a formal treatment, several concepts are defined below.

Here only junction forests transformed from MSBNs with hypertree structures are considered. When
a user wants to obtain marginal distributions or add evidence on variables not contained in the currently
active junction tree, it is said that there is an attention shift. The junction tree which contains the desired

variables is called the destination tree.

Definition 9.16 (intermediate tree) Let S¢, S/, S* be three different sects in a MSBN with a hypertree
structure, and T%, T7, T* be their junction trees in the corresponding junction forest F, respectively. T7 is

the intermediate tree between T* and T* if the removal of T7 would disconnect T* from T* in F.

51

Due to the hypertree structure, we have the following lemma.

Lemma 9.17 Suppose a junction forest has been transformed from a MSBN with a hypertree structure. Let
T and T7 be two different junction trees in the forest. The set of intermediate junction trees between T

and T7 is unique.

The following defines an operation ShiftAttention at the junction forest level. It is performed when the

user’s attention shifts.

Operation 9.18 (ShiftAttention) Let F' be a junction forest whose corresponding MSBN has a hypertree
structure. Let T be the currently active tree and T/m+1 be the destination tree in F. Let {T71 ... Tim}
be the set of m intermediate trees between T7° and TFm+1 such that T7°, T, ... Tim Tim+1 form a chain of
neighbours. When Shift Attention is initiated at F to shift attention from T7° to TIm+1, the following are

performed:
Fori =1 to m+ 1, UpdateBelief is called in T’ to update its belief with respect to TJi-1,
Shift Attention is associated with the junction forest.

Before each attention shift, several pieces of evidence can be entered to the currently active tree. When an
attention shift happens, Shift Attention swaps in and out only the intermediate trees between the currently
active tree and destination tree without the participation of the rest of the forest. The following theorem

shows that this is sufficient in order to obtain the correct marginal distributions in the destination tree.

Theorem 9.19 (multiple attention shifts) Let F' be a consistent junction forest whose corresponding
MSBN has a hypertree structure. Start with any active junction tree. Repeat the following cycle a finite

number of times:
1. Use EnterEvidence to enter evidence to the currently active tree a finite number of times.
2. Use Shift Attention to shift attention to any destination tree.

The marginal distributions obtained in the final active tree are identical as would be obtained when the forest

is globally consistent.

Example 9.20 Let us continue the example with the junction forest (Figure 5) F' = {I'!, I, I"*} by demon-
stration of evidential reasoning. Suppose the outcome of variable E5 in I'? is observed to be ez;. Table 7
lists B'(I'®), which is obtained after EnterEvidence, and also B'(I'') and B’'(I'?), which are obtained after
ShiftAttention with destination I'?. Table 8 lists the posterior marginal probability of each variable after
ShiftAttention.

92

B'(I?) B'(rY B'(I'?)
Clique NodeAss. Clique NodeAss. Clique NodeAss.
{Hs3,H>,E3} H3, H>,E3 {Hz,Hi, A} Hi, A {F2, F1} Fy
Config. B() Config. B() Config. B()
{h31,h21,€e31} 14.44 {hz21, h11,h11} 4.105 {f21, f11} 5.523
{h31,ho1,e€32} 0 {h21, k11, h12} .5036 {f21, f12} 10.79
{h31,ha2,e31} 7.31 {h21, h12, h11} 2.908 {f22, f11} 8.285
{h31,ha2,e32} 0 {h21, h12, h12} 12.84 {f22, f12} 3.598
{hgz,h217831} 5.915 {h227h117h11} 4627 Clique NodeAss.
{h32, ho1,e32} 0 {h22, k11, h12} .2661 {Hz,F1,H:} Hz,F1,H;
{h32, ho2,e31} .5310 {ha2, h12, h11} .3278 Config. B()
{h32, ha2, €32} 0 {h22, h12, h12} 6.785 {h21, fi1,h11} 3.638
Clique NodeAss. Clique NodeAss. {h21, fi1,h12} 9.450
{E2,E3,E1} E> {H2, A2, A1} H> {h21, f1z, h11} .9702
Config. B() Config. B() {h217f127h12} 6.300
{e21,e31,e11} 1.020 {h21,a21,a11} 3.732 {h22, f11, h11} .3644
{e21,€31,€12} 1.422 {h21,a21,a12} 11.65 {h22, f11, h12} .3556
{e21,e32,€e11} 0 {h21, 022,011} 3.281 {h2z, f12, h11} .3644
{e21,e32,€12} 0 {h21, 022,012} 1.696 {h2z, f12, h12} 6.757
{e22,e31,€e11} .02194 {h22, 021,011} .4190
{622,631,612} .3555 {h227a21,a12} 3.737
{e22,€e32,€11} 0 {h22, a22,a11} 3715
{e22,€32,€12} 0 {h2z, 22,012} 3.313
Clique NodeAss. Clique NodeAss.
{E3,E1,Hys} E1,Hy {H3,H2, Az} H3z, As
Config. B() Config. B()
{631,611,h41} 7.622 {h31,h21,a21} 13.58
{es1,e11, haz} 2.801 {h31,h21, 022} .8623
{es1,e12,ha1} 1.906 {h31, h2z2,a21} 4.138
{631,612,}1,42} 15.87 {h31,h22,a22} 3.172
{es2,e11,ha1} 0 {h32, h21,a21} 1.800
{es2,e11, haz} 0 {h32, h21,a22} 4.115
{es2,e12,ha1} 0 {h3z2, haz2,az21} .01857
{es2, e12, haz} 0 {h3z, haz, az2} 5124
Clique NodeAss Clique NodeAss.
{Hs3,E3, Ha} {Hs, Az, Ha} Asg, Hy
Config. B() Config. B()
{h31,631,h41} 7.723 {h31,a31,h41} 1.632
{h31,e31,haz} 14.03 {h31,a31, haz} 4.895
{h31,e32,ha1} 0 {h31,a32,ha1} 6.091
{h31,e32, haz} 0 {h31,a32, haz} 9.137
{h32,631,h41} 1.805 {h32,a31,h41} 1.289
{h32,631,h42} 4.641 {h32,a31,h42} 3.867
{h32,e32,ha1} 0 {h32,a32, ha1 } 5157
{h32,e32, haz} 0 {h32, a32, haz} 7735

Table 7: Belief tables updated after entering evidence for F = {I'*,I'?,T®} where I'’s are as in Figure 5.
First, B'(I'®) is obtained after F3 = e3; is entered to ' by EnterEvidence in I'*. B'(I'') and B'(I'?) are
obtained afterwards by ShiftAttention.

p(hll) = .1893 p(au) = 2767 p(fll) = L4897 p(ell) = .3696
p(h21) = 7219 p(a21) = 6928 p(le) = 5786 p(ezl) = .8661
plhs1) = 7714 p(as1) = 4143 ples1) = 1
p(h41) = .3379

Table 8: Posterior probabilities from junction forest F = {I'!,I'?, '3} in Figure 5 after evidence F3 = e3 is
propagated by ShiftAttention.

33

Before closing this subsection, the following example demonstrates the computational advantage, during

attention shift, provided by the covering sects.

Example 9.21 In Figure 8, D is sectioned into {D*, D%, D3} by sound sectioning without a covering sect.
The MSBN is transformed into the junction forest {T%, 7% T3} by an invertible transformation. If evidence
about E and then about G comes, the first piece of evidence will be entered to T and then T will send
message to T?. After entering the second piece of evidence, T? will be the only one up-to-date. Now if we
are interested in the belief on H, the belief tables on {B, F'} and {C, F'} in T have to be updated. However,
T? cannot provide distribution on {B, F'}. Thus, T? has to send message to T about {C, F'} and then send
message to 7. T! can then become up-to-date and send distribution on {B,F} to T. Three instances
of message passing are necessary, and linkages between each pair of junction trees have to be created and
maintained. More message passing and more linkages are needed when there are more sects organized in
this structure. When n sects are interconnected and there is a covering sect, only n-1 sets of linkages need
to be created; and a maximum of two message passings are needed to update the belief in any destination

tree.

9.5 Computational complexity

Theorem 9.19 shows the most important characterization of the MSBN and junction forests, namely, the
capability of exploiting localization to reduce the computational complexity.

Under the assumption of localization, the user interest and new evidence remain in the sphere of one
junction tree for a period of time. Thus the time and space requirement, while reasoning within a junction
tree, is bounded above by what is required by the largest junction tree. The judgments obtained, however,
are at the knowledge level of the overall junction forest. Compared to the USBN and the single junction
tree representation where the evidence has to be propagated to the entire system, this leads to savings when
localization is valid.

When the user shifts interest to another set of variables contained in a different destination tree, only the
intermediate trees need to be updated. The time required is linear to the number of intermediate trees and
to the number of linkages between each pair of neighbours. No matter how large the entire junction forest,
the time requirement for attention shift is fixed once the destination tree and mediating trees are fixed. For
example, in a MSBN with a covering sect, no matter how many sects are in the MSBN| the attention shift
updates a maximum of two sects. The space requirement is bounded above by what is needed by the largest
junction tree on the path between the starting and destination trees. Under the localization assumption, the
computational cost for attention shift is incurred only occasionally.

Given the above analysis, the computational complexity of evidential reasoning in a MSBN with 3 sects

54

of equal size is about 1/ of the corresponding USBN system when localization is valid. The actual time
requirement is a little more than 1/5 due to the computation required for attention shift. The actual space
requirement is a little more than 1/ due to the repetition of d-sepnodes and the set of linkages required for
attention shift.

The MSBN and the junction forest technique has been implemented in PAINULIM (Xiang et al. 1992)
- a system for diagnosis of neuromuscular diseases characterized by a painful impaired upper limb. The
system has three sects: the clinical, the EMG, and the nerve conduction with the clinical sect being the
covering sect. According to the statistics in Xiang et al. (1992), about 27% of patients in this category
need nerve conduction studies only, and about 60% of patients need EMG tests only. Thus, for about 87%
of the patients, about one third of the junction forests will not be computed at all, and there is only one
attention shift (from the clinical sect to either the nerve conduction or the EMG sect). There are five clinical
findings on an average patient. The number of tests performed on an average patient is about four for
nerve conduction and about six for EMG. After each clinical finding and each test, users would like to know
posterior probabilities for diseases and outcomes of possible examinations or tests not yet performed. Thus,
the localization assumption works well in the PAINULIM domain. The overall computational savings in

PAINULIM by applying the MSBN and the junction forest technique is about half.

10 Summary

This paper presents MSBNs and junction forests as a flexible knowledge representation and as an efficient
inference formalisms to exploit localization naturally existing in large knowledge-based systems. The sys-
tems which can benefit from the technique are those that are reusable, representable by general but sparse
networks, and characterized by incremental evidential reasoning and where localization is valid.

The MSBNs allow the partition of a large application domain into smaller natural subdomains such that
each of them can be represented as a Bayesian subnetwork (a sect), and can be tested and refined individually.
This makes the representation of a complex domain easier for knowledge engineers and potentially makes
the resultant system more natural and more understandable to system users. The modularity facilitates
implementation of large systems in an incremental fashion. When partitioning, a knowledge engineer has
to take into account the technical constraints imposed by the MSBN, namely that the interfaces must be
d-sepsets and the sectioning must be sound. These constraints are not very restrictive.

Two important guidelines, the covering subDAG rule and the hypertree rule, for sound sectioning are
derived. MSBNs that follow the rules can have multiply connected sects, do not require expensive computa-
tion to verify soundness of sectioning, and have additional computational advantage during attention shift

in evidential reasoning.

35

Each sect in the MSBN is transformed into a junction tree such that the MSBN is transformed into a
junction forest representation where evidential reasoning takes place. The constraints on transformation are
the invertibility of morali-triangulation and separability.

Each sect/junction tree in the MSBN /junction forest stands as a separate computational object. Since
the technique allows transformation of sects into junction trees through local computation at the sect level,
and allows reasoning to be conducted with junction trees as units, the space requirement is governed by the
size of one sect/junction tree. Hence large applications can be built and run on relatively small computers
wherever hardware resources are of concern. This was, in fact, our original motivation to develop the MSBN
technique.

For large application domains, an average case may involve only a portion of the total knowledge encoded
in a system, and one portion may be used repeatedly over a period of time. A MSBN and a junction forest
representation allows the ‘interesting’ or ‘relevant’ sect/junction tree to be loaded while the rest of the
junction forest remains inactive and uses no computational resources. The judgments made on variables in
the active junction tree are consistent with all the knowledge available, including both prior knowledge and
all the evidence contained in the entire junction forest. When the user’s attention shifts, inactive junction
trees can be made active and previous accumulation of evidence is preserved. This is achieved by passing the
joint beliefs on d-sepsets. The overall computational resource required is governed by the size of the largest
sect, and not by the size of the application domain.

The technique of the MSBN and the junction forest has been applied to an application knowledge-based
system PAINULIM capable of diagnosing neuromuscular diseases characterized by a painful impaired upper

limb. Our experience with PAINULIM supports the significance of the technique (Xiang et al. 1992).

Acknowledgements

This work is supported by Operating Grants A3290, OGP0O044121 from NSERC and a UBC Graduate
Fellowship to Y. Xiang. Revision of the final draft is partially supported by the University College of
the Cariboo. The authors would like to thank Andrew Eisen and Bhanu Pant, whose cooperation in the
PAINULIM project has inspired many of the ideas included in this paper. Our thanks are also directed to
Finn V. Jensen who was kind enough to send us his papers. We are grateful to Lianwen Zhang for his helpful

comments on the earlier draft of this paper.

References

Andersen, S.K., Olesen, K.G., Jensen, F.V. and Jensen, F. 1989. HUGIN - a shell for building

Bayesian belief universes for expert systems. Proceedings of the Eleventh International Joint Con-

36

ference on Artificial Intelligence, Detroit, Michigan, Vol. 2, pp. 1080-1085.

Baker, M. and Boult, T.E. 1990. Pruning Bayesian networks for efficient computation. Proceedings of

the Sixth Conference on Uncertainty in Artificial Intelligence, Cambridge, Mass., pp. 257-264.

Cooper G.F. 1990. The computational complexity of probabilistic inference using Bayesian belief networks.

Artificial Intelligence, 42, pp. 393-405.

Geiger, D., Verma, T. and Pearl, J. 1990. d-separation: from theorems to algorithms. In Uncertainty
in Artificial Intelligence 5. Edited by M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer.

Elsevier Science Publishers, pp. 139-148.
Golumbic, M.C. 1980. Algorithmic graph theory and perfect graphs. Academic Press, NY.

Heckerman, D. 1990a. A tractable inference algorithm for diagnosing multiple diseases. In Uncertainty in
Artificial Intelligence 5. Edited by M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer. Elsevier
Science Publishers, pp. 163-171.

Heckerman, D. 1990b. Probabilistic Similarity Networks, Ph.D. Thesis, Stanford University.

Henrion, M. 1988. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. Uncer-
tainty in Artificial Intelligence 2. Edited by J.F. Lemmer and L.N. Kanal, Elsevier Science Publishers,
pp. 149-163.

Jensen, F.V. 1988. Junction tree and decomposable hypergraphs. JUDEX Research Report, Aalborg,

Denmark.

Jensen, F.V., Lauritzen, S.L.. and Olesen, K.G. 1990. Bayesian updating in causal probabilistic net-

works by local computations. Computational Statistics Quarterly. 4, pp. 269-282.

Jensen, F. and Andersen, S.K. 1990. Approximations in Bayesian belief universes for knowledge-based
systems. Proceedings of the Sizth Conference on Uncertainty in Artificial Intelligence, Cambridge,

Mass., pp. 162-169.

Jensen, F.V., Olesen, K.G. and Andersen, S.K. 1990. An algebra of Bayesian belief universes for

knowledge-based systems. Networks, Vol. 20, pp. 637-659.

Lauritzen, S.L. and Spiegelhalter, D.J. 1988. Local computation with probabilities on graphical struc-
tures, and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50:

157-244.

57

Lauritzen, S.L., Speed, T.P. and Vijayan, K. 1984. Decomposable graphs and hypergraphs. Journal
of Australian Mathematical Society, Series A, 36: 12-29.

Maier, D. 1983. The Theory of Relational Databases. Computer Science Press.
Neapolitan, R.E. 1990. Probabilistic Reasoning in Expert Systems. John Wiley & Sons.

Nii, H.P. 1986a. Blackboard systems: the blackboard model of problem solving and the evolution of
blackboard architectures. AI Magazine, Vol. 7, No. 2, pp. 38-53.

Nii, H.P. 1986b. Blackboard systems: blackboard application systems, blackboard systems from a knowl-

edge engineering perspective. AI Magazine, Vol. 7, No. 3, pp. 82-106.
Pearl, J. 1986. Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29: 241-288.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan

Kaufmann.

Shafer, G., and Shenoy, P.P. 1988. Local computation in hypertrees. School of Business Working Paper
No. 201, University of Kansas, U.S.A.

Shachter, R.D 1988. Discussion published in (Lauritzen and Spiegelhalter 1988).

Xiang, Poole, D., and Beddoes, M.P. 1992. Multiply sectioned Bayesian networks and junction forests

for large knowledge-based systems. Tech. Report CSS-IS TR 92-04, Simon Fraser University.

Xiang, Y. Pant, B., Eisen, A., Beddoes, M..P., and Poole, D. 1992. Multiply sectioned Bayesian net-

works for neuromuscular diagnosis. To appear in Artificial Intelligence in Medicine.

38

Appendix

Term Definition
AbsorbThroughLinkage Section 9.2.3
AbsorbThroughSepset Section 9.2.1
belief universe Section 2.4
BeliefInitialization Section 9.3
clique Section 2
CollectBelief Section 9.3
CollectEvidence Section 9.2.1
consistency Section 8.1
covering subDAG Theorem 6.8
d-sepnode Definition 5.1
d-sepset Definition 5.1
DistributeBelief Section 9.3
DistributeEvidence Section 9.2.1
ExchangeBelief Section 9.2.2
host tree Definition 8.7
hypertree Definition 6.11
invertible morali-triangulation | Definition 7.1
junction forest Section 7
junction tree Section 2

linkage

Definition 7.7

linkage tree

Algorithm 7.10

marginal probability Section 2.2
marginalization Section 2.3
moral graph Section 2
morali-triangulation Section 4

MSBN

Definition 6.1

neighbour sect

Definition 6.2

neighbour junction tree

Definition 7.22

NonRedundancyAbsorption

Section 9.2.2

redundancy set

Definition 7.11

separability Definition 8.5
Shift Attention Section 9.4
soundness of sectioning Definition 6.4
supportiveness Section 9.1
triangulated graph Section 2
UnifyBelief Section 9.2.1
UpdateBelief Section 9.2.3
world Section 2.3

39

