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We apply rough set constructs to inductive learning from a database. A design guideline
is suggested, which provides users the option to choose appropriate attributes, for the con-
struction of data classification rules. Error probabilities for the resultant rule are derived. A
classification rule can be further generalized using concept hierarchies. The condition for pre-
venting overgeneralization is derived. Moreover, given a constraint, an algorithm for generating
a rule with minimal error probability is proposed.

1. INTRODUCTION

The rapidly growing size and number of databases, and the realization that
intelligently analyzed data is a valuable resource have generated increasing de-
mands for knowledge discovery in databases (Frawley 1991).

In this paper, we assume data are represented by a relational database in
which information about individual objects in a domain is represented by a set
of tuples of attribute values. Adopting the view of ‘learning by examples’ from
Artificial Intelligence (Al), we may regard a database as a set of training exam-
ples. The objective of one form of learning is to produce a classification rule in
a disjunctive normal form (DNF') for a particular concept or class. A learned
rule can be generated using the vocabulary of attributes. We shall call the set of
attributes used in the database a basis set (Genesereth 1987), and call the learn-
ing process induction using attributes. For complex domains, the rule generated
using the basis set may contain too many conjuncts. One way to make the rule
more compact, as well as more general, is to partition attribute values for each
attribute using a concept hierarchy. The rule is then represented in a higher level
language than the original basis set. We shall call this further generalization
induction by hierarchy.

Given a basis set A’ of attributes, a user may be interested only in a subset
which is then used to create the rule. Given this restriction, we can generate the
rule using a minimum subset A C A’ of attributes. Such a minimal subset may
not be unique. We will discuss a design guideline based on rough sets (Pawlak
1982) to provide users with different options for the minimal subset.

Once a rule is generated by a learning system, a user may wish to know how
reliable is the rule. We will show how error probabilities can be estimated for
each component of the rule and for the rule as a whole.

Induction by hierarchy produces generalized rules. However, this induction
process may overgeneralize, as discussed in Section 7, and thus increase the classi-
fication error of the resultant rule. We derive the condition under which induction
by hierarchy does not introduce additional classification error.

In complex domains, the number of conjuncts in the resultant rule may be
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large. A user may want to limit the number of conjuncts involved. We discuss how
to produce a rule which satisfies such a restriction and minimizes the classification
error.

In complex domains, there are often exceptions to general principles. For
example, most birds fly but ’penguin’ as a bird does not. Each exception will
form a conjunct in a DNF rule. Sometimes, the user is interested in only the
general principles. An error bound can be used to prune those conjuncts which
correspond to exceptions. We will show how to generate a rule whose classification
error is below a given threshold such that it includes minimal exceptions.

Our approach is based on the rough set theory (Pawlak 1982) which provides
a theoretical framework for knowledge discovery in databases.

2. TERMINOLOGY

2.1. Basic Notions of Rough Sets

Let U be the universe of discourse, and let R be an equivalence relation on
U. The pair Z = (U,R) is called an approzimation space. If z,y € U and
(z,y) € R,  and y are said to be indistinguishable in 7. Each equivalence class
of the relation R is called an elementary set in Z. A finite union of elementary
sets in Z is called a composed definable set or simply composed set in Z.

Let X be a subset of U. The least composed set in Z containing X is called
upper approzimation of X in Z, denoted by Apr(X); the greatest composed set
in Z contained in X is called the lower approximation of X in Z, denoted by

Apr(X). The set Bnd(X )= Apr(X)— Apr(X) is called the boundary of X in Z.

2.2. A Database as Learning Examples

Refer to Figure 1 for illustration of the following notations. Ignore the lower
right portion of the figure for now. Let Y be a domain of objects. Let C' C Y
be a class of objects. We define a function ¢ : Y — {0,1} by the following rule:
foreach y € Y, c(y) = 1ify € C,and ¢(y) = 0if y ¢ C. Let S C Y be a
finite set of sample objects. Let A’ = {Ay,..., A} be a set of attributes, and let
V' = {Vi,...,V,} be the domains of these attributes. Let T’ be the Cartesian
product: 7" = Vi x...x V,. Let f:Y — T’ be an one-to-one function such that
each object y € YV is assigned to a tuple ¢ € T' (f(z) = f(y)) = (¢ = y). The
function f assigns each object to a unique tuple.

Let D' = f[S] and £’ = f[C] be the images of S and C under the function
f, respectively. D’ represents a database of tuples as learning examples. E'n D’
is the set of positive examples of the class (', and D’ — E’ is the set of negative
examples. Throughout this paper, we will call an object y € S a sample, and call
its value f(y) =1t € 1" an exzample tuple.

Erample 1. A bank has invested in a large number of Canadian manufacturing
companies in the past as shown in Table 1. Some investments produced good
returns and some didn’t. The manager would like to study the investment history,
taking investments with good returns as positive examples and poor returns as
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T’ (tuple space) (A7)
Y (object space)

FiGURE 1. A model for knowledge discovery in databases

negative examples, so that prediction of good candidates for investment and poor
ones can be improved in the future.

CompName  Field Location Years | Rating

MicroCom  Computer Vancouwver 10> Good
CompGiant  Computer Burnaby 6-10 | Good
AutoContr  Computer Vancouver 10> Good

ToyHome Toy Vancouver 10> Good
AllToys Toy Windsor 2-5 Good
Seasons Fashion Burnaby 6-10 | Good

HomeWare  Appliance  Windsor 2-5 Good
FineDress Fashion Vancouver 10> Good
NewWear Fashion Windsor 2-5 Good
Suitéd Tie Fashion Windsor 2-5 Poor
HomeUse Appliance  Burnaby 6-10 | Poor
ToyManu Toy Vancouver 10> Poor
NewToy Toy Vancouver 10> Poor

TABLE 1.  An example database on manufacturing companies invested in in the past.
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3. SUPERFLUOUS ATTRIBUTES

Given positive examples D'N E’ and negative examples D' — E’, our task is to
generate a classification rule for C' such that, given the representation ¢ € T’ of
an object y € Y, the membership of y in €' can be determined with the minimal
error (which will be referred to as the classification error).

We could describe the rule based on the entire set A’ of attributes. However,
for many practical reasons, we often use only a subset of attributes of A’ to
generate the classification rule. One reason is because we know some attributes
have no dependence relation with the class to be described. For example, social
insurance numbers do not help to distinguish a patient with tuberculosis from
one without. Another reason may be because it is not appropriate to use some
attributes in the classification task. For example, to exact a rule for selecting good
employees, we may not want to include attributes sex and race in the rule. This
restriction of attributes can be easily performed by using a projection operation
in relational databases. The option of specifying a desired set of attributes should
be given to the user of a learning system. The removal of a subset B of attributes
represents a conceptual bias (Genesereth 1987) of the learning process.

We formalize the projection as follows: Let B C A’ be a proper subset of A’.
A projection of the function f to the set of attributes A = A’ — B is defined as
g : U — T where T is the Cartesian product T'= X; V; and V; is the domain of
A; € A. We use t = g(u) to denote the projected tuple obtained under g. Note
that, different objects in Y can be mapped into the same tuple by g.

FErample 2. Let the tuples in Fxample 1 be projected to
A = {Field, Location,Years}.

Let the set D of projected tuples be the universe. Let the equivalence relation
R be R(A). Then (D, R(A)) is the approximation space. The tuple (Computer,
Vancouver, 10 >) represents an elementary set.

Let E be the set of tuples with good returns. Then

Apr(F) = {(Computer,Van, 10 >), (Computer, Bur,6 — 10),
(Toy, Win,2 —5),(Fashion, Van, 10 >),
(Fashion, Bur,6 — 10), (Appliance, Win,2 — 5)}

Bnd(E)= {(Toy,Van,10 >),(Fashion, Win,2 —5)}

After the attributes have been restricted to a subset in the manner described
above, it is often possible to further reduce the subset without increasing the
classification error of the resultant rule. This involves the notion of reduct (Pawlak
1992, Ziarko 1991) in the rough set theory.

Let g be the projection of f, D = ¢[5] be the set of learning examples
described by the set of attributes A = A’ — B, and £ = ¢[C]N D be the set of
positive training examples described by A. Following the notation in Section 2.1,
let D be the universe, and let the equivalence relation R(A) be defined as follows:
(r,t) € R(A) iff for every A € A, rp =ty where 7y is the value of the attribute
A in the tuple . An attribute A € A is superfluousin A if R(A) = R(A —{A});
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otherwise A is indispensable in A. If all attributes of A are indispensable in A,
then A is orthogonal. A proper subset W C A is a reduct of A iff W is orthogonal
and R(W) = R(A).

Since a reduct does not change the equivalence relation R, given aset X C D,
none of Apr(X), Apr(X), or Bnd(X ) will change. This implies that the accuracy
of classification relative to X does not change if we use a reduct as the basis set.
The advantage of using a reduct rather than the original set A of attributes is
that we have a more concise classification rule.

| Computer | Toy | Fashion | Appliance

Van. | MicroCom+ ToyHome+ | FineDress+
AutoContr+ | ToyManu-
NewToy-

Bur. | CompGiant+ | | Seasons+ | HomeUse-

Win. AllToys+ NewWear+ | HomeWare+
Suit&Tie-

TABLE 2.  Elementary sets with reduct A; = {Field, Location}.

Fzample 3. In the investment example, given a set of attributes A = {Field,
Location,Y ears} in which a user is interested, there are two reducts of A: Ay =
{Field, Location} and Ay = {Field,Years}. Table 2 shows (D, R(Ay)) where
each cell corresponds to an elementary set. Since tuples in an elementary set
have identical attribute values, each of them is labeled instead using its company
name. The rating is indicated by + or —.

Since given a set of examples D and the set A of attributes, there may exist
more than one reduct, it would be useful for a learning system to provide several
reducts to the user, and to proceed with the subsequent learning task using
the reduct selected by the user. The user may select the reduct with minimum
cardinality among the given alternatives, or the one which makes the most sense.
We propose a model for the user interaction with a learning system as shown in
Figure 2. The system interacts with a user in the order from left to right.

To compute a reduct, we remove an arbitrarily chosen attribute, say Ay, from
the basis set A. We then check if all the elementary sets are unchanged. If so,
we proceed with A,, otherwise, we put A; back and proceed with A;. We go
through all the attributes in A in this fashion. The attributes left at the end
constitute a reduct.

Although a single reduct can be computed relatively easily, the general prob-
lem of finding all reducts is NP-hard (Wong 1985, Ziarko 1991). In practice, if
the cardinality of A is large, some compromise has to be made such that only a
subset of all reducts is supplied.
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FIGURE 2. A model of learning systems

4. ERROR PROBABILITY ESTIMATION IN INDUCTION
USING A REDUCT

Given the set D of examples and the set F/ C D of positive examples, D can
be partitioned into Neg(F) = D — Apr(F) which is a set of negative examples,
Pos(E) = Apr(FE) which is a set of positive examples, and Bnd(F) which is a
set of mixed positive and negative examples. In the following discussion, we will
omit the variable F for brevity, and simply write Neg, Pos and Bnd.

Since all tuples in an elementary set are indistinguishable, we shall use s[¢]
to denote the elementary set of a tuple .

Throughout this paper, we assume that the set of examples D is truly a
representative of the class €' in the universe.

Assumption 1. Let Y be a domain and let D be a set of examples. Let the
number of positive examples in an elementary set s[t] be ny[t] > 0 and the
number of negative examples be n_[t] > 0. The examples in D satisfy the
following properties:

1. Completeness For every object & € Y, there is a sample y € Y such that
9(z) = g(y)-
2. Proportion For every elementary set s[t] in D and every object y € YV,

ple(y) = Ug(y) = 1) = ny [t]/(ny[t] + n_[1]).
3. Miniworld For every elementary set s[t] in D and every object y € Y,

plg(y) = 1) = (ny[t] + n_[t])/Card(D).

Fzample 4. The existence of a company (PCMaker, Computer, Vancouver, 10>)
s consistent with the Completeness assumption. But the existence of a company
(PCMaker, Computer, Windsor, 2-5) would be inconsistent with the assumption.
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The existence of nonequal number of good-return fashion companies and poor
return fashion companies in Windsor would be inconsistent with the Proportion
assumption.

If the number of computer manufacturing companies in Vancouver with 10
years or longer history is more than 2/13 of the total number of Canadian manu-
facturing companies, then the database would be inconsistent with the Miniworld
assumption.

The above representative assumption on examples is simply one way to for-
malize the assumption on samples in any inductive learning. The assumption
allows us to associate the knowledge discovered with some estimation of error
probability, to be presented in the rest of this section. The assumption cannot
be verified given the limited data at hand, and may be invalidated when new
data become available. We acknowledge the limited validity of the assumption.
In the case where it is indeed invalidated by the new data, we again make the
assumption on the updated set of examples, and update our previously discovered
knowledge as well as our estimation of error probabilities.

In the following, we construct a classification rule for the class €' expressed
in terms of a disjunctive normal form:

Vy € Y((class(y)=1) <= (t1 V...V 1,)),

where each #; € D is a tuple (conjunct) corresponding to an elementary set, and
class(y) = 1 means that the object y is classified by the rule as a member of the
class C'.

Proposition 1. Let t be a tuple in an elementary set s[t] C Pos. If g(y) = t for
y €Y, then ¢(y) = 1.

Proof:

Suppose g(y) = t, and ¢(y) = 0 which means y ¢ C. Since g(y) =
t, s[t] must be either a subset of Neg or Bnd. This contradicts the
assumption s[t] C Pos. O

Based on Proposition 1, for each ¢ such that s[t] C Pos, we include t as a
conjunct in the classification rule. We label the conjunct with an error probability:

ple(y) # lg(y)=1) =0

which means that if the new tuple ¢(y) matches ¢, we can conclude ¢(y) = 1 with
certainty due to the completeness assumption.

For each elementary set s[t] C Bnd, we include ¢ as a conjunct in the classi-
fication rule if ny[t] > n_[t]. We label it with an error probability:

ple(y) # Ug(y) = 1) = n_[t]/(ny [1] + n[1]) (1)

which means that if the new tuple ¢(y) matches ¢, we can conclude ¢(y) = 1 with
probability 1—p(c(y) # 1|g(y) = t). This is justified by the following Proposition.
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Proposition 2. Let t be a tuple such that s[t] C Bnd and ny[t] > n_[t]). If
g(y)=tfory €Y, then

ple(y) = Ug(y) = 1) = ny [t/ (ny [t + n-[1]) = ple(y) = Olg(y) = 1)

Proof:

By the proportion assumption and the given condition, p(c(y) = 1]g(y) =
) = nplt]/(nglf] 4 n_[1)) > 0.5. Therefore, p(e(y) = Olgly) = 1) =
U= ple(y) = Ugly) = 1) = n_[) (ns [+ n_[1]) < 0.5. C

The above proposition states that, to minimize the chance of error, if ny[t] >
n_[t], we should conclude class(y) = 1; otherwise conclude ¢lass(y) = 0 (by not

firing the rule).
The error probability of the classification rule as a whole is determined by
the following Theorem based on Assumption 1, and Proposition 1 and 2.

Theorem 1. The probability of false-positive error of the classification rule

Yy € Y((class(y) = 1) <= (\/t))
for a given y is

plclass(y) =1Ac(y)=0)=( Z n_[t])/Card(D).

teBnd(E)Ang[t]>n_[t]

The probability of false-negative error of the classification rule for a given y is

plelass(y) = 0ne(y) =) =( ¥ nyl)/Card(D).

teBnd(E)Ang[t]l<n_[t]

The error probability of the entire classification rule for a given y is

plelass(y) # (y))
= plelass(y) = 1A e(y) =0)+ p(class(y) = 0N c(y) = 1)

= Y min(ny[f)n-[1])/Card(D))

teBnd(E)

Proof:
We prove the result for the false-positive error probability. The proof
for the false-negative result is similar. The rest of the proof is trivial.
The false positive error happens when an object y (¢(y) = 0) has
its tuple representation g(y) = ¢ (¢t € Bnd), and the classification rule
contains t (because ny[t] > n_[t]). Given such a ¢, Proposition 2 and
Equation 1 dictates that

ple(y) = Olg(y) = 1) = n_[1]/(n4[t] + n_[1]).
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The false positive error of the entire rule is the following weighted sum
over every such ¢:

> ple(y) = 0lg(y) = )p(g(y) = 1)

teBndAng[t]>n_[t]

By the miniworld assumption,

plg(y) = 1) = (ny[t] + n_[t])/Card(D)

and the result for the false positive error probability follows. O

The discussion to this point leads naturally to the procedure for constructing
a classification rule as realized in Algorithm 1.

Algorithm 1.

Input: A set Z C D of distinct tuples, where D is the set of all examples.
Output: A classification rule in DNF.
(Notations follow that used in the text)

BEGIN
Initialize List to empty list
FOR each t € Z such that s[t] C Pos DO
Label ¢ with p(c(y) # 1|g(y)=1) =0
Add t with its label to List
END FOR
FOR each ¢t € Z such that s[t] C Bnd and ny[t] > n_[t] DO
Label ¢ with p(c(y) £ 1g(y) = 1) = n_[t)] (n4[1] + n_[1)
Add t with its label to List
END FOR
Construct the classification rule
Vy e Y((class(y)=1) & (g(y) =ta V...V g(y) =t,))
where t;,...,1, are all the tuples in List
Label the rule with p(class(y) # c(y)) as determined by Theorem 1
END

Example 5.  Applying Algorithm 1 to the bank database in Fxample 1, we obtain
the following rule: A Canadian manufacturing company y should be considered
as a good candidate for investment if

g(y) = (Computer,Vancouver)[0] or
g(y) = (Computer, Burnaby)[0] or
g(y) = (Toy, Windsor)[0] or

g(y) = (Fashion,Vancouver)[0] or
g(y) = (Fashion, Burnaby)[0] or
g(y) = (Appliance, Windsor)[0] or
g(y) = (Fashion, Windsor)[0.5].
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The rule as a whole is subject to a false prediction with a chance of 1/1341/13 =
15%.

The error probability used to label the individual conjunct in a rule can be
used for posterior decision-making. For example, the bank should be quite con-
fident with an investment if the candidate is a computer manufacturer located
in Vancouver. However, in evaluating an investment to a Windsor Fashion com-
pany, the bank knows that the chance of getting a good return is as likely as that
of getting a poor one.

The overall error probability labeling the entire rule can be used for prior
decision-making. Suppose another learning algorithm produced a rule with over-
all error probability of 0.19. If a decision must be made regarding which rule
should be used for an automatic investment system, then the previous rule (with
an error probability 0.15) would be preferred.

The overall error probability may also be used to limit the number of con-
juncts contained in a rule. We discuss this issue in the next section.

5. RESTRICTING THE NUMBER OF CONJUNCTS

In order to increase the efficiency of a classification rule (less space to store and
less time to apply), the user may impose a restriction on the number of conjuncts,
subject to the minimization of error probability. To meet such a requirement,
we can rank the conjuncts in a rule by their contribution to the overall error
probability.

The removal of a conjunct from a rule increases only the false-positive error
but not the false-negative error. In particular, the removal of a conjunct ¢; will
add n4; to and subtract n_; from the numerator of the error probability, where
n4; and n_; are the number of positive examples and negative examples in s[t;],
respectively. That is, the net increase to the numerator is ny; — n_;. Therefore,
to find a conjunct whose removal causes minimal increase of error probability, we
need only to select the one with minimal ny; — n_;. These observations lead to
the following Algorithm and Proposition.

Algorithm 2 (SortConjuncts)

Input: A list I of m conjuncts tq,...,t,, the number of positive examples in
each elementary set niq,...,N4em, and the number of negative examples in each
elementary set n_1,...,n_p.

Output: The list O of conjuncts such that the removal of a conjunct from the
end of the list causes minimal increase of error probability.

BEGIN
Initialize O to an empty list
WHILE I # ¢ DO
Find t in I with mazimal ny — n_
Remove t from I and place it at the end of O
END WHILE
END
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Proposition 3. Given a list of n conjuncts in a classification rule, and m < n
as an additional restriction on the number of conjuncts, Algorithm 2 sorts n
conjuncts such that retaining the first m conjuncts in the list minimizes the
increase of error probability.

Fzample 6. Table 3 shows a sorted list of the conjuncts/elementary sets for the
rule in Example 5.

Elementary Set ny —n_
(Computer, Vancouver) (2)
(Computer, Burnaby) (1)
(Toy, Windsor) (1)
(Fashion, Vancouver) (1)
(Fashion, Burnaby) (1)
(Appliance, Windsor) (1)
(Fashion, Windsor) (0)

TABLE 3. A sorted list of elementary sets

6. REMOVAL OF EXCEPTIONS

In many applications, the general principle is associated with some exceptions.
For example, a bird is one that flies, but penguin is an exception to the "flying’
principle. Each exception will necessarily produce a conjunct in the classification
rule. This example would produce a rule with two degenerated conjuncts: =z is
a bird iff (1) = flies or (2) z is a penguin. Sometimes we would like to remove
such exceptions from the rule. Removing exceptions entails relaxing the error
probability. The task presented to the learning system is then as follows: Given
a threshold for error probability, find the minimal subset of conjuncts that satisfies
the threshold.

The sorted list of conjuncts by Algorithm 2 can be used for this task. We may
remove as many conjuncts as necessary subject to the threshold. At each step we
remove the conjunct whose removal causes minimal increase of the overall error
probability. The last conjunct in the sorted list is such a conjunct.

Algorithm 3 (RemoveExceptions)

Input: A list I of m conjuncts ty, ..., t, sorted by Algorithm 2, and an error
probability threshold P.

Output: The list O which contains the minimal set of conjuncts such that the
error probability of the rule constructed from O is less than or equal to P.

BEGIN
Initialize p to the error probability of the rule obtained from I
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If p > P, print an error message and exit

Initialize Last to null

Initialize O to I

WHILE p < P DO
Remove Last from O
Assign the last conjunct in O to Last
Compute the error probability p of the rule

obtained from O — {Last}
END WHILE
END

7. INDUCTION BY CONCEPT HIERARCHY

One of the characteristics of knowledge discovery in databases is that the
discovered knowledge is represented in a high-level language [3]. This aspect of
knowledge discovery is different from learning in neural networks.

We consider here an externally provided generalization hierarchy [6] in which
different levels of generalization are organized into a tree called a concept tree

(Cai 1991).

Definition 1. Let A be an attribute with domain A. Let I' be a rooted balanced !
directed tree. I' is a concept tree for the attribute A if the following conditions

hold:

1. The leaves of I' are labeled by the elements in A.

2. The set of leaves are partitioned and leaves in each partition are connected
to a common parent node labeled by the partition.

3. The parent nodes of leaves are further partitioned and nodes in each partition
are connected to a common parent node labeled by the partition. This process
continues until all nodes at a level form a single partition. Their common
parent, the root, is labeled ‘any’.

In a concept tree, each node is identified with a unique label. Thus we will
use terms node and label interchangeably. Figure 3 gives an example of a concept
tree for an attribute Location.

In induction by concept hierarchy, we consider the issue of substituting the
attribute values of some tuples by a more general concept: one of their ancestor
labels in the concept tree. This will extend the domain of each attribute to
include all concepts in the corresponding concept tree. Note that the values
in the extended domain will no longer be exclusive any more. We call a tuple
resulting from such a substitution a generalized tuple.

Definition 2. Let r and t be two tuples. Let A be an attribute. Tuples » and ¢
are incompatible at only A if all corresponding attribute values of r and ¢ are
identical except the values for A.

INotice that we consider here balanced trees whose leaves have identical height.
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Pacific /Ceb* Eastern

BC /Sask// Ontariol(yuk
Vancouver){rn/as /Xma Windsor\.\.. Mo/ntmal\*---

FIiGURE 3. A concept tree for an attribute Location

For example, for a tuple schema (Field, Location, Years) representing a man-
ufacturing company’s field, location and years in business, the tuples (Computer,
Vancouver, >10) and (Toy, Vancouver, >10) are incompatible at only field. We
can extend Definition 2 to involve more than two tuples and to involve more than
one attribute:

Definition 3. Let L be a set of tuples. Let 2 C A be a proper subset of at-
tributes. Tuples in I are incompatible at € if all the corresponding attribute
values of the tuples are identical except the values for attributes in €.

Suppose r and t are incompatible at only A, and their corresponding values
are 7y and ty. If we substitute ry and ty by one of their common ancestors
in the concept tree, then we have replaced the two tuples by a new tuple wu.
In general, suppose r and ¢ are incompatible at €. If we substitute the values
for each attribute in  in r and ¢ by a common ancestor in the corresponding
concept tree, then we have replaced the two elementary sets s[r] and s[t] by a
new elementary set sfu.

Definition 4. Let r and t be two tuples that are incompatible at €. For each
attribute A € Q, let I' be the concept tree of A and let a be a common ancestor
of the attribute values r, and ¢j in I'. The substitution of r, and ¢, with « for
every A € (0, is a generalization of r and ¢ relative to €.

Since the generalization implies the substitution of the two tuples r and t
by a new tuple, we shall call such a tuple substitution a generalization as well
without confusion. The above definition of generalization can be extended to the
generalization of a set L of tuples relative to Q:

Definition 5. Let L be a set of tuples that are incompatible at €. For each
attribute A € Q, let T" be the concept tree of A, let ¢, be the value for A of a
tuple t € L, and let a be a common ancestor of ¢4 in I' for every t € L. The
substitution of ¢, with « in every ¢t € L is a generalization of tuples in I relative

to Q.
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In the following, we consider the effect of a generalization of a pair of tuples
r and ¢ on the overall error probability of the resultant rule. According to Theo-
rem 1, the contribution of tuples r and ¢ to the error probability of the original
rule is

Contriy,; = (min(ny[t], n_[t]) + min(ny[r],n_[r]))/Card(D).
The contribution of the new tuple u is
Contri, = min(ny[t] + nyr], n_[t] + n_[r])/Card(D).

The relationship between the two elementary sets s[r| and s[t], and the three sets
Pos, Neg and Bnd can reflect one of the following six cases:

1. s[r] C Neg and s[t] C Neg 2. s[r] C Pos and s[t] C Pos

3. s[r] C Bnd and s[t] C Bnd 4. s[r] C Pos and s[t] C Neg

5. s[r] C Pos and s[t] C Bnd 6. s[r] C Neg and s[t] C Bnd

In cases 1 and 2, Contri,; = Contri, = 0. No additional error is introduced
to the new rule.

In case 3, if either ny[z] > n_[z] for both 2 = r and z = ¢, or ny[z] < n_[z]
for both z = r and = ¢, or ng[r] = n_[r] and ny[t] < n_[t], then Contri,, =
Contri, and no additional error is introduced. However, if ny[r] > n_[r] and
ny[t] < n_[t], then

Contri, = min(nyg[t] + ny[r], n_[t] + n_[r])/Card(D)
> Contriyy = (ng[t] + n_[r])/Card(D).

In cases 4, 5 and 6, the new tuple u causes reconfiguration of sets Pos, Neg
and Bnd into Pos’, Neg’' and Bnd', and the elementary set s[u] is a subset of
Bnd'. In case 4,

Contri, = min(ny[r],n_[t])/Card(D) > Contri,; = 0.
In cases 5, Contri, = min(ny[t] + nylr],n_[t])/Card(D)
> Contriyy = min(ng[t],n_[t])/Card(D).

The equal sign holds iff ny[t] > n_][t].
In case 6, Contri, = min(ny[t],n_[t] + n_[r])/Card(D)

> Contriyy = min(ng[t],n_[t])/Card(D).

The equal sign holds iff ny[t] < n_][t].
We summarize the above analysis by the following definition 6 and Theorem 2:

Definition 6. lLet @ C A be a proper subset of attributes. Let L be a set of
tuples incompatible at Q. Let u be the tuple obtained by a generalization of
tuples in L relative to 2. The substitution of u for the tuples in L is a proper
generalization if one of the followings holds:

o (Userst]) C Neg
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o (User slt]) C Pos

o (Uier s[t]) C Bnd, and there exist no two tuples r, ¢ € L such that for one
of r, t, ny > n_, and for the other, ng < n_.

o (User s[t]) C PosU Bnd, and ny[t] > n_[t] for each s[t] C Bnd.

o (Uier s[t]) C NegU Bnd, and ny[t] < n_[t] for each s[t] C Bnd.

Otherwise, the substitution is a strict overgeneralization.

Theorem 2. Let 2 C A be a proper subset of attributes. Let L be a set of tuples
incompatible at €2. Let u be the tuple obtained by a generalization of tuples in
L relative to Q.

The generalization does not increase the error probability of the resultant new
rule iff it is proper. Otherwise, the amount of increase in the error probability is

(min(>_ny[t], > n_[t]))/Card(D) — (> min(ny[t],n_[t]))/Card(D) > 0.

tel teL tel

Fzample 7. For the rule constructed in Frample 5, the substitution of (Com-
puter, Vancouver) and (Computer, Burnaby) with (Computer, BC) is a proper
generalization, so is the substitution with (Computer, Any), since both elementary
sets are elements of Pos.

However, the substitution of (Toy, Vancouver), which is an element of Bnd,
and (Toy, Windsor), which is an element of Pos, with (Toy, Any) is a strict
overgeneralization. It causes an increase in the error probability of the resultant
rule by 2/13 — 1/13 = 0.077.

Theorem 2 provides a guideline in the design of knowledge discovery algo-
rithms.

8. REMARKS

In this paper, we apply rough set theory and probability concepts to induc-
tive learning from databases. Under the assumption of a set of representative
examples, we derive the error probabilities for components of a classification rule
as well as for the rule as a whole. We derive the result for induction using at-
tributes, and show the condition under which further induction can be performed
without increasing the error probabilities.

Our work is closely related to other work in the area of knowledge discovery in
databases: Ziarko (1991) discussed the application of reducts in inductive learn-
ing in databases. Cai, Cercone and Han (1991) and Han, Cai, and Cercone (1993)
developed an attribute-oriented approach for inductive learning in databases us-
ing concept trees, and implemented in an experimental database learning system,
DBLEARN. Our work extends their research and provides a theoretical frame-
work to quantify the uncertainty in the knowledge discovered from databases.
Pawlak, Wong and Ziarko (1988) discussed similar decision rules. However, they
did not provide the error probabilities explicitly.

This work also relates to learning by examples in machine learning (Kodratoff
1990, Michalski 1986, Michalski 1983). We compare here with two well-known
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methods. The decision tree approach (ID3) (Quinlan 1983) generates a decision
procedure instead of a rule. It was extended later (C4) (Quinlan 1987) to handle
noisy data by associating each leaf with an error probability similar to the error
probability attached to each conjunct in our work. No error probability for the
entire decision tree is estimated even though it could be added with an analysis
similar to ours. It does not address the issue involved in induction by hierarchy.
AQ11 (Michalski 1980) generates DNF rules in an incremental fashion from a
preselected set of examples. It does not handle noisy data directly, and does not
consider induction by hierarchy either (Forsyth 1986).
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