
Computational Intelligence, Volume , Number ,QUANTIFICATION OF UNCERTAINTY INCLASSIFICATION RULES DISCOVERED FROMDATABASESY. Xiang, S.K.M. Wong and N. CerconeDepartment of Computer Science, University of ReginaRegina, Saskatchewan, Canada S4S 0A2We apply rough set constructs to inductive learning from a database. A design guidelineis suggested, which provides users the option to choose appropriate attributes, for the con-struction of data classi�cation rules. Error probabilities for the resultant rule are derived. Aclassi�cation rule can be further generalized using concept hierarchies. The condition for pre-venting overgeneralization is derived. Moreover, given a constraint, an algorithm for generatinga rule with minimal error probability is proposed.1. INTRODUCTIONThe rapidly growing size and number of databases, and the realization thatintelligently analyzed data is a valuable resource have generated increasing de-mands for knowledge discovery in databases (Frawley 1991).In this paper, we assume data are represented by a relational database inwhich information about individual objects in a domain is represented by a setof tuples of attribute values. Adopting the view of `learning by examples' fromArti�cial Intelligence (AI), we may regard a database as a set of training exam-ples. The objective of one form of learning is to produce a classi�cation rule ina disjunctive normal form (DNF) for a particular concept or class. A learnedrule can be generated using the vocabulary of attributes. We shall call the set ofattributes used in the database a basis set (Genesereth 1987), and call the learn-ing process induction using attributes. For complex domains, the rule generatedusing the basis set may contain too many conjuncts. One way to make the rulemore compact, as well as more general, is to partition attribute values for eachattribute using a concept hierarchy. The rule is then represented in a higher levellanguage than the original basis set. We shall call this further generalizationinduction by hierarchy.Given a basis set A0 of attributes, a user may be interested only in a subsetwhich is then used to create the rule. Given this restriction, we can generate therule using a minimum subset A � A0 of attributes. Such a minimal subset maynot be unique. We will discuss a design guideline based on rough sets (Pawlak1982) to provide users with di�erent options for the minimal subset.Once a rule is generated by a learning system, a user may wish to know howreliable is the rule. We will show how error probabilities can be estimated foreach component of the rule and for the rule as a whole.Induction by hierarchy produces generalized rules. However, this inductionprocess may overgeneralize, as discussed in Section 7, and thus increase the classi-�cation error of the resultant rule. We derive the condition under which inductionby hierarchy does not introduce additional classi�cation error.In complex domains, the number of conjuncts in the resultant rule may bec
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2 Computational Intelligencelarge. A user may want to limit the number of conjuncts involved. We discuss howto produce a rule which satis�es such a restriction and minimizes the classi�cationerror.In complex domains, there are often exceptions to general principles. Forexample, most birds 
y but 'penguin' as a bird does not. Each exception willform a conjunct in a DNF rule. Sometimes, the user is interested in only thegeneral principles. An error bound can be used to prune those conjuncts whichcorrespond to exceptions. We will show how to generate a rule whose classi�cationerror is below a given threshold such that it includes minimal exceptions.Our approach is based on the rough set theory (Pawlak 1982) which providesa theoretical framework for knowledge discovery in databases.2. TERMINOLOGY2.1. Basic Notions of Rough SetsLet U be the universe of discourse, and let R be an equivalence relation onU . The pair Z = (U;R) is called an approximation space. If x; y 2 U and(x; y) 2 R, x and y are said to be indistinguishable in Z. Each equivalence classof the relation R is called an elementary set in Z. A �nite union of elementarysets in Z is called a composed de�nable set or simply composed set in Z.Let X be a subset of U . The least composed set in Z containing X is calledupper approximation of X in Z, denoted by Apr(X); the greatest composed setin Z contained in X is called the lower approximation of X in Z, denoted byApr(X). The set Bnd(X) = Apr(X)�Apr(X) is called the boundary of X in Z.2.2. A Database as Learning ExamplesRefer to Figure 1 for illustration of the following notations. Ignore the lowerright portion of the �gure for now. Let Y be a domain of objects. Let C � Ybe a class of objects. We de�ne a function c : Y ! f0; 1g by the following rule:for each y 2 Y , c(y) = 1 if y 2 C, and c(y) = 0 if y 62 C. Let S � Y be a�nite set of sample objects. Let A0 = fA1; : : : ; Ang be a set of attributes, and letV 0 = fV1; : : : ; Vng be the domains of these attributes. Let T 0 be the Cartesianproduct: T 0 = V1� : : :�Vn. Let f : Y ! T 0 be an one-to-one function such thateach object y 2 Y is assigned to a tuple t0 2 T 0 (f(x) = f(y)) ) (x = y). Thefunction f assigns each object to a unique tuple.Let D0 = f [S] and E 0 = f [C] be the images of S and C under the functionf , respectively. D0 represents a database of tuples as learning examples. E0 \D0is the set of positive examples of the class C, and D0 � E 0 is the set of negativeexamples. Throughout this paper, we will call an object y 2 S a sample, and callits value f(y) = t0 2 T 0 an example tuple.Example 1. A bank has invested in a large number of Canadian manufacturingcompanies in the past as shown in Table 1. Some investments produced goodreturns and some didn't. The manager would like to study the investment history,taking investments with good returns as positive examples and poor returns as
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Figure 1. A model for knowledge discovery in databasesnegative examples, so that prediction of good candidates for investment and poorones can be improved in the future.CompName Field Location Years RatingMicroCom Computer Vancouver 10> GoodCompGiant Computer Burnaby 6-10 GoodAutoContr Computer Vancouver 10> GoodToyHome Toy Vancouver 10> GoodAllToys Toy Windsor 2-5 GoodSeasons Fashion Burnaby 6-10 GoodHomeWare Appliance Windsor 2-5 GoodFineDress Fashion Vancouver 10> GoodNewWear Fashion Windsor 2-5 GoodSuit&Tie Fashion Windsor 2-5 PoorHomeUse Appliance Burnaby 6-10 PoorToyManu Toy Vancouver 10> PoorNewToy Toy Vancouver 10> PoorTable 1. An example database on manufacturing companies invested in in the past.



4 Computational Intelligence3. SUPERFLUOUS ATTRIBUTESGiven positive examples D0\E 0 and negative examples D0�E 0, our task is togenerate a classi�cation rule for C such that, given the representation t0 2 T 0 ofan object y 2 Y , the membership of y in C can be determined with the minimalerror (which will be referred to as the classi�cation error).We could describe the rule based on the entire set A0 of attributes. However,for many practical reasons, we often use only a subset of attributes of A0 togenerate the classi�cation rule. One reason is because we know some attributeshave no dependence relation with the class to be described. For example, socialinsurance numbers do not help to distinguish a patient with tuberculosis fromone without. Another reason may be because it is not appropriate to use someattributes in the classi�cation task. For example, to exact a rule for selecting goodemployees, we may not want to include attributes sex and race in the rule. Thisrestriction of attributes can be easily performed by using a projection operationin relational databases. The option of specifying a desired set of attributes shouldbe given to the user of a learning system. The removal of a subset B of attributesrepresents a conceptual bias (Genesereth 1987) of the learning process.We formalize the projection as follows: Let B � A0 be a proper subset of A0.A projection of the function f to the set of attributes A = A0 � B is de�ned asg : U ! T where T is the Cartesian product T = �i Vi and Vi is the domain ofAi 2 A. We use t = g(u) to denote the projected tuple obtained under g. Notethat, di�erent objects in Y can be mapped into the same tuple by g.Example 2. Let the tuples in Example 1 be projected toA = fField; Location; Y earsg:Let the set D of projected tuples be the universe. Let the equivalence relationR be R(A). Then (D;R(A)) is the approximation space. The tuple (Computer;V ancouver; 10>) represents an elementary set.Let E be the set of tuples with good returns. ThenApr(E) = f(Computer; V an; 10 >); (Computer; Bur; 6� 10);(Toy;Win; 2� 5); (Fashion; V an; 10 >);(Fashion; Bur; 6� 10); (Appliance;Win; 2� 5)gBnd(E) = f(Toy; V an; 10 >); (Fashion;Win; 2� 5)gAfter the attributes have been restricted to a subset in the manner describedabove, it is often possible to further reduce the subset without increasing theclassi�cation error of the resultant rule. This involves the notion of reduct (Pawlak1992, Ziarko 1991) in the rough set theory.Let g be the projection of f , D = g[S] be the set of learning examplesdescribed by the set of attributes A = A0 � B, and E = g[C] \ D be the set ofpositive training examples described by A. Following the notation in Section 2.1,let D be the universe, and let the equivalence relation R(A) be de�ned as follows:(r; t) 2 R(A) i� for every � 2 A, r� = t� where r� is the value of the attribute� in the tuple r. An attribute � 2 A is super
uous in A if R(A) = R(A� f�g);



Quantification of Uncertainty in Classification Rules Discovered from Databases5otherwise � is indispensable in A. If all attributes of A are indispensable in A,then A is orthogonal. A proper subset W � A is a reduct of A i� W is orthogonaland R(W ) = R(A).Since a reduct does not change the equivalence relation R, given a set X � D,none of Apr(X), Apr(X), or Bnd(X) will change. This implies that the accuracyof classi�cation relative to X does not change if we use a reduct as the basis set.The advantage of using a reduct rather than the original set A of attributes isthat we have a more concise classi�cation rule.Computer Toy Fashion ApplianceVan. MicroCom+ ToyHome+ FineDress+AutoContr+ ToyManu-NewToy-Bur. CompGiant+ Seasons+ HomeUse-Win. AllToys+ NewWear+ HomeWare+Suit&Tie-Table 2. Elementary sets with reduct A1 = fField; Locationg.Example 3. In the investment example, given a set of attributes A = fField;Location; Y earsg in which a user is interested, there are two reducts of A: A1 =fField; Locationg and A2 = fField; Y earsg. Table 2 shows (D;R(A1)) whereeach cell corresponds to an elementary set. Since tuples in an elementary sethave identical attribute values, each of them is labeled instead using its companyname. The rating is indicated by + or �.Since given a set of examples D and the set A of attributes, there may existmore than one reduct, it would be useful for a learning system to provide severalreducts to the user, and to proceed with the subsequent learning task usingthe reduct selected by the user. The user may select the reduct with minimumcardinality among the given alternatives, or the one which makes the most sense.We propose a model for the user interaction with a learning system as shown inFigure 2. The system interacts with a user in the order from left to right.To compute a reduct, we remove an arbitrarily chosen attribute, say A1, fromthe basis set A. We then check if all the elementary sets are unchanged. If so,we proceed with A2, otherwise, we put A1 back and proceed with A2. We gothrough all the attributes in A in this fashion. The attributes left at the endconstitute a reduct.Although a single reduct can be computed relatively easily, the general prob-lem of �nding all reducts is NP-hard (Wong 1985, Ziarko 1991). In practice, ifthe cardinality of A is large, some compromise has to be made such that only asubset of all reducts is supplied.
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hierarchyFigure 2. A model of learning systems4. ERROR PROBABILITY ESTIMATION IN INDUCTIONUSING A REDUCTGiven the set D of examples and the set E � D of positive examples, D canbe partitioned into Neg(E) = D � Apr(E) which is a set of negative examples,Pos(E) = Apr(E) which is a set of positive examples, and Bnd(E) which is aset of mixed positive and negative examples. In the following discussion, we willomit the variable E for brevity, and simply write Neg, Pos and Bnd.Since all tuples in an elementary set are indistinguishable, we shall use s[t]to denote the elementary set of a tuple t.Throughout this paper, we assume that the set of examples D is truly arepresentative of the class C in the universe.Assumption 1. Let Y be a domain and let D be a set of examples. Let thenumber of positive examples in an elementary set s[t] be n+[t] � 0 and thenumber of negative examples be n�[t] � 0. The examples in D satisfy thefollowing properties:1. Completeness For every object x 2 Y , there is a sample y 2 Y such thatg(x) = g(y).2. Proportion For every elementary set s[t] in D and every object y 2 Y ,p(c(y) = 1jg(y) = t) = n+[t]=(n+[t] + n�[t]):3. Miniworld For every elementary set s[t] in D and every object y 2 Y ,p(g(y) = t) = (n+[t] + n�[t])=Card(D):Example 4. The existence of a company (PCMaker, Computer, Vancouver, 10>)is consistent with the Completeness assumption. But the existence of a company(PCMaker, Computer, Windsor, 2-5) would be inconsistent with the assumption.



Quantification of Uncertainty in Classification Rules Discovered from Databases7The existence of nonequal number of good-return fashion companies and poorreturn fashion companies in Windsor would be inconsistent with the Proportionassumption.If the number of computer manufacturing companies in Vancouver with 10years or longer history is more than 2=13 of the total number of Canadian manu-facturing companies, then the database would be inconsistent with the Miniworldassumption.The above representative assumption on examples is simply one way to for-malize the assumption on samples in any inductive learning. The assumptionallows us to associate the knowledge discovered with some estimation of errorprobability, to be presented in the rest of this section. The assumption cannotbe veri�ed given the limited data at hand, and may be invalidated when newdata become available. We acknowledge the limited validity of the assumption.In the case where it is indeed invalidated by the new data, we again make theassumption on the updated set of examples, and update our previously discoveredknowledge as well as our estimation of error probabilities.In the following, we construct a classi�cation rule for the class C expressedin terms of a disjunctive normal form:8y 2 Y ((class(y) = 1)() (t1 _ : : :_ tn));where each ti 2 D is a tuple (conjunct) corresponding to an elementary set, andclass(y) = 1 means that the object y is classi�ed by the rule as a member of theclass C.Proposition 1. Let t be a tuple in an elementary set s[t] � Pos. If g(y) = t fory 2 Y , then c(y) = 1.Proof:Suppose g(y) = t, and c(y) = 0 which means y 62 C. Since g(y) =t, s[t] must be either a subset of Neg or Bnd. This contradicts theassumption s[t] � Pos. 2Based on Proposition 1, for each t such that s[t] � Pos, we include t as aconjunct in the classi�cation rule. We label the conjunct with an error probability:p(c(y) 6= 1jg(y) = t) = 0which means that if the new tuple g(y) matches t, we can conclude c(y) = 1 withcertainty due to the completeness assumption.For each elementary set s[t] � Bnd, we include t as a conjunct in the classi-�cation rule if n+[t] � n�[t]. We label it with an error probability:p(c(y) 6= 1jg(y) = t) = n�[t]=(n+[t] + n�[t]) (1)which means that if the new tuple g(y) matches t, we can conclude c(y) = 1 withprobability 1�p(c(y) 6= 1jg(y) = t). This is justi�ed by the following Proposition.



8 Computational IntelligenceProposition 2. Let t be a tuple such that s[t] � Bnd and n+[t] � n�[t]). Ifg(y) = t for y 2 Y , thenp(c(y) = 1jg(y) = t) = n+[t]=(n+[t] + n�[t]) � p(c(y) = 0jg(y) = t)Proof:By the proportion assumption and the given condition, p(c(y) = 1jg(y) =t) = n+[t]=(n+[t] + n�[t]) � 0:5. Therefore, p(c(y) = 0jg(y) = t) =1� p(c(y) = 1jg(y) = t) = n�[t]=(n+[t] + n�[t]) � 0:5. 2The above proposition states that, to minimize the chance of error, if n+[t] �n�[t], we should conclude class(y) = 1; otherwise conclude class(y) = 0 (by not�ring the rule).The error probability of the classi�cation rule as a whole is determined bythe following Theorem based on Assumption 1, and Proposition 1 and 2.Theorem 1. The probability of false-positive error of the classi�cation rule8y 2 Y ((class(y) = 1)() (_ t))for a given y isp(class(y) = 1 ^ c(y) = 0) = ( Xt2Bnd(E)^n+[t]�n� [t]n�[t])=Card(D):The probability of false-negative error of the classi�cation rule for a given y isp(class(y) = 0 ^ c(y) = 1) = ( Xt2Bnd(E)^n+[t]<n� [t]n+[t])=Card(D):The error probability of the entire classi�cation rule for a given y isp(class(y) 6= c(y))= p(class(y) = 1 ^ c(y) = 0) + p(class(y) = 0 ^ c(y) = 1)= Xt2Bnd(E)min(n+[t]; n�[t])=Card(D)):Proof:We prove the result for the false-positive error probability. The prooffor the false-negative result is similar. The rest of the proof is trivial.The false positive error happens when an object y (c(y) = 0) hasits tuple representation g(y) = t (t 2 Bnd), and the classi�cation rulecontains t (because n+[t] � n�[t]). Given such a t, Proposition 2 andEquation 1 dictates thatp(c(y) = 0jg(y) = t) = n�[t]=(n+[t] + n�[t]):



Quantification of Uncertainty in Classification Rules Discovered from Databases9The false positive error of the entire rule is the following weighted sumover every such t: Xt2Bnd^n+[t]�n�[t] p(c(y) = 0jg(y) = t)p(g(y) = t)By the miniworld assumption,p(g(y) = t) = (n+[t] + n�[t])=Card(D)and the result for the false positive error probability follows. 2The discussion to this point leads naturally to the procedure for constructinga classi�cation rule as realized in Algorithm 1.Algorithm 1.Input: A set Z � D of distinct tuples, where D is the set of all examples.Output: A classi�cation rule in DNF.(Notations follow that used in the text)BEGINInitialize List to empty listFOR each t 2 Z such that s[t] � Pos DOLabel t with p(c(y) 6= 1jg(y) = t) = 0Add t with its label to ListEND FORFOR each t 2 Z such that s[t] � Bnd and n+[t] � n�[t] DOLabel t with p(c(y) 6= 1jg(y) = t) = n�[t]=(n+[t] + n�[t])Add t with its label to ListEND FORConstruct the classi�cation rule8y 2 Y ((class(y) = 1), (g(y) = t1 _ : : :_ g(y) = tn))where ti; : : : ; tn are all the tuples in ListLabel the rule with p(class(y) 6= c(y)) as determined by Theorem 1ENDExample 5. Applying Algorithm 1 to the bank database in Example 1, we obtainthe following rule: A Canadian manufacturing company y should be consideredas a good candidate for investment ifg(y) = (Computer; V ancouver)[0] org(y) = (Computer; Burnaby)[0] org(y) = (Toy;Windsor)[0] org(y) = (Fashion; V ancouver)[0] org(y) = (Fashion; Burnaby)[0] org(y) = (Appliance;Windsor)[0] org(y) = (Fashion;Windsor)[0:5]:



10 Computational IntelligenceThe rule as a whole is subject to a false prediction with a chance of 1=13+1=13 =15%.The error probability used to label the individual conjunct in a rule can beused for posterior decision-making. For example, the bank should be quite con-�dent with an investment if the candidate is a computer manufacturer locatedin Vancouver. However, in evaluating an investment to a Windsor Fashion com-pany, the bank knows that the chance of getting a good return is as likely as thatof getting a poor one.The overall error probability labeling the entire rule can be used for priordecision-making. Suppose another learning algorithm produced a rule with over-all error probability of 0.19. If a decision must be made regarding which ruleshould be used for an automatic investment system, then the previous rule (withan error probability 0.15) would be preferred.The overall error probability may also be used to limit the number of con-juncts contained in a rule. We discuss this issue in the next section.5. RESTRICTING THE NUMBER OF CONJUNCTSIn order to increase the e�ciency of a classi�cation rule (less space to store andless time to apply), the user may impose a restriction on the number of conjuncts,subject to the minimization of error probability. To meet such a requirement,we can rank the conjuncts in a rule by their contribution to the overall errorprobability.The removal of a conjunct from a rule increases only the false-positive errorbut not the false-negative error. In particular, the removal of a conjunct ti willadd n+i to and subtract n�i from the numerator of the error probability, wheren+i and n�i are the number of positive examples and negative examples in s[ti],respectively. That is, the net increase to the numerator is n+i � n�i. Therefore,to �nd a conjunct whose removal causes minimal increase of error probability, weneed only to select the one with minimal n+i � n�i. These observations lead tothe following Algorithm and Proposition.Algorithm 2 (SortConjuncts)Input: A list I of m conjuncts t1; : : : ; tm, the number of positive examples ineach elementary set n+1; : : : ; n+m, and the number of negative examples in eachelementary set n�1; : : : ; n�m.Output: The list O of conjuncts such that the removal of a conjunct from theend of the list causes minimal increase of error probability.BEGINInitialize O to an empty listWHILE I 6= � DOFind t in I with maximal n+ � n�Remove t from I and place it at the end of OEND WHILEEND



Quantification of Uncertainty in Classification Rules Discovered from Databases11Proposition 3. Given a list of n conjuncts in a classi�cation rule, and m < nas an additional restriction on the number of conjuncts, Algorithm 2 sorts nconjuncts such that retaining the �rst m conjuncts in the list minimizes theincrease of error probability.Example 6. Table 3 shows a sorted list of the conjuncts/elementary sets for therule in Example 5. Elementary Set n+ � n�(Computer, Vancouver) (2)(Computer, Burnaby) (1)(Toy, Windsor) (1)(Fashion, Vancouver) (1)(Fashion, Burnaby) (1)(Appliance, Windsor) (1)(Fashion, Windsor) (0)Table 3. A sorted list of elementary sets6. REMOVAL OF EXCEPTIONSIn many applications, the general principle is associated with some exceptions.For example, a bird is one that 
ies, but penguin is an exception to the '
ying'principle. Each exception will necessarily produce a conjunct in the classi�cationrule. This example would produce a rule with two degenerated conjuncts: x isa bird i� (1) x 
ies or (2) x is a penguin. Sometimes we would like to removesuch exceptions from the rule. Removing exceptions entails relaxing the errorprobability. The task presented to the learning system is then as follows: Givena threshold for error probability, �nd the minimal subset of conjuncts that satis�esthe threshold.The sorted list of conjuncts by Algorithm 2 can be used for this task. We mayremove as many conjuncts as necessary subject to the threshold. At each step weremove the conjunct whose removal causes minimal increase of the overall errorprobability. The last conjunct in the sorted list is such a conjunct.Algorithm 3 (RemoveExceptions)Input: A list I of m conjuncts t1; : : : ; tm sorted by Algorithm 2, and an errorprobability threshold P .Output: The list O which contains the minimal set of conjuncts such that theerror probability of the rule constructed from O is less than or equal to P .BEGINInitialize p to the error probability of the rule obtained from I



12 Computational IntelligenceIf p > P , print an error message and exitInitialize Last to nullInitialize O to IWHILE p � P DORemove Last from OAssign the last conjunct in O to LastCompute the error probability p of the ruleobtained from O � fLastgEND WHILEEND 7. INDUCTION BY CONCEPT HIERARCHYOne of the characteristics of knowledge discovery in databases is that thediscovered knowledge is represented in a high-level language [3]. This aspect ofknowledge discovery is di�erent from learning in neural networks.We consider here an externally provided generalization hierarchy [6] in whichdi�erent levels of generalization are organized into a tree called a concept tree(Cai 1991).De�nition 1. Let � be an attribute with domain �. Let � be a rooted balanced 1directed tree. � is a concept tree for the attribute � if the following conditionshold:1. The leaves of � are labeled by the elements in �.2. The set of leaves are partitioned and leaves in each partition are connectedto a common parent node labeled by the partition.3. The parent nodes of leaves are further partitioned and nodes in each partitionare connected to a common parent node labeled by the partition. This processcontinues until all nodes at a level form a single partition. Their commonparent, the root, is labeled `any'.In a concept tree, each node is identi�ed with a unique label. Thus we willuse terms node and label interchangeably. Figure 3 gives an example of a concepttree for an attribute Location.In induction by concept hierarchy, we consider the issue of substituting theattribute values of some tuples by a more general concept: one of their ancestorlabels in the concept tree. This will extend the domain of each attribute toinclude all concepts in the corresponding concept tree. Note that the valuesin the extended domain will no longer be exclusive any more. We call a tupleresulting from such a substitution a generalized tuple.De�nition 2. Let r and t be two tuples. Let � be an attribute. Tuples r and tare incompatible at only � if all corresponding attribute values of r and t areidentical except the values for �.1Notice that we consider here balanced trees whose leaves have identical height.
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.



14 Computational IntelligenceIn the following, we consider the e�ect of a generalization of a pair of tuplesr and t on the overall error probability of the resultant rule. According to Theo-rem 1, the contribution of tuples r and t to the error probability of the originalrule is Contrir;t = (min(n+[t]; n�[t]) +min(n+[r]; n�[r]))=Card(D):The contribution of the new tuple u isContriu = min(n+[t] + n+[r]; n�[t] + n�[r])=Card(D):The relationship between the two elementary sets s[r] and s[t], and the three setsPos, Neg and Bnd can re
ect one of the following six cases:1. s[r] � Neg and s[t] � Neg 2. s[r] � Pos and s[t] � Pos3. s[r] � Bnd and s[t] � Bnd 4. s[r] � Pos and s[t] � Neg5. s[r] � Pos and s[t] � Bnd 6. s[r] � Neg and s[t] � BndIn cases 1 and 2, Contrir;t = Contriu = 0. No additional error is introducedto the new rule.In case 3, if either n+[x] � n�[x] for both x = r and x = t, or n+[x] < n�[x]for both x = r and x = t, or n+[r] = n�[r] and n+[t] < n�[t], then Contrir;t =Contriu and no additional error is introduced. However, if n+[r] > n�[r] andn+[t] < n�[t], thenContriu = min(n+[t] + n+[r]; n�[t] + n�[r])=Card(D)> Contrir;t = (n+[t] + n�[r])=Card(D):In cases 4, 5 and 6, the new tuple u causes recon�guration of sets Pos, Negand Bnd into Pos0, Neg0 and Bnd0, and the elementary set s[u] is a subset ofBnd0. In case 4,Contriu = min(n+[r]; n�[t])=Card(D) > Contrir;t = 0:In cases 5, Contriu = min(n+[t] + n+[r]; n�[t])=Card(D)� Contrir;t = min(n+[t]; n�[t])=Card(D):The equal sign holds i� n+[t] � n�[t].In case 6, Contriu = min(n+[t]; n�[t] + n�[r])=Card(D)� Contrir;t = min(n+[t]; n�[t])=Card(D):The equal sign holds i� n+[t] � n�[t].We summarize the above analysis by the following de�nition 6 and Theorem 2:De�nition 6. Let 
 � A be a proper subset of attributes. Let L be a set oftuples incompatible at 
. Let u be the tuple obtained by a generalization oftuples in L relative to 
. The substitution of u for the tuples in L is a propergeneralization if one of the followings holds:� (St2L s[t]) � Neg



Quantification of Uncertainty in Classification Rules Discovered from Databases15� (St2L s[t]) � Pos� (St2L s[t]) � Bnd, and there exist no two tuples r; t 2 L such that for oneof r; t, n+ > n�, and for the other, n+ < n�.� (St2L s[t]) � Pos [ Bnd, and n+[t] � n�[t] for each s[t] � Bnd.� (St2L s[t]) � Neg [ Bnd, and n+[t] � n�[t] for each s[t] � Bnd.Otherwise, the substitution is a strict overgeneralization.Theorem 2. Let 
 � A be a proper subset of attributes. Let L be a set of tuplesincompatible at 
. Let u be the tuple obtained by a generalization of tuples inL relative to 
.The generalization does not increase the error probability of the resultant newrule i� it is proper. Otherwise, the amount of increase in the error probability is(min(Xt2Ln+[t];Xt2Ln�[t]))=Card(D)� (Xt2Lmin(n+[t]; n�[t]))=Card(D)> 0:Example 7. For the rule constructed in Example 5, the substitution of (Com-puter, Vancouver) and (Computer, Burnaby) with (Computer, BC) is a propergeneralization, so is the substitution with (Computer, Any), since both elementarysets are elements of Pos.However, the substitution of (Toy, Vancouver), which is an element of Bnd,and (Toy, Windsor), which is an element of Pos, with (Toy, Any) is a strictovergeneralization. It causes an increase in the error probability of the resultantrule by 2=13� 1=13 = 0:077.Theorem 2 provides a guideline in the design of knowledge discovery algo-rithms. 8. REMARKSIn this paper, we apply rough set theory and probability concepts to induc-tive learning from databases. Under the assumption of a set of representativeexamples, we derive the error probabilities for components of a classi�cation ruleas well as for the rule as a whole. We derive the result for induction using at-tributes, and show the condition under which further induction can be performedwithout increasing the error probabilities.Our work is closely related to other work in the area of knowledge discovery indatabases: Ziarko (1991) discussed the application of reducts in inductive learn-ing in databases. Cai, Cercone and Han (1991) and Han, Cai, and Cercone (1993)developed an attribute-oriented approach for inductive learning in databases us-ing concept trees, and implemented in an experimental database learning system,DBLEARN. Our work extends their research and provides a theoretical frame-work to quantify the uncertainty in the knowledge discovered from databases.Pawlak, Wong and Ziarko (1988) discussed similar decision rules. However, theydid not provide the error probabilities explicitly.This work also relates to learning by examples in machine learning (Kodrato�1990, Michalski 1986, Michalski 1983). We compare here with two well-known
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