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Abstract

The Bayesian network is a powerful knowl-
edge representation formalism; it is also ca-
pable of improving its precision through ex-
perience. Spiegelhalter et al. [1989] proposed
a procedure for sequential updating forward
conditional probabilities (FCP) in Bayesian
networks of diameter 1 with a single parent
node. The procedure assumes certainty for
each diagnosis which is not practical for many
applications. In this paper we present a new
algorithm (ALPP) that allows refinement of
FCPs based on expert estimates of posterior
probability. ALPP applies to any DAG of di-
ameter 1. Fast convergence is achieved. Sim-
ulation results compare ALPP with Spiegel-
halter’s method.

1 Introduction

Much recent research is dedicated to Bayesian belief
networks as an inference formalism building expert
systems [Pearl 88] [Lauritzen and Spiegelhalter 88]
[Heckerman et al. 89] [Andersen et al. 89]. A
Bayesian network is a pair (D, P ). D is a directed
acyclic graph (DAG) in which the nodes represent gen-
erally uncertain variables, and the arcs signify the ex-
istence of direct causal influences between the linked
variables. P is a probability distribution which quan-
tifies the strengths of these causal influences. P is dis-
tributively stored in the network, in the form of FCPs
[Pearl 88].

A knowledge based system QUALICON is cur-
rently under development, based on Bayesian net-
works, which can be used in assisting an E.M.G. tech-
nician in test quality control during conduction veloc-
ity studies [Xiang et al. 90]. The system takes qual-
itative features of recorded compound muscle action
potentials as evidences and tries to diagnose the prob-
lems in electrode set-up.

Building the system involves two parts. The first is
generating the DAG D. This task is easy and natural
for the experienced medical staff. The second phase,
namely the elicitation of many FCPs, they found much
more difficult (and the results were quite imprecise)
because, among other causes, the task seems artificial
to them. They claim that it would be easier for them
to supply a posterior probability (PP) distribution for
the possible hypotheses in particular cases. What they
give in that case would be more precise since the task is
closer to their daily practice. A methodology allowing
the system to improve itself through expert’s PPs is
badly needed.

Spiegelhalter et al. [1989] present a procedure for se-
quential updating conditional probabilities in Bayesian
networks decomposed into DAGs of diameter one with
a single parent node. The procedure consists of two
stages. In the first stage, the FCPs for each link are
elicited from the expert. The expert is asked to esti-
mate these probabilities in form of intervals to express
the imprecision of the estimation. Then each interval
probability is interpreted as an imaginary sample ratio:
p(symptomA|diseaseB) = a/b, where b is an imag-
inary patient population with disease B and among
these patients a of them show symptom A. In the sec-
ond stage, updating stage, whenever a new patient with
disease B comes in, the corresponding sample size b is
increased by 1, and the sample size a is increased either
by 1 or 0 depending on if the patient shows symptom
A. This updating stage is the main concern of this pa-
per.

A major problem of this updating approach is the
underlying assumption that when updating the link
FCP p(symptomA|diseaseB), the system user knows
for sure whether the disease B is true or false (thus
we will call the procedure {0, 1} distribution learning).
The assumption is not realistic in many applications.
A doctor would not always be 100% confident about a
diagnosis he made of a patient.

In this paper, a Algorithm of Learning by Poste-



rior Probability (ALPP) is presented which is more
general than the {0, 1} distribution learning. ALPP
applies to any DAG with diameter one. The DAG
can itself be the whole network or be a subnet of a
more sophisticated network as long as the following
DAG-completeness condition holds: it contains all the
incoming links to its child nodes as in the original net.
ALPP does not assume 100% accurate posterior judg-
ment. Instead, it utilizes the PPs of each fresh case
supplied by the expert to update the FCPs of the net-
work. We show the algorithm converges to the ex-
pert’s behavior under ideal condition. When ALPP
does not converge to the human consultant’s poste-
rior judgments, it is an indication of either inadequate
network structure or inadequate PPs. The algorithm
converges quicker than the {0, 1} distribution learning
equipped with 100% accurate posterior judgment.

The philosophy which guided this work is described
in section 2. Section 3 presents ALPP and section 4
proves its convergence. The performance of the ALPP
is demonstrated by simulations given in section 5.

2 Learning from Posterior
Distributions

The spirit of {0, 1} distribution learning is to improve
the precision of probability elicited from the human
expert by learning from available data. Now the ques-
tion is what do we really have in medical practice in
addition to patients’ symptoms? It may be possible,
in some medical domain, that diagnoses can be con-
firmed with certainty. But this is not commonplace. A
successful treatment is not always an indication of cor-
rect diagnosis. A disease can be cured by a patient’s
internal immunity or by a drug with wide disease spec-
trum. One subtlety of medical diagnosis comes from
the unconfirmability for each individual patient case.

For most medical domains, the available data beside
patients’ symptoms are physician’s subjective PPs of
possible diseases. They are not distributions with val-
ues from {0, 1}, but rather distributions from [0, 1]1.
The diagnoses appearing in patients’ files are typically
not the diagnoses that have been concluded definitely;
they are only the top ranking diseases with physician’s
subjective PP omitted. The assumption of {0, 1} pos-
terior disease distribution may, naively, be interpreted
as an approximation to [0, 1] distribution with 1 sub-
stituting top ranking PP, and 0 substituting the rest.
This approximation loses useful information. Thus a
way of learning directly from [0, 1] posterior distribu-

1Note that {0, 1} denotes a set containing only elements
0 and 1, and [0, 1] is a domain of real numbers between 0
and 1 inclusive.

tion seems more natural and anticipates better perfor-
mance.

In dealing with learning problem in a Bayesian net-
work setting, three “agents” are concerned: the real
world (Dr , Pr), the human expert (De, Pe), and our
artificial system (Ds, Ps). It is assumed that all 3 can
be modeled by Bayesian networks. As the building of
an expert system involves specifying both the topology
of D and probability distribution P , the improvement
can also be separated into the two aspects. For the
purpose of this paper, Dr, De, and Ds are assumed
identical, leaving to be improved only the accuracy of
quantitative assignment of Ps.

An expert system based on Bayesian networks usu-
ally directs its arcs from disease (hypothesis) nodes
to symptom (evidence) nodes, encoding quantitative
knowledge with priors of diseases and FCPs of symp-
toms given diseases [Shachter and Heckerman 87,
Henrion 88]. These probabilities are usually elicited
from human experts.

A question which arises is whether PP is any bet-
ter in quality compared to priors and FCPs also sup-
plied by the human expert. In our cooperation with
medical staff, it is found that the causal network is a
natural model to view the domain, however, the task
of estimating FCPs is more artificial than natural to
them. Forming posterior judgments is their daily prac-
tice. An expert is an expert in that he/she is skilled
at making diagnosis (posterior judgement), not neces-
sarily skilled at estimating FCPs. It is the expert’s
posterior judgment that is the behavior we want our
expert system to simulate2.

If we believe that the human expert carries a men-
tal Bayesian network and PPs are produced by the
network, it is postulated that the FCPs the expert ar-
ticulates, which consists of Ps of our system, could
be a distorted version of those in Pe. Also, Pe may
differ from Pr in general. Thus, 4 categories of prob-
abilities are distinguished: Pr, Pe, Ps, and the PPs
produced by Pe (written as pe). Our access to only
Ps and pe(hypotheses|evidence) is assumed. We want
to use the latter to improve Ps such that the system’s
behavior will approach that of expert.

How can PP be utilized in our updating? The basic
idea is: instead of updating imaginary sample sizes by
1 or 0, increase them by the measure of certainty of the
corresponding diseases. The expert’s PP is just such
a measure. Formal treatment is given in the following

2We are not arguing against the usual way of encoding
numerical knowledge from diseases to symptoms. The ad-
vantages of it, like simplicity in network structure, clarity
of underlying causal dependency, etc. are well known.
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Figure 1: An example of D(1)

section.

3 The Algorithm for Learning by
Posterior Probability (ALPP)

The following notation is used:

D(1) DAGs of diameter 1 (The diameter is the length
of the longest directed path in the DAG. An ex-
ample of D(1) is given in Figure 1.);

(D(1), P ) Bayesian net with diameter 1 and underly-
ing distribution P ;

Hi ∈ {hi1, . . . , hini} the ith parent variable in D(1)
with possible values hi1 through hini;

Vj ∈ {vj1, . . . , vjmj} the jth child variable in D(1)
with possible values vj1 through vjmj ;

vjl value conjunction of all the children variables in
D(1) with Vj ’s value being vjl;

bk1k2...kn the imaginary sample size for joint event
h1k1&h2k2& . . .&hnkn being true;

aljk1k2...kn the imaginary sample size for joint event
vjlj&h1k1& . . .&hnkn being true;

δc
lj

impulse function which equals 1 if for the cth fresh
case Vj equals vjlj , and equals 0 otherwise (super-
scripts denote the orders of fresh cases);

pr(), pe(), ps() probabilities contained or generated by
(Dr(1), Pr), (De(1), Pe) and (Ds(1), Ps) respec-
tively.

A Bayesian net (D(1), P ) 3 is considered where the
underlying distribution is composed via

p(h1k1& . . .&hNkN &v1l1& . . .&vMlM )

=
N∏

i=1

p(hiki)
M∏

j=1

p(vjlj |ĥj)

3Whether it is a subnet or a net by itself is irrelevant.

where ĥj is the conjunction of those values hiki

such that Hi is a parent variable of Vj and hiki ∈
{h1k1, . . . , hNkN }.

Each of the FCPs is internally represented in the
system as a ratio of 2 imaginary sample sizes. For child
node V1 having its parent nodes H1, . . ., HQ (Q ≥ 1),
a corresponding FCP is

pc
s(v1l1 |h1k1& . . .&hQkQ ) = ac

l1k1...kQ
/bc

k1...kQ

where the superscript c signifies the cth updating.
Only the real numbers ac

l1k1...kQ
and bc

k1...kQ
are stored.

The prior probabilities for V1’s parents can be derived
as

pc
s(hiki) =

∑
k1,...,ki−1,ki+1,...,kQ

bc
k1...kQ∑

k1,...,kQ
bc
k1...kQ

For a (D(1), P ) with M children and with all variables
binary, the number of numbers to be stored in this way
is upper bounded by

B = 2
M∑

i=1

2βi

where βi is the number of incoming arcs to child node
i. Storage saving can be achieved when different child
nodes share a common set of parents.

Updating P is done one child node at a time through
updating as and bs associated with the node as illus-
trated above. Once the as and bs are updated, the
updated FCPs and priors can be derived. The order
in which child nodes are selected for updating is irrel-
evant.

Without losing generality, we describe the updat-
ing with respect to above mentioned child node V1.
For the cth fresh case where vc is the symptoms
observed, the expert provides the PP distribution
pe(h1k1& . . .&hNkN |vc). This is transformed into

pe(h1k1& . . .&hQkQ |vc)

=
∑

hQ+1,...,hN

pe(h1k1& . . .&hNkN |vc)

The sample sizes are updated by

ac
l1k1...kQ

= ac−1
l1k1...kQ

+ δc
l1pe(h1k1& . . .&hQkQ |vc)

bc
k1...kQ

= bc−1
k1...kQ

+ pe(h1k1& . . .&hQkQ |vc).

4 Convergence of the algorithm

An expert is called perfect if (De(1), Pe) is identical to
(Dr(1), Pr).



Without losing generality, consider the updating with respect to V1 described in last section.
(1) Priors. Let {v(1),v(2), . . .} be the set of all possible conjuncts of evidence. Let u(t) be the number of times
at which event v(t) is true in c cases; and

∑
t u(t) = c. From the prior updating formula of ALPP,

lim
c→∞

pc
s(hiki) = lim

c→∞

(∑
k1,...,ki−1,ki+1,...,kQ

b0
k1...kQ

+
∑

k1,...,ki−1,ki+1,...,kQ

∑c
x=1 pe(h1k1& . . .&hQkQ |vx)

c +
∑

k1,...,kQ
b0
k1...kQ

)

)

= lim
c→∞

1
c


 ∑

k1,...,jk−1,jk+1,...,kQ

∑

t

pe(h1k1& . . .&hQkQ |v(t))u(t)




=
∑

k1,...,ki−1,ki+1,...,kQ

∑

t

pe(h1k1& . . .&hQkQ |v(t))pr(v(t))

=
∑

k1,...,ki−1,ki+1,...,kQ

∑

t

pe(h1k1& . . .&hQkQ |v(t))pe(v(t)) (perfect expert)

=
∑

k1,...,ki−1,ki+1,...,kQ

pe(h1k1& . . .&hQkQ) = pe(hiki)

(2) FCPs. Let u1l1(t) be the number of times at which event v1l1 (t) is true in c cases. Following ALPP, we have

lim
c→∞

pc
s(v1l1 |h1k1& . . .&hQkQ ) = lim

c→∞

a0
l1k1...kQ

+
∑c

x=1 δx
l1

pe(h1k1& . . .&hQkQ |vx)

b0
k1...kQ

+
∑c

y=1 pe(h1k1& . . .&hQkQ |vy)

= lim
c→∞

1
c

∑c
x=1 δx

l1
pe(h1k1& . . .&hQkQ |vx)

1
c

∑c
y=1 pe(h1k1& . . .&hQkQ |vy)

=
limc→∞

1
c

∑
t pe(h1k1& . . .&hQkQ |v1l1(t))u1l1 (t)

limc→∞
1
c

∑
z pe(h1k1& . . .&hQkQ |v(z))u(z)

=
∑

t pe(h1k1& . . .&hQkQ |v1l1(t))pr(v1l1(t))∑
z pe(h1k1& . . .&hQkQ |v(z))pr(v(z))

=
∑

t pe(h1k1& . . .&hQkQ |v1l1(t))pe(v1l1 (t))∑
z pe(h1k1& . . .&hQkQ |v(z))pe(v(z))

(perfect expert)

=
pe(h1k1& . . .&hQkQ&v1l1)

pe(h1k1& . . .&hQkQ)
= pe(v1l1 |h1k1& . . .&hQkQ)

Figure 2: Proof of Theorem 1



Theorem 1 Let a Bayesian network (Ds(1), Ps) be
supported by a perfect expert equipped with (De(1), Pe).
No matter what initial state Ps is in, it will converge
to Pe by ALPP.

The proof is given in figure 2.
A perfect expert is never available. We need to know

the behavior of ALPP when supported by an imperfect
expert. This leads to the following theorem.

Theorem 2 Let pc
s be any resultant probability in

(Ds(1), Ps) after c updating by ALPP. pc
s converges

to a continuous function of Pe.4

Proof:
(1) Continuity of priors.
Following the proof of theorem 1, the prior pc

s(hiki)
converges to

f =
∑

k1,...,ki−1,ki+1,...,kQ

∑

t

pe(h1k1& . . .&hQkQ |v(t))
u(t)
c

where pe(h1k1& . . .&hQkQ |v(t)) is an elementary func-
tion of Pe, and so does f . Therefore, pc

s(hiki) converges
to a continuous function of Pe.

(2) Continuity of FCP.
From theorem 1, pc

s(v1l1 |h1k1& . . .&hQkQ) converges
to

f =
∑

t pe(h1k1& . . .&hQkQ |v1l1(t))
u1l1 (t)

c∑
z pe(h1k1& . . .&hQkQ |v(z))u(z)

c

where pe(h1k1& . . .&hQkQ |v(z)) is an elementary func-
tion of Pe.

2

Theorem 2, together with Theorem 1, says that
when the discrepancy between Pe and Pr is small, the
discrepancy between Ps and Pr (Pe as well) will be
small after enough learning trials. The specific form
of the discrepancy is left open.

The absolute value of PPs is not really important
in many applications but the posterior ordering of dis-
eases be. A set of PPs defines such a posterior order-
ing. We say a 100% behavior match between (D, P1)
and (D, P2) if for any possible set of symptoms the
two give the same ordering. The minimum difference
between successive PPs of (D, P1) defines a threshold.
Unless the maximum difference between correspond-
ing PPs from 2 (D, P )s exceeds the threshold, 100%

4By ‘X is a function of Pe’, we mean that X takes prob-
ability variables in Pe as its independent variables which
in turn themselves have [0,1] as their domain.
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Figure 4: Simulation set-up

behavior match is guaranteed. Thus as long as the dis-
crepancy between Pe and Pr is within some (Dr(1), Pr)
dependent threshold, a 100% match between the be-
havior of Ps and that of Pe is anticipated.

5 Simulation results

Several simulations were run using the example in Fig-
ure 3. It is a revised version of the smoke-alarm exam-
ple in [Poole and Neufeld 88]. Here heat alarm, smoke
alarm and report are used as evidences for estimating
the likelihood of tampering and fire. Each variable,
denoted by uppercase letters, takes binary values. For
example, F has value f or f which signify the event
fire being true or false.

The simulation set-up is illustrated in Figure 4.
Logical sampling [Henrion 88] was used in the
real world model (Dr(1), Pr) to generate scenar-
ios {Tr, Fr, Hr, Sr, Rr}. The observed evidences
{Hr, Sr, Rr} were feed into (De(1), Pe). Posterior
distributions pe(T&F |Hr&Sr&Rr) was made by the
expert model and were forwarded to update system
model (Ds(1), Ps).

To compare the performance between ALPP
and {0, 1} distribution learning, a Control model
(Dc(1), Pc) was constructed in the set-up. It had the
same DAG structure and initial probability distribu-
tion as (Ds(1), Ps) but was updated by {0, 1} distri-
bution learning.5 Two different sets of diagnoses were
utilized in different simulation runs by (Dc(1), Pc) for
the purpose of comparison. In simulation 1, 2 and 3 to

5Here we have extended {0, 1} distribution learning to
D(1).



be described below, the top diagnosis {Te, Fe} made
by (De(1), Pe) was used. In simulation 4, the scenario
{Tr, Fr} was used. The former simulated the situation
where posterior judgments could not be fully justified.
The latter simulated the case where such justification
was indeed available.

For all the simulations let Pr be the following dis-
tribution

p(h|f&t) 0.50 p(s|f&t) 0.60
p(h|f&t) 0.90 p(s|f&t) 0.92
p(h|f&t) 0.85 p(s|f&t) 0.75

p(h|f&t) 0.11 p(s|f&t) 0.09
p(r|f) 0.70 p(f) 0.25
p(r|f) 0.06 p(t) 0.20

and let Ps and Pc be an identical distribution with
maximal error relative to Pr being 0.3. The initial
imaginary sample size for each joint event F&T is set
to 1. Such setting is mainly for the purpose of demon-
strating the convergence of ALPP under poor initial
condition. The distribution error should generally be
smaller and initial sample sizes be much larger in case
of practical application where the convergence will be
a slowly evolving process.

(De(1), Pe) (Ds(1), Ps) (Dc(1), Pc)
behv. max. behv. max.

diag. mat. err. mat. err.
trial No. rate rate S-E rate C-E
0 0.30 0.30
1∼25 68% 60% 0.14 48% 0.21
26∼50 76% 96% 0.10 12% 0.25
51∼100 80% 100% 0.06 36% 0.27
101∼200 76% 100% 0.03 33% 0.28

Table 1: Simulation 1 summary

Simulation 1 was run with Pe being the same as Pr

which assumed a perfect expert. The results are de-
picted in Table 1. The diagnostic rate of (De(1), Pe)
is defined as A/N where N is the base number of tri-
als and A is the number of trials where the top di-
agnosis agrees with {Tr , Fr} simulated by (Dr(1), Pr).
The behavior matching rate of (Ds(1), Ps) relative to
(De(1), Pe) is defined as B/N where B is the number
of trials in which (Ds(1), Ps)’s diagnoses give the same
ordering as (De(1), Pe)’s do. The behavior matching
rate of (Dc(1), Pc) to (De(1), Pe) is similarly defined.

The results show convergence of probability values
in Ps to those in Pe (maximum error(S-E) → 0).
The behavior matching rate of (Ds(1), Ps) increases
along with the convergence of probabilities and finally
(Ds(1), Ps) achieved exactly the same behavior as that
of (De(1), Pe). An interesting phenomenon is that, de-
spite Pe = Pr, the diagnostic rate of (De(1), Pe) was

only 76% in the total 200 trials. Though the rate is
dependent of the particular (D, P ), it is expected to be
less than 100% in general. In terms of medical diagno-
sis, this is because some disease may manifest through
unlikely symptoms, making other diseases more likely.
In an uncertain world with limited evidence, mistakes
in diagnoses are unavoidable. More importantly, Ps

converged to Pe under the guidance of this 76% cor-
rect diagnoses while Pc did not. The maximum error
of Pc remained about the same throughout the 200
trials and the behavior matching rate of (Dc(1), Pc)
was low. Similar performance of (Dc(1), Pc) was seen
in the next 2 simulations. This shows that under the
circumstances where good experts are available but
confirmations to diagnoses are not available, ALPP is
robust while {0,1} distribution learning will be misled
by the errors in diagnoses. This is not surprising since
the assumption underlying {0,1} distribution learning
is violated. We will gain more insight into this from
the results of simulation 4 below.

An imperfect expert was assumed in simulation 2
(Table 2). The distribution Pe differed from Pr up to
0.05. Because of this error, Ps converges to neither Pe

(as shown in Table 2) nor Pr. But the error between
Ps and Pe approached a small value (about 0.07) such
that after 200 trials the behavior of Ps matched that
of Pe perfectly.

(De(1), Pe) (Ds(1), Ps) (Dc(1), Pc)
behv. max. behv. max.

diag. mat. err. mat. err.
trial No. rate rate S-E rate C-E
0 .300 .300
1∼100 84% 82% .058 32% .272
101∼200 86% 92% .122 43% .287
201∼300 80% 100% .067 32% .290
301∼400 83% 100% .076 36% .292

Table 2: Simulation 2 summary

If the discrepancy between Ps and Pr is further in-
creased so that the threshold discussed in last sec-
tion is crossed, (Ds(1), Ps) will no longer converge to
(De(1), Pe). This is the case in simulation 3 (Table 3)
where the maximum error and root mean square er-
ror (rms) between Pe and Pr were 0.15 and 0.098 re-
spectively. The rms error was calculated over all the
priors and conditional probabilities of Pe and Pr. We
introduced rms error for interpretation of simulation
3 because maximum error itself, when not approach-
ing to 0, did not give good indication of the distance
between the two.

The simulation shows that the behavior matching



(De(1), Pe) (Ds(1), Ps)
behv. rms rms max.

diag. diag. mat. err. err. err.
trial No. rate rate rate S-E S-R S-E
0 .170 .169 .39
1∼25 80% 84% 20% .086 .079 .17
26∼75 74% 74% 40% .071 .068 .11
76∼175 73% 73% 53% .050 .083 .087
176∼375 79% 79% 46% .059 .072 .095
376∼475 78% 78% 43% .061 .071 .119

(De(1), Pe) (Dc(1), Pc)
behv. rms rms max.

diag. diag. mat. err. err. err.
trial No. rate rate rate C-E C-R C-E
0 .170 .169 .39
1∼25 80% 80% 32% .110 .091 .20
26∼75 74% 74% 38% .110 .092 .16
76∼175 73% 73% 38% .098 .092 .15
176∼375 79% 79% 23% .100 .090 .15
376∼475 78% 78% 26% .096 .084 .15

Table 3: Simulation 3 summary

rate of Ps and Pe is quite low (43% after 475 trials).
Since the diagnostic rate of Pe is also lower (77%), one
could ask which one is better. One way of viewing
this is to compare the diagnostic rates. It is observed
that, among Ps, Pc and Pe, no one is superior than
others if only top diagnosis is concerned. More careful
examination can be obtained by comparison of dis-
tances among models. It turns out that the distance
(S-E) and distance (S-R) are smaller than the distance
(E-R) with corresponding rms errors 0.061, 0.071 and
0.098 respectively.

The above 3 simulation assumed that only the sub-
jective posterior judgments were available. In simula-
tion 4, it was assumed that the correct diagnosis was
also accessible. This time, (Dc(1), Pc) was supplied
with the scenario generated by (Dr(1), Pr). Pe was
the same as Pr.

The results (Table 4) showed that ALPP converged
much quicker than {0,1} distribution learning even the
latter had access to “true” answers to the diagnos-
tic problem. After 1100 trials, (Ds(1), Ps) reduced its
maximum error from (De(1), Pe) to 0.041 and matched
the latter’s behavior perfectly, while (Dc(1), Pc) was
still on its way of convergence with its error about 2
times larger and its behavior matching rate 80%.

Real world scenarios could be distinguished as be-
ing common or exceptional. An expert with knowl-
edge about the real world tends to catch the common
and to ignore the exceptional. Thus the diagnostic
rate will never be 100%. This is the best one could
do given the limited evidence. The PPs provided by

(De(1), Pe) (Ds(1), Ps) (Dc(1), Pc)
behv. max. behv. max.

diag. mat. err. mat. err.
trial No. rate rate S-E rate C-E
0 .300 .300
1∼100 88% 95% .130 60% .375
101∼600 78% 98% .048 72% .045
601∼1100 78% 93% .052 61% .075
1101∼1500 79% 100% .041 80% .079
1501∼1700 81% 100% .025 85% .093

Table 4: Simulation 4 summary

the expert contain the information about the entire
domain, while a scenario contains only the informa-
tion about this particular scene. Thus, although both
(Ds(1), Ps) and (Dc(1), Pc) converged, the former con-
verged quicker. This difference in convergence speed is
expected to emerge wherever the diagnosis is difficult
and the diagnostic rate of the expert is low.

6 Remarks

An algorithm of learning by PP distribution (ALPP)
for sequential updating probability in Bayesian net-
works is presented. ALPP is based on any DAGs of
diameter 1. After a network is constructed through
elicitation of expert knowledge (qualitatively the de-
pendency in the domain and quantitatively the FCPs),
ALPP can be applied to improve it towards the ex-
pert’s behavior. Several features of ALPP can be ap-
preciated through the theoretical analysis and simula-
tion results given in the paper.

• ALPP does not assume 100% posterior knowl-
edge about the “true” answer to a diagnostic
problem as does the {0,1} distribution learning
[Spiegelhalter et al. 89]. When only expert’s pos-
terior judgments are available, ALPP converges to
expert’s behavior while {0,1} distribution learn-
ing will be misled by unavoidable error made in
expert’s diagnoses due to the violation of its un-
derlying assumption.

• When both expert’s posterior judgments and
“true” answers are accessible, ALPP converges
faster than {0,1} distribution learning due to the
richer information contained in expert’s posterior
judgments.

• ALPP is tolerant to human consultants who are
good but imperfect. When ALPP can not con-
verge after many learning trials, it is an indica-
tion of inadequate DAG structure or inadequate
posterior judgments.



• Computation of ALPP is simple.

• ALPP offers the possibility of combining the ex-
pertise from multiple experts, although this re-
quires further research.
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