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Acquisition of Causal Models for
Local Distributions in Bayesian Networks

Yang Xiang and Minh Truong, University of Guelph, Canada

Abstract—To specify a Bayesian network, a local distribution in the form of a conditional probability table, often of an effect
conditioned on its n causes, needs to be acquired, one for each non-root node. Since the number of parameters to be assessed is
generally exponential in n, improving the efficiency is an important concern in knowledge engineering. Non-impeding noisy-AND
(NIN-AND) tree causal models reduce the number of parameters to being linear inn, while explicitly expressing both reinforcing
and undermining interactions among causes. The key challenge in NIN-AND tree modeling is the acquisition of the NIN-AND
tree structure. In this work, we formulate a concise structure representation and an expressive causal interaction function of
NIN-AND trees. Building on these representations, we propose two structural acquisition methods, which are applicable to both
elicitation-based and machine learning-based acquisitions. Their accuracy is demonstrated through experimental evaluations.

✦

1 INTRODUCTION

To specify a Bayesian network (BN), for each non-root
node, a local distribution in the form of a conditional
probability table (CPT) needs to be acquired. A BN
is often constructed in the causal direction, in which
case a CPT is defined over an effect conditioned on its
n causes. In general, the number of parameters to be
assessed for specifying a CPT is exponential in n. The
noisy-OR [Pea88] and several extensions, e.g., [HB96],
[GD00], [LG04], reduce the number to being linear in
n. However, these methods are limited to expressing
reinforcing causal interactions [XJ07]. Other methods
also exist, e.g., the binary factorization [NCF12].

NIN-AND tree [XJ07] causal models, including their
DeMorgan special cases [MD08], extend the noisy-OR
by explicitly expressing reinforcing and undermining
causal interactions as well as their mixtures at multi-
ple levels. Each model is specified by a linear (in n)
number of parameters and a tree of NIN-AND gates
whose number is linear in n. A common noisy-AND
gate is impeding, where falsity of any cause obstructs
the causal influence of remaining causes, forcing the
causal probability to zero. An NIN-AND gate is non-
impeding and its causal probability is non-zero if at
least one cause is true.

In an NIN-AND tree model, the tree topology
encodes types and the order of interactions among
causes. To acquire local distributions in BNs by NIN-
AND tree modeling, the main challenge is structural
acquisitions, namely, acquisitions of NIN-AND trees.
Elicitation of the topology requires nontrivial training
of a domain expert on the syntax and semantics of
NIN-AND tree models. It also demands nontrivial
mental exercise by the expert in order to articulate
the partial order of interactions among causes. The
usability of NIN-AND tree causal modeling will be
enhanced if such training and mental exercise can be

avoided. This paper presents several advancements
towards this goal.

We formulate a concise structure representation of
NIN-AND trees, called root-labeled trees (RLTs), and
present a new algorithm for their enumeration. We
define a function, named PCI, that captures pairwise
causal interactions encoded by an NIN-AND tree. We
prove the expressiveness of PCI functions in the
sense that they uniquely identify their generating
NIN-AND trees. Based on the RLT enumeration and
PCI functions, we propose two methods to acquire
NIN-AND trees indirectly through a small subset of
acquired probabilities. These numerical parameters
can be elicited from a domain expert without above-
mentioned training and mental exercise. They can also
be learned from data, thereby bypassing the need of
a domain expert. Hence, the methods apply to both
elicitation-based and machine learning-based model
acquisitions.

It is important to differentiate between acquisition
for the acyclic directed graph (DAG) of a BN and
that for the topology of an NIN-AND tree model.
The DAG encodes conditional independence among
BN variables, while the NIN-AND tree encodes causal
interactions and causal independence among cause
variables in a BN family (including a child variable
and its parents). For instance, the building block
patterns previously studied facilitate the construction
of DAGs [NFN00]. However, this work concerns NIN-
AND tree acquisitions. Their relation and difference
are illustrated in Section 7.4.

Causal modeling with reinforcement and under-
mining is also studied under the terms synergy and
antagonism [CBS08]. Their approach considers only
variable based interactions and produces a partially
specified BN. The dual NIN-AND gate (see Section 2)
is a special case of synergy and the direct NIN-
AND gate is a special case of antagonism. The NIN-
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AND tree allows reinforcing (undermining) among
variables in a group and undermining (reinforcing)
between multiple such groups, and allows multiple
levels of such mixtures. Thus, it expresses both vari-
able and group based interactions in a specified and
precise manner, which goes beyond the referenced
work. Assuming the DAG is specified, the methods
proposed enable efficient CPT specification at each
node, which leads to a completely defined BN.

The RLT enumeration is an important component of
our proposed methods for NIN-AND tree acquisition.
Most methods for tree enumeration in the literature
do not address this issue. Earlier investigations on
RLT enumeration followed an approach of indirect
enumeration. A set Ωn of unlabelled trees of n roots
(one leaf) are first enumerated and then each is root-
labeled to produce the set Ψn of RLTs. Two methods
have been proposed under the indirect approach. One
is based on local insertion [XLZ09]. Since isomorphic
trees may be generated, it requires detection and
removal of duplicated trees. Another is based on
enumerating partitions of integer n [XZL09], which
does not suffer from the duplication generation. A
limitation of the indirect approach is that it must deal
with mirror-subtrees [XZL09] during root-labeling,
whose detection becomes fairly complicated for n > 7.

In this paper, we instead take a direct approach
for RLT enumeration by extending a method [Fel04]
for counting evolutionary trees. This method [Fel04]
is closely related to our task of RLT enumeration,
although it has several limitations. It considers trees
of a single root while RLTs have a single leaf. Its tree
format differs from standard graphs, where a link may
connect to a single node, instead of two (e.g., Fig. 3.5
[Fel04]). It deals with counting, not enumeration. We
extend the method into a new algorithm for directly
enumerating RLTs of n roots. In comparison with the
indirect approach, the direct approach is not as space-
efficient. This is because the indirect approach gener-
ates Ψn from Ωn while the direct approach generates
Ψn from Ψn−1, and |Ψn−1| is much larger than |Ωn|.
The advantage of the direct approach is that it does
not suffer from the complication of mirror-subtrees
and is therefore much simpler to implement.

Whether PCI functions uniquely identify minimal
NIN-AND trees is fundamental to the soundness of
one of the structure acquisition methods presented
here. This issue is studied empirically [XLZ09] by
exhaustively testing for n ≤ 10. The theorem on the
expressiveness of PCI functions in this paper resolves
the issue formally and conclusively for all n.

The experimental methods used in this work ex-
tends those in earlier empirical evaluations of causal
models, such as noisy-OR [ZD04] and DeMorgan
[MD08]. Their evaluations are based on elicitation
only while ours are also enhanced by machine
learning-based experiments. Their studies compare
between the elicited model CPT and the observed

relative frequency parameters, while we compare the
acquired model with the true model. This difference
enables a refined analysis of impacts of factors con-
tributing to the acquisition process, including the sam-
pling errors, the retention-articulation (RA) errors, as
well as the acquisition method used. Our experimen-
tal design more accurately evaluates the effectiveness
of the proposed methods, since it is the true model,
not its observed version (which contains the sampling
and RA errors), that is the target of acquisition. We
compare the earlier experimental procedure with ours
in Section 7.3.

We show that if the RA errors can be properly
controlled, conducting machine learning-based exper-
iments is equivalent to carrying out elicitation-based
experiments. Since human participants are costly, the
machine learning-based experiments are preferable.

Preliminary results on the proposed acquisition
methods were previously presented [XTZ+11]. The
remainder of the paper is organized as follows. The
background on NIN-AND tree models is covered in
Section 2. Section 3 presents the RLT representation
and the direct enumeration algorithm. Section 4 de-
fines PCI functions and proves their expressiveness.
The structural acquisition methods are presented in
Section 5. Section 6 considers parameter acquisition
errors and their control. Section 7 reports the experi-
mental study of the proposed methods.

2 NIN-AND TREE CAUSAL MODELS

An uncertain cause is a cause that can produce an effect
but does not always do so. Flu is a uncertain cause of
fever. We focus on binary variables. Denote an effect
by e and a set of causes of e by X = {c1, ..., cn}. Denote
e = true by e+ and e = false by e−. For each ci,
where 1 ≤ i ≤ n, denote ci = true (active) by c+

i and
ci = false (inactive) by c−i .

A causal success is an event that a cause ci caused
e to occur when other causes are false. Denote the
event by e+ ← c+

i and its probability by P (e+ ← c+
i ).

A causal failure is an event where e is false, when ci

is true and other causes of e are false. It is denoted
by e− ← c+

i . Denote the causal success that a set X =
{c1, ..., cn} of causes caused e by e+ ← c+

1 , ..., c+
n or

e+ ← x+ . Denote the set of all causes of e by C.
The CPT P (e|C) relates to causal probabilities as

follows. If C = {c1, c2, c3}, then

P (e+|c+
1 , c+

2 , c−3 ) = P (e+ ← c+
1 , c+

2 ).

A causal probability (the right-hand side) is always
equivalent to a conditional probability (the left-hand
side). The converse may not be true. C is assumed to
include a leak variable (if any) for causes that are left
implicit, and hence P (e+|c−1 , c−2 , c−3 ) = 0.

Causes reinforce each other if they are collectively
at least as effective as when only some are acting.
For example, consider the effect of curing cancer
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with radiotherapy and chemotherapy being its causes.
When both are applied, the probability of curing the
cancer is improved. Causes undermine each other if
they are collectively less effective. Consider a person’s
well-being as the effect and taking either one of two
desirable jobs as the causes. When taking both, the
chance of well-being is reduced due to overstress. If
C = {c1, c2}, and c1 and c2 undermine each other, the
following holds.

P (e+|c−1 , c−2 ) = 0, P (e+|c+
1 , c−2 ) > 0, P (e+|c−1 , c+

2 ) > 0,

P (e+|c+
1 , c+

2 ) < min(P (e+|c+
1 , c−2 ), P (e+|c−1 , c+

2 )).

Def. 1 defines the two types of causal interactions.

Definition 1. Let R = {W1, W2, ...} be a partition of a
set X of causes, R′ ⊂ R, and Y = ∪Wi∈R′Wi. Sets of
causes in R reinforce each other iff

∀R′ P (e+ ← y+) ≤ P (e+ ← x+),

and they undermine each other iff

∀R′ P (e+ ← y+) > P (e+ ← x+).

Reinforcing and undermining occur between indi-
vidual variables as well as sets of them. In individual
cases, Wi is a singleton. Otherwise, Wi is a generic
set. Consider X = {c1, c2, c3, c4, c5},

W1 = {c1, c2}, W2 = {c3, c4, c5}, R = {W1, W2}.

While c1 and c2 undermine each other, and so do c3,
c4 and c5, W1 and W2 may reinforce each other.

W1, ..., Wm (disjoint subsets of X) satisfy failure
conjunction iff

(e− ← w+
1 , ..., w+

m) = (e− ← w+
1 ) ∧ ...∧ (e− ← w+

m).

That is, the collective failure is attributed to individual
failures. They also satisfy failure independence iff

P ((e− ← w+
1 ) ∧ ...∧ (e− ← w+

m))
= P (e− ← w+

1 )× ...× P (e− ← w+
m). (1)

W1, ..., Wm (disjoint) satisfy success conjunction iff

(e+ ← w+
1 , ..., w+

m) = (e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m).

That is, the collective success requires individual ef-
fectiveness. They also satisfy success independence iff

P ((e+ ← w+
1 ) ∧ ...∧ (e+ ← w+

m))
= P (e+ ← w+

1 )× ...× P (e+ ← w+
m). (2)

Causes are undermining when success conjunction
and independence hold. Hence, undermining can be
modeled by a direct NIN-AND gate (Fig. 1 (left)).
Each root (top) is a single-causal success and the leaf
(bottom) is the causal success in question. Success
conjunction is encoded by an AND gate and indepen-
dence is encoded by the disconnection of roots other
than through the gate. The leaf event probability is
computed by Eqn. (2).

Fig. 1. Direct (left) and dual (right) NIN-AND gates

Causes are reinforcing when failure conjunction
and independence hold. Hence, reinforcement can be
modeled by a dual NIN-AND gate in Fig. 1 (right).
Each root is a single-causal failure and the leaf is the
causal failure in question. The leaf event probability
is computed by Eqn. (1).

By organizing direct and dual gates into a tree,
reinforcing, undermining, as well as their mixtures
at multiple levels, can be expressed by an NIN-AND
tree.

Definition 2. An NIN-AND tree T is a directed tree for
an effect e and its active causes X = {c1, ..., cn}.

An event node (black oval) has an in-degree ≤ 1 and
an out-degree ≤ 1. A gate node has an in-degree ≥ 2 and
an out-degree 1. A forward link connects an event and a
gate. A negation link has a white oval at the gate end. A
direct gate is connected to causal successes only and a dual
gate is connected to causal failures only.

Each terminal is an event labelled by e+ ← y+ or e− ←
y+, where Y ⊆ X . A single leaf with y+ = x+ connects to
the leaf gate. Each root (indexed by i) satisfies y+

i
⊂ x+ ,

y+
j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

Example 1. Consider C = {c1, c2, c3}. Suppose that c1

and c3 reinforce each other and collectively they undermine
c2. The two-level mixture of reinforcing and undermining
relative to event e+ ← c+

1 , c+
2 , c+

3 is encoded in Fig. 2 (a).
The top gate is dual and the leaf gate is direct. The left link
into the leaf gate is a negation link.

Fig. 2. (a) An NIN-AND tree over C = {c1, c2, c3}.
(b) An NIN-AND tree over X = {c1, c2}.

Example 2. From single-causal probabilities

P (e+ ← c+
1 ) = 0.6, P (e+ ← c+

2 ) = 0.9, P (e+ ← c+
3 ) = 0.8,

and Fig. 2 (a), P (e+ ← c+
1 , c+

2 , c+
3 ) = 0.828 can be

derived by applying Eqn. (1) to the dual gate and Eqn. (2)
to the direct gate. Using trees derived from Fig. 2 (a) (by
removing some nodes, gates and links), Table 1 is derived.
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To derive P (e+|c+
1 , c+

2 , c−3 ), for instance, reduce Fig. 2 (a)
to (b) to obtain P (e+ ← c+

1 , c+
2 ) = 0.54.

TABLE 1
CPT of NIN-AND tree model in Fig. 2 (a)

P (e+ |c−1 , c−2 , c−3 ) 0 P (e+ |c+1 , c−2 , c+3 ) 0.92
P (e+ |c+1 , c−2 , c−3 ) 0.6 P (e+ |c+1 , c+2 , c−3 ) 0.54
P (e+ |c−1 , c+2 , c−3 ) 0.9 P (e+ |c−1 , c+2 , c+3 ) 0.72
P (e+ |c−1 , c−2 , c+3 ) 0.8 P (e+ |c+1 , c+2 , c+3 ) 0.828

In Table 1, P (e+|c+
1 , c−2 , c+

3 ) is larger than both
P (e+|c+

1 , c−2 , c−3 ) and P (e+|c−1 , c−2 , c+
3 ): the consequence

of reinforcement between c1 and c3. P (e+|c+
1 , c+

2 , c+
3 )

is less than P (e+|c+
1 , c−2 , c+

3 ) and P (e+|c−1 , c+
2 , c−3 ): the

consequence of undermining between the group {c1, c3}
and c2.

An NIN-AND tree over e and C, and a set of single-
causal probabilities (one for each ci ∈ C) define an
NIN-AND tree model from which a unique CPT is
specified. Although a general NIN-AND tree can have
a root that involves multiple causes [XJ07], this work
focus on NIN-AND trees where each root involves
a single cause. Effect and causes in NIN-AND tree
models are not limited to binary, but the binary case
is the focus of this work. See [Xia12] for NIN-AND
tree models over multi-valued variables.

3 CONCISE NIN-AND TREE ENCODING

3.1 Root-Labeled Trees

Multiple NIN-AND trees may encode the same causal
model, as illustrated below.

Example 3. From P (e+ ← c+
1 ) = 0.95, P (e+ ← c+

2 ) =
0.9, P (e+ ← c+

3 ) = 0.7, and P (e+ ← c+
4 ) = 0.8, both

trees in Fig. 3 yield P (e+|c+
1 , c+

2 , c+
3 , c+

4 ) = 0.9197. They
encode the same model, where c1, c2 and c3 undermine each
other and collectively reinforce c4.

Fig. 3. NIN-AND trees encoding the same model

NIN-AND tree models can be investigated more
effectively if each model is encoded by a unique tree
topology. We define such trees below.

Definition 3. Let T be an NIN-AND tree. If T contains
a gate t that outputs to gate g of the same type (direct

or dual), delete t and direct its inputs to g. Apply such
deletions until no longer possible. The resultant NIN-AND
tree is minimal.

Every minimal NIN-AND tree T defines an equiv-
alent class, made of all NIN-AND trees that lead to
T by Def. 3. They encode the same causal interaction
pattern, as shown by Prop. 1.

Proposition 1. Let T be an NIN-AND tree, and T ′ be its
minimal tree. For any set of single-causal probabilities, T
and T ′ yield identical leaf event probability.

Proof: Convert T to T ′ stepwise according to Def. 3,
and we have the sequence T = T1, T2, ..., Tk = T ′.
Consider Ti and Ti+1, where inputs of gate t in Ti

become inputs of gate g in Ti+1 with t deleted. For
both Ti and Ti+1 , if t is direct (dual) the contribution
of each input of t to the output of g follows Eqn. (2)
(Eqn. (1)). Hence, the leaf event probability from Ti is
identical to that from Ti+1. 2

This equivalence property implies that the space of
NIN-AND tree models is equivalently represented by
the space of minimal trees. Furthermore, this space
can be more compactly represented by a subspace
with half of the size, as shown by Prop. 2.

Proposition 2. Let Γ be the collection of minimal NIN-
AND trees for n causes with direct leaf gates, and Γ′

collects those with dual leaf gates. An one-to-one mapping
exists between elements of Γ and Γ′, defined by replacing
each gate with the opposite type.

Proof: Prop. 2 follows from a property of minimal
trees. If the leaf gate g is direct, then each gate out-
putting to g is dual, and its inputs are all from direct
gates. That is, from the leaf to roots, gates alternate in
types. Hence, for every T ∈ Γ, there exists a T ′ ∈ Γ′,
obtained by changing the type of each gate in T . 2

Prop. 2 allows NIN-AND tree models over n causes
to be studied by focusing on one of the two subspaces
(Γ and Γ′), whose elements can be equivalently ex-
pressed as follows.

Definition 4. Let T be a minimal NIN-AND tree. A
root-labeled-tree (RLT) L relative to T is a directed graph
obtained by operating on T as follows.

1) Delete each gate and direct its inputs to output.
2) Delete each non-root label.
3) Replace each root label by the name of the correspond-

ing single cause.

Example 4. Fig. 2 (a) is a minimal tree, and its RLT is
shown in Fig. 4.

In a RLT, each root corresponds to a single-causal
event. Each non-root corresponds to an NIN-AND
gate and its output multi-causal event. We therefore
may view a non-root from any of its double perspec-
tives. For instance, when a RLT represents a minimal
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Fig. 4. The RLT of minimal NIN-AND tree in Fig. 2 (a)

tree in Γ, we say that its leaf type is direct using the
gate perspective. When a RLT represents a tree in Γ′,
we say that its leaf is dual.

A RLT L may represent a minimal tree in either Γ
or Γ′ depending on the type of its leaf, as described
above. If not mentioned, we assume L ∈ Γ by default,
with its leaf being direct.

Example 5. From Fig. 4 and the direct leaf type, Fig. 2
(a) is uniquely recovered.

RLTs encode NIN-AND trees concisely. They pro-
vide a basis to effectively study the space of NIN-
AND trees as presented below.

3.2 Enumerating Root-Labeled Trees

Enumeration of NIN-AND trees is an important com-
ponent of our proposed method for NIN-AND tree
acquisition. We consider the equivalent task to enu-
merate RLTs of n roots. Below, we present a new
algorithm for the task, by extending a method [Fel04]
for counting evolutionary trees.

Let Ln,m be a RLT with n roots and m ∈ {1, ..., n−1}
non-roots. Let Ψn,m be the set of all such RLTs. Denote
the set of RLTs with n roots as Ψn = ∪n−1

m=1Ψn,m.

Algorithm 1. EnuRLT(n)

1 create Ψ2;
2 for i = 3 to n, do
3 Ψi,1 = AddRootToNonRoot(Ψi−1,1, ci);
4 Ψi,i−1 = AddRootToArc(Ψi−1,i−2, ci);
5 for m = 2 to i− 2,
6 Φ = AddRootToNonRoot(Ψi−1,m, ci);
7 Φ′ = AddRootToArc(Ψi−1,m−1, ci);
8 Ψi,m = Φ ∪Φ′;
9 return Ψn = ∪n−1

m=1Ψn,m;

Line 1 creates Ψ2 = Ψ2,1 that contains a sin-
gle RLT in Fig. 5 (a). Each iteration of the outer

Fig. 5. Illustration of RLT enumeration

for loop enumerates RLTs of i roots in terms of
subsets Ψi,1, ..., Ψi,i−1. For i = 3, line 3 calls
AddRootToNonRoot(Ψ2,1, c3) below to produce Ψ3,1

(from Ψ2,1) that contains a single RLT in (b).

Procedure 1. AddRootToNonRoot(Ψi−1,m, ci)

1 initialize Φ = ∅;
2 for each RLT L ∈ Ψi−1,m, do
3 for each non-root v in L, do
4 create RLT L′ = L;
5 add root ci and arc (ci, v) in L′;
6 add L′ to Φ;
7 return Φ;

Line 4 calls AddRootToArc(Ψ2,1, c3) below to pro-
duce Ψ3,2 that contains RLTs in (c), (d), and (e). The
RLT in (c) is obtained when v is the leaf, and that in
(d) is obtained when v = c1. Lines 5 to 8 of EnuRLT(n)
are not run for i = 3. Hence, Ψ3 contains four RLTs
that are used in the next iteration to produce Ψ4.

Procedure 2. AddRootToArc(Ψi−1,m−1, ci)

1 initialize Φ = ∅;
2 for each RLT L ∈ Ψi−1,m−1, do
3 for each node v in L, do
4 create RLT L′ = L;
5 add node x and arc (v, x) in L′;
6 add root ci and arc (ci, x) in L′;
7 if v has child y in L,
8 delete arc (v, y) in L′ and add (x, y);
9 add L′ to Φ;
10 return Φ;

Table 2 shows the number of RLTs for n ≤ 7.

TABLE 2
Number of RLTs for given n

n 2 3 4 5 6 7
No. RLTs 1 4 26 236 2752 39208

4 PAIRWISE CAUSAL INTERACTION

The PCI function presented below forms an important
component of one of our proposed methods for NIN-
AND tree acquisition.

4.1 PCI Functions of Minimal NIN-AND Trees

An NIN-AND tree T specifies how each pair of causes
interact. Such interaction can be formally captured as
a function introduced below.

Definition 5. Let x and y be roots of a minimal NIN-
AND tree. Let pathx be the directed path from x to the
leaf and pathy be that from y. The closest common gate
(CCG) of x and y is the first gate common to pathx and
pathy.

Example 6. In Fig. 2 (a), the CCG of roots e− ← c+
1 and

e− ← c+
3 is dual (top), and that of e− ← c+

1 and e+ ← c+
2

is direct.

Prop. 3 shows that, given a minimal tree, the in-
teraction between each pair of causes is determined
through their CCG.
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Proposition 3. Let x and y be roots of a minimal NIN-
AND tree, ci and cj be their causes, and g be their CCG.
If g is direct, then the interaction between ci and cj is
undermining. Otherwise, it is reinforcing.

Proof: Assume that all causes are false except ci and
cj. Now all gates, except g, have no more than one
active input event and can be removed. The resultant
tree has a single gate g with roots x and y. 2

From Prop. 3, a function of pairwise causal interac-
tions is well-defined, as given below.

Definition 6. Given a minimal NIN-AND tree T , the PCI
function of T is defined from pairs of distinct causes {ci, cj}
to the set {rif, udm}, where rif stands for reinforcing and
udm stands for undermining.

Example 7. The PCI function for Fig. 2 (a) is as follows.

pci(c1, c2) = udm, pci(c1, c3) = rif, pci(c2, c3) = udm.

The PCI function of a minimal tree can be obtained
from its RLT, plus its leaf gate type.

Example 8. Fig. 4 shows the RLT for Fig. 2 (a). View each
non-root in Fig. 4 as a gate. The leaf gate in Fig. 2 (a) is
direct. Hence, the leaf in Fig. 4 is direct and its non-root
parent is dual. Now the CCG for each pair of roots in Fig. 4
can be determined and so can the PCI function.

Each RLT encodes two alternative minimal trees of
opposite leaf gate types. Given the PCI function of
one minimal tree, that of the other is easily obtained.

4.2 Expressiveness of PCI Function

Although PCI functions seem simpler than NIN-AND
trees, we show that they are sufficiently expressive
and uniquely identify their deriving structures. To
differentiate minimal NIN-AND trees through their
RLTs, we first define isomorphic RLTs recursively in
Def. 7 with its notation illustrated in Fig. 6 (a).

Fig. 6. (a) Illustration of notation in Def. 7. (b), (c)
Illustrations of isomorphic RLTs.

Definition 7. Let L be a RLT over a set C of causes and
f be its leaf. Denote the set of root parents of f by R and
the set of non-root parents of f by N . Let L′ be another
RLT over C, with f ′, R′, and N ′ defined similarly.

1) When N = ∅, L and L′ are isomorphic denoted
L ≡ L′, iff N ′ = ∅.

2) When N 6= ∅, L ≡ L′ iff R = R′, |N | = |N ′|, and
a one-to-one mapping between x ∈ N and x′ ∈ N ′

exists such that the subtree of leaf x and that of leaf
x′ are isomorphic.

In case (1), since N = N ′ = ∅, we have R = R′ = C.

Example 9. The RLT in Fig. 6 (b) is isomorphic to that
in Fig. 5 (b) due to Def. 7 (1). The RLT in Fig. 6 (c) is
isomorphic to that in Fig. 5 (c) due to Def. 7 (2).

PCI functions are sufficiently expressive in that
whenever L 6≡ L′ their PCI functions differ, and vice
versa. This is established in Theorem 1 whose proof
utilizes Lemma 1 below.

Lemma 1. Let L and L′ be RLTs over C such that no
roots v and w sharing a child in L are so in L′, and vice
versa. Let a root w be deleted from both RLTs resulting in
L1 and L′

1, respectively. Then, L1 6≡ L′
1.

Fig. 7 illustrates L and L′ of Lemma 1 in (a) and
(b), and L1 and L′

1 in (c) and (d).

Fig. 7. Illustration of Lemma 1

Proof: We prove by contradiction. Let L and L′ be
RLTs satisfying the condition of the lemma. Let v and
w be roots with a common child in L. Denote the child
by c. Since they do not share a child in L′, let y be a
root that shares a child with v in L′. Denote the child
by d. After the deletion of w from both RLTs, suppose
the resultant RLTs satisfy L1 ≡ L′

1.
From Def. 7 (2), the subtree of leaf c in L1 and the

subtree of leaf d in L′
1 are isomorphic because c and

d both have parent v. Therefore, the parent set of c in
L1 and that of d in L′

1 must be identical. Since y is the
parent of d in L′, it follows that y is the parent of d in
L′

1, y is the parent of c in L1, and y is the parent of c in
L. Now v and y share a child in both L and L′, which
implies that L and L′ do not satisfy the condition of
the lemma: a contradiction. 2

Theorem 1. Let L and L′ be RLTs over a set C of causes,
and pci and pci′ be their PCI functions, respectively.

Then L ≡ L′, iff pci = pci′.

Proof: The necessity of the condition is obvious. We
prove the sufficiency by induction on n = |C| to show

L 6≡ L′ ⇒ pci 6= pci′.

Without loss of generality, we assume that the leaf
type is direct for both RLTs.

For n = 3, alternative RLTs are shown in Fig. 5 (b),
(c), (d), and (e). If L is as (b) and L′ is as (c), then N =
∅, N ′ 6= ∅, and hence L 6≡ L′. We have pci(c1, c2) =
udm while pci′(c1, c2) = rif . If L is as (c) and L′ is as
(d), then R = {c3}, R′ = {c2}, and hence L 6≡ L′. We
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have pci(c1, c2) = rif while pci′(c1, c2) = udm. Each
other combination of L and L′ is similar to one of the
two cases above.

Assume L 6≡ L′ ⇒ pci 6= pci′ for 3 ≤ n ≤ k where
k ≥ 3. We consider n = k+1 below. When N = N ′ = ∅,
we have L ≡ L′. Hence, when L 6≡ L′, one of N and
N ′ must be non-empty. We assume N 6= ∅. By Def. 7,
L 6≡ L′ is equivalent to the mutually exclusive and
exhaustive cases below.

1) R 6= R′ and R 6= ∅
2) R 6= R′ and R = ∅
3) R = R′ 6= ∅
4) R = R′ = ∅, and there exist two roots of a

common child in both L and L′

5) R = R′ = ∅, and there exist no two roots of a
common child in both L and L′

Fig. 8. Illustration of analysis for case (1)

For case (1), v ∈ R \R′ exists as shown in Fig. 8 (a)
for L. If N ′ 6= ∅, then v is an ancestor of some x ∈ N ′ in
L′, and x must have another root ancestor w ∈ C \R′

as shown in (b). No matter where w is located in (a),
we have pci(v, w) = udm and pci′(v, w) = rif .

If N ′ = ∅, L′ is shown as (c) such that v and w exist
in L as (d). We have pci(v, w) = rif and pci′(v, w) =
udm.

Fig. 9. Illustration of analysis for case (2)

For case (2), v and w exist in L (Fig. 9 (a)) such that
v is located in L′ as (b). We have pci(v, w) = rif and
pci′(v, w) = udm no matter where w is located in L′.

Fig. 10. Illustration of analysis for case (3)

For case (3) (Fig. 10), let L1 and L′
1 be RLTs obtained

by removing roots R = R′ from L and L′, respectively.
For L1 and L′

1, we have n ≤ k and L1 6≡ L′
1. By

inductive assumption, their PCI functions over C \R
differ and hence PCI functions for L and L′ differ.

Fig. 11. Illustration of analysis for case (4)

For case (4), e.g., Fig. 11 (a) and (b), v and w share a
common child in both L and L′. After w is deleted, we
obtain L1 and L′

1, e.g., (c) and (d). From L 6≡ L′ and
the fact that their non-isomorphism cannot be due to
w, it follows L1 6≡ L′

1. Since n = k for L1 and L′
1,

by inductive assumption L1 6≡ L′
1 ⇒ pci1 6= pci′1, we

have pci1 6= pci′1. Because for each pair x, y ∈ C \{w},
pci(x, y) = pci1(x, y) holds and pci′(x, y) = pci′1(x, y)
holds, we conclude pci 6= pci′.

For case (5), delete a root w from L and L′ to get
L1 and L′

1. By Lemma 1 and an inductive argument
similar to case (4), we conclude pci 6= pci′. 2

Theorem 1 implies that a minimal NIN-AND tree
can be uniquely identified by its PCI function. We will
explore this property below.

5 NIN-AND TREE ACQUISITION

Drawing from the results of the last two sections, this
section presents two methods for the acquisition of an
NIN-AND tree, one based on the structure elimination
and another on PCI functions.

5.1 Approach and Assumption

Formally, an NIN-AND tree model M is a tuple
M = (e, C, T, SP ), where e is an effect, C is the set
of all causes of e, T is a minimal NIN-AND tree over
e and C, and SP is a set of single-causal probabilities
(single-causals), one for each ci ∈ C. M uniquely
specifies a CPT P (e|C). M and P (e|C) are said to be
consistent.

Furthermore, two models M = (e, C, T, SP ) and
M ′ = (e, C, T ′, SP ′) are structurally consistent, if T and
T ′ are isomorphic. M and M ′ are said to be consistent,
if they are consistent with the same CPT.

Given e and C, acquisition of a model M amounts
to acquisition of T and SP . SP may be elicited from
a domain expert or learned from frequency data. The
focus of this paper is on the acquisition of T .

The topology T may be elicited directly from an
expert. The task requires the expert to have a good un-
derstanding of the syntax and semantics of NIN-AND
tree causal models in order to assess and articulate the
partial order of interactions among causes and cause
groups. This demands a nontrivial amount of training
of the expert before elicitation and nontrivial mental
exercise of the expert during elicitation.

To ease these burdens for structural acquisition, we
explore the following idea to bypass direct tree elici-
tation. Instead, we acquire (by elicitation or machine
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learning) a small number of multi-causal probabili-
ties (multi-causals) in addition to probabilities in SP
and generate T from the acquired probabilities. Our
investigation is based on the following assumption.

Assumption. Let Pt(e|C) be the true CPT that charac-
terizes the probabilistic relation over e and C such that the
following holds.

1) There exists an NIN-AND tree model, Mt =
(e, C, Tt, SPt), that is consistent with Pt(e|C).

2) All single-causal and some multi-causal probabilities
relative to Pt(e|C) can be approximately acquired.

The first condition is justified by the following
observation. Reinforcement and undermining cap-
ture intuitive patterns of causal interactions, and
reinforcement-based causal models, such as the noisy-
OR, have been widely applied, e.g., [PPMH94]. The
second condition is justified by the knowledge en-
gineering practice in building BNs, where numerical
probabilities have been either elicited from experts or
learned from available data. Note that the true CPT
is never known in practice.

5.2 Structure Elimination (SE) Method

The SE method is based on the RLT enumeration Ψn

(may be obtained before model acquisition). From Ψn,
the set TR of minimal NIN-AND trees over C can
be obtained by specifying two trees (of opposite leaf
types) from each RLT. First, a set SPa of n = |C|
single-causals, e.g., Pa(e+ ← c+

i ), is acquired (‘a’ for
‘acquired’). Combining each T ∈ TR with SPa , a set
NMa of NIN-AND tree models is obtained. In general,
a unique CPT over e and C is defined by each model
in NMa.1 A set CPTSa of CPTs is thus defined. Note
that there is a one-to-one mapping between TR and
NMa, and generally also between NMa and CPTSa.

Subsequently, some multi-causals are acquired.
Suppose Pa(e+ ← c+

i , c+
j , c+

k ) is acquired. For each
T ′ ∈ TR, M ′ = (e, C, T ′, SPa) ∈ NMa and P ′(e|C) ∈
CPTSa, P ′(e+ ← c+

i , c+
j , c+

k ) is retrieved from P ′(e|C).
If the difference between Pa(e+ ← c+

i , c+
j , c+

k ) and
P ′(e+ ← c+

i , c+
j , c+

k ) is sufficiently large, P ′(e|C) is
deemed inconsistent with the true CPT, and T ′, M ′ and
P ′(e|C) are eliminated from TR, NMa and CPTSa,
respectively. Based on such comparisons, all trees
in TR except one, Ta, will be eliminated. Ta is the
acquired NIN-AND tree and Ma = (e, C, Ta, SPa) is
the acquired model.

Specifically, we adopt the following version of the
SE. A set MPa of K multi-causals are acquired, where
K is determined based on expert availability in elicita-
tion or data availability in learning. For each T ′ ∈ TR,
M ′ = (e, C, T ′, SPa) ∈ NMa , and P ′(e|C) ∈ CPTSa,
a corresponding set MP ′ of multi-causals is retrieved

1. When elements of SPa are not unique, multiple models in
NMa may be consistent.

from P ′(e|C). The Euclidean distance between MPa

and MP ′ is calculated as follows.

dm(MPa, MP ′) =

√√√√ 1
K

K∑

i=1

(Pa(e+|x+
i )− P ′(e+|x+

i ))2.

(3)
The tree Ta ∈ TR corresponding to the minimum
distance is returned. The algorithm is specified below,
where C is a set of n causes of effect e, Ψn is the
enumeration of RLS of n roots by EnuRLT (n), SPa

is a set of n acquired single-causals, and MPa is a
set of K acquired multi-causals. Although in general
any multi-causals may be used in MPa, we use triple-
causals in the remainder of the paper.

Algorithm 2. TreeAcqBySE(e, C, Ψn, SPa, MPa)

Return: a minimal NIN-AND tree;
1 TR = ∅; NMa = ∅;
2 for each L ∈ Ψn,
3 set NIN-AND tree T from L with direct leaf;
4 set NIN-AND tree T ′ from L with dual leaf;
5 add T and T ′ to TR;
6 for each T ∈ TR, add M = (e, C, T, SPa) to NMa;
7 Ta = null; mindm = 1;
8 for each M ′ = (e, C, T ′, SPa) ∈ NMa,
9 derive P ′(e|C) from M ′;
10 get MP ′ from P ′(e|C) corresponding to MPa;
11 if dm(MPa, MP ′) < mindm,
12 mindm = dm(MPa, MP ′); Ta = T ′;
13 return Ta;

5.3 PCI Function-Based Method

Based on Theorem 1, we propose a PCI function-based
method for acquiring a minimal NIN-AND tree as
follows. Suppose Ψn is given from which the set TR
is obtained. From TR, a set PCIF of PCI functions
is defined, one for each tree T ∈ TR. First, the set
SPa is acquired as in the SE method. Then, a set DPa

of all double-causals (a total of n (n− 1)/2 values) is
acquired. From SPa and DPa , a PCI function pcia() is
derived and compared against each function pci′() ∈
PCIF . If pcia() matches pci′(), then the NIN-AND
tree T ′ ∈ TR that produces pci′() is the acquired NIN-
AND tree and Ma = (e, C, T ′, SPa) is the acquired
model.

Practical derivation of PCI function

The key operation is the derivation of pcia() function
from SPa and DPa. For any pair of causes ci, cj in an
NIN-AND tree model and their causal probabilities

P (e+ ← c+
i ), P (e+ ← c+

j ), P (e+ ← c+
i , c+

j ),

Def. 1 dictates that the PCI function pci must satisfy
pci(ci, cj) = rif iff

P (e+ ← c+
i , c+

j ) ≥ max(P (e+ ← c+
i ), P (e+ ← c+

j )), (4)
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and pci(ci, cj) = udm iff

P (e+ ← c+
i , c+

j ) < min(P (e+ ← c+
i ), P (e+ ← c+

j )). (5)

In theory, the above decision rule is equivalent to

pci(ci, cj) =

{
rif if P (e+ ← c+

i , c+
j ) ≥ P (e+ ← c+

i )
udm otherwise

(6)
and P (e+ ← c+

j ) needs not even be involved.
In practice however, due to probability acquisition

errors, it is possible that

Pa(e+ ← c+
i ) < Pa(e+ ← c+

i , c+
j ) < Pa(e+ ← c+

j ).

Example 10. Suppose that Pt(e+ ← c+
i ) = 0.6,

Pt(e+ ← c+
j ) = 0.9, and ci undermines cj . We have

Pt(e+ ← c+
i , c+

j ) = 0.54. Acquired probabilities, however,
may satisfy

Pa(e+ ← c+
i ) = 0.56 < Pa(e+ ← c+

i , c+
j ) = 0.59,

Pa(e+ ← c+
i , c+

j ) = 0.59 < Pa(e+ ← c+
j ) = 0.93.

Alternatively, suppose ci reinforces cj . We have instead
Pt(e+ ← c+

i , c+
j ) = 1 − (0.4 ∗ 0.1) = 0.96. Acquired

probabilities may satisfy

Pa(e+ ← c+
i ) = 0.56 < Pa(e+ ← c+

i , c+
j ) = 0.91,

Pa(e+ ← c+
i , c+

j ) = 0.91 < Pa(e+ ← c+
j ) = 0.93.

In either case, applying Eqn. (6) has a 50% probability
of assigning the PCI function value incorrectly. Applying
Eqns. (4) and (5) is not even feasible, because both fail.

To address this issue, we develop the decision rule
described in Procedure 3.

Procedure 3. GetPciValue(SPa, DPa, ci, cj)

Return: PCI function value pcia(ci, cj);
1 get pi = Pa(e+ ← c+

i ) from SPa ;
2 get pj = Pa(e+ ← c+

j ) from SPa ;
3 get pij = Pa(e+ ← c+

i , c+
j ) from DPa;

4 if pij ≥ max(pi, pj), return rif ;
5 else if pij < min(pi, pj), return udm;
6 δ1 = |pij −min(pi, pj)|;
7 δ2 = |pij −max(pi, pj)|;
8 if δ1 < δ2, return udm;
9 return rif ;

Normal cases are handled by lines 4 and 5 accord-
ing to Eqns. (4) and (5). When these equations fail
due to probability acquisition errors, the PCI function
value is determined by lines 6 to 9. The following
example demonstrates correct PCI value assignment
when acquisition errors are small.

Example 11. Consider cases in Example 10. For the
undermining case, we have δ1 = 0.03 and δ2 = 0.34.
Hence, pcia(ci, cj) = udm is returned correctly in line 8.
For the reinforcing case, we have δ1 = 0.35 and δ2 = 0.02.
Hence, pcia(ci, cj) = rif is returned correctly in line 9.

Handling invalid PCI functions
To derive a PCI function, GetPciValue should be ap-
plied to each cause pair. The number of cause pairs is
n(n − 1)/2. The collection of the n(n − 1)/2 function
values defines a PCI function. Hence, the number of
alternative PCI functions for n causes is 2n(n−1)/2.

TABLE 3
Number of PCI functions and minimal NIN-AND trees

n No. PCI func. No. trees Ratio
3 8 8 1
4 64 52 1.2
5 1024 472 2.2
6 32768 5504 6
7 2097152 78416 26.7
8 268435456 1320064 203
9 68719476736 25637824 2680

Table 3 shows the number of alternative PCI func-
tions and that of minimal NIN-AND trees given n.
The right-most column is the ratio between the two.

A PCI function is valid if it is derivable from
a minimal NIN-AND tree. Otherwise, it is invalid.
Table 3 shows that beyond n = 3, there are more
PCI functions than valid ones. It follows that a PCI
function derived from GetPciValue may be invalid
(due to probability acquisition errors), and there does
not exist any corresponding NIN-AND tree.

Let pci and pci′ be PCI functions over n causes. We
define their distance by counting the number of cause
pairs whose function values differ,

df(pci, pci′) =
∑

1≤i,j≤n;i6=j

diff(pci(ci, cj), pci′(ci, cj)), (7)

where the function diff() returns 0 if its arguments
are identical and 1 otherwise.

Algorithm 3. TreeAcqByPCI(e, C, Ψn, SPa, DPa)

Return: a minimal NIN-AND tree;
1 for each pair ci, cj ∈ C,
2 pcia(ci, cj) = GetPciV alue(SPa, DPa, ci, cj);
3 create the minimal NIN-AND tree set TR from Ψn;
4 Ta = null; mindf = n2;
5 for each T ′ ∈ TR,
6 derive PCI function pci′ from T ′;
7 if df(pcia, pci′) = 0, return T ′;
8 if df(pcia, pci′) < mindf ,
9 mindf = df(pcia, pci′); Ta = T ′;
10 return Ta;

Let pcia be obtained by GetPciValue and pci′ ∈
PCIF . If df(pcia, pci′) = 0, pcia is valid and we return
T ′ ∈ TR that produces pci′. If df(pcia, pci′) > 0 for
each pci′ ∈ PCIF , then pcia is invalid. We select a
PCI function pci∗, such that df(pcia, pci∗) is minimal
(breaking ties arbitrarily) and return T ∗ ∈ TR that
produces pci∗(). The PCI function-based method with
the above enhancements is specified in Algorithm 3,
where DPa is a set of acquired double-causals.
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6 PARAMETER ACQUISITION ERRORS

This section presents the design of experiments for
evaluation of the SE and PCI methods. We discuss
potential sources of errors and measures we take to
control them.

Experiment Design
The experiments were divided into elicitation-based
(EL-based) and machine learning-based (ML-based).
First, a true NIN-AND tree model Mt = (e, C, Tt, SPt)
was created from which causal scenarios were gen-
erated by Monte Carlo simulations. In EL-based ex-
periments, each human participant was trained into
an expert with causal scenarios and then a subset of
causal probabilities was elicited. In ML-based experi-
ments, the causal scenarios were used to estimate the
causal probabilities.

Once the causal probabilities were acquired, they
were used to derive a structure Ta and corresponding
model Ma by the SE or PCI method. Effectiveness
of the method was measured by the model acquisition
error dm(Ma, Mt). In the following, we refer to these
acquired causal probabilities as acquired parameters.

In particular, for scenario simulations, the true CPT
Pt(e|C) was derived from Mt. Given a subset X ⊆ C
of active causes, a scenario (e, x+) where e ∈ {e+, e−}
was randomly simulated according to Pt(e+ ← x+).
For EL-based experiments, after seeing a sufficient
number of scenarios, for a sufficient number of dis-
tinctive x+ (more below), a participant was deemed
to be an expert on Mt. Subsequently, (s)he was asked
to articulate the parameters Pa(e+ ← x+).

To ensure that a participant’s knowledge on Mt is
entirely from the training and is not biased by other
experiences, we created Mt to be about phenomena in
an imaginary planet, where atmospheric conditions
are influenced by conditions of the moon, clouds,
certain insects, and plants. An Environment Simulator
(ES) was implemented accordingly to allow (s)he to
specify active causes x+ and observe simulated effects
e in terms of picture icons. This setup ensures the
condition (1) in the Assumption.

It is important to note that training experts ac-
cording to a generated model Mt is more advanta-
geous than using real experts from some application
environment. The mental model of a real expert is
not directly accessible and hence acquisition errors
cannot be accurately measured. On the other hand,
training experts according to a generated Mt allows
convenient error measurement as shown below.

Parameter acquisition errors
In the ML-based experiments, Pa(e+ ← x+) is esti-
mated from the relative frequency

F (e+ ← x+) = N (e+ ← x+)/N (x+),

where N (e+ ← x+) is the number of occurrences
of scenario (e+, x+) and N (x+) is that for x+. Since

N (x+) is finite, the parameter acquisition suffers from
sampling errors:

Pa(e+ ← x+) = F (e+ ← x+) 6= Pt(e+ ← x+).

In the EL-based experiments, since each participant
forms Pa(e+ ← x+) from the training experience on
F (e+ ← x+), the parameter acquisition also suffers
from the sampling errors.

Furthermore, in the EL-based experiments, a par-
ticipant may not be able to retain and articulate
either N (e+ ← x+) and N (x+), or F (e+ ← x+)
accurately [KST82]. We refer to these additional errors
as retention-articulation (RA) errors.

Controlling parameter acquisition errors
Without adequately controlling the parameter acqui-
sition errors, the effectiveness of SE and PCI meth-
ods cannot be accurately evaluated. To control the
sampling errors, we analyze the number η = N (x+)
required for F (e+ ← x+) to be sufficiently close to
p = Pt(e+ ← x+).

Scenarios (e, x+) are simulated through a Bernoulli
process. Denote θ = N (e+ ← x+) ∈ {0, 1, 2, ..., η} and
it has a binomial distribution

P (θ) = C(η, θ)pθ(1− p)η−θ,

where C(η, θ) denotes the number of θ-combinations
from η elements. Now F (e+ ← x+) = p iff θ = η p.
Define a threshold γ ∈ (0, 1). F (e+ ← x+) is deemed
close to p iff |F (e+ ← x+)−p| ≤ γ, which is equivalent
to

|η F (e+ ← x+)− η p| = |θ − η p| ≤ η γ.

Hence, P (|θ − η p| ≤ η γ) signifies the chance with
which F (e+ ← x+) is close to p.

TABLE 4
P (|θ − η p| ≤ η γ) for η = 100 and γ = 0.1

p 0.1/0.9 0.2/0.8 0.3/0.7 0.4/0.6 0.5
P () 0.999 0.992 0.979 0.968 0.965

Table 4 lists P (|θ−η p| ≤ η γ) for p = 0.1, 0.2, ...,0.9
when η = 100 and γ = 0.1. Therefore, if each x+ is
simulated η = 100 times, the probability by which
F (e+ ← x+) differs from Pt(e+ ← x+) by no more
than 0.1 will be at least 0.965 no matter what value
Pt(e+ ← x+) is.

Based on the analysis, we simulated each x+ for
100 scenarios in ML-based experiments. For EL-based
experiments, we implemented the ES so that a partici-
pant was required to observe at least 100 scenarios for
each distinct training x+ before the elicitation starts.

To control RA errors, for each distinct training x+ ,
the pair of relative frequencies F (e+ ← x+) and
F (e− ← x+) experienced by the participant during
training was made available during elicitation and
was shown in a stacked bar graph (Fig. 12). This
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Fig. 12. Stacked bar graph for F (e+ ← x+) = 0.83

visual hint for the experienced F (e+ ← x+) essentially
eliminates retention errors. While it reduces articula-
tion errors, it does not eliminate them as it is visual
whereas Pa(e+ ← x+) is elicited numerically.

The stacked bar graph also allows us to identify
outliers in acquired parameters from careless or dis-
interested participants. For each Pa(e+ ← x+), its
articulation error can be calculated from the corre-
sponding frequency in the ES log. Since the stacked
bar graph bounds articulation errors to below 0.1, any
error larger than 0.1 is detected as an outlier.

7 EXPERIMENTAL EVALUATION

The objective of experiments was to evaluate whether
the SE and PCI methods effectively acquire NIN-
AND trees, under the Assumption (Section 5.1). In
addition to EL-based and ML-based experiments, we
also compared with the Chow-Liu method [CL68].

7.1 Elicitation-Based Experiments

EL-based experimental setup

Participants were recruited from computer science
and engineering students (second year or above).
Each participant was trained with a distinct true
model Mt = (e, C, Tt, SPt), where n = 4. Tt was
randomly selected from 52 alternatives (see Table 3)
and SPt was randomly generated. A training session
lasted 10 minutes, during which a participant selected
x+ (in the ES) to observe its causal scenarios according
to the required parameters and the minimum number
(100) of scenarios.

To facilitate evaluation, the SE and PCI methods
were compared with the direct numerical (DN) method,
where each causal probability in Pt(e|C) was directly
elicited. The total number of parameters is 24−1 = 15,
where −1 is due to Pt(e+|c−1 , ..., c−4 ) = 0 (Section 2).
For PCI, we elicited 10 parameters (4 single-causals
and C(4, 2) = 6 double-causals). For SE, we elicited
8 parameters (4 single-causals and C(4, 3) = 4 triple-
causals) so that the parameters differ from PCI.

Each data set consists of a number of causal prob-
abilities elicited from one participant. A data set for
evaluation of DN, SE, or PCI method contains 15, 8, or
10 elicited probabilities, respectively. If any acquired
parameter was found to be an outlier (Section 6),
the entire dataset was dropped from further analysis.
After removing 3 outlier datasets, the number of data
sets collected are 23, 29, 29, respectively.

The distance between sets of probabilities was mea-
sured by Euclidean distance similar to Eqn. (3). If
eight parameters were elicited from a participant,

his or her parameter acquisition error was calculated
using the eight and their counterparts in Pt(e|C).
For a model acquired by any method, its acquisition
error was calculated using the 15 parameters of the
acquired model and their counterparts in Pt(e|C).

EL-based experimental results

Parameter acquisition errors consist of sampling and
RA errors. For each participant, these errors were
computed from the true CPT Pt(e|C), a set F (e|C)
of relative frequencies of simulated scenarios in the
ES log, and a set Pa(e|C) of probability parameters
directly elicited. F (e|C) and Pa(e|C) from a given
participant may contain less than 15 parameters, when
only the PCI or SE method was applied. In particular,
for each participant, the sampling error was obtained
by dm(Pt(e|C), F (e|C)), the RA error was obtained by
dm(F (e|C), Pa(e|C)), and the parameter acquisition
error was by dm(Pt(e|C), Pa(e|C)).

The three types of errors over all participants are
summarized in Table 5. As shown, the elicitation aid
by stacked bar graphs had an effective control of RA
errors. As a result, parameter acquisition errors are
mainly composed of sampling errors.

TABLE 5
Sample means (µ̂) and standard deviations (σ̂) of
parameter acquisition errors over all participants

Sampling Err. RA Err. Para. Acq. Err.
µ̂ 0.0293 0.0076 0.0301
σ̂ 0.0096 0.0038 0.0099

The DN method directly elicits the CPT P DN
a (e|C),

which is referred to as the CPT elicited by DN. For the
SE method, a structure Ta (by TreeAcqBySE) and a
model Ma are derived from elicited probabilities and
P SE

a (e|C) (the CPT elicited by SE) is defined from Ma.
Similarly, P PCI

a (e|C) (the CPT elicited by PCI) through
TreeAcqByPCI is defined.

For each data set, the Euclidean distance between
the true CPT and the CPT elicited by each method
was calculated. For each method, DN, SE, and PCI,
the distances from corresponding data sets are sum-
marized in Table 6. Out of the 29 data sets applicable

TABLE 6
Sample means (µ̂) and standard deviations (σ̂) of

model acquisition errors by DN, SE and PCI methods

DN SE PCI
µ̂ 0.0301 0.0356 0.0281
σ̂ 0.0099 0.0343 0.0146

to the PCI method, the true NIN-AND tree topology
was recovered in 28 of them (recovery rate 96.6%). Out
of the 29 data sets applicable to SE, the true topology
was recovered in 26 (recovery rate 89.7%).
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To compare the three methods, the Friedman test
(3 columns, 23 rows) was performed, based on results
from 23 data sets (the remaining data set each contains
only parameters sufficient for one of PCI and SE).
A rank 1 is associated with the lowest distance. The
rank sums for DN, PCI, and SE are 50.0, 42.5, and
45.5, respectively, and the test statistic is 1.239. Hence,
model acquisition errors from the three methods are
comparable (the null hypothesis is not rejected). Since
the PCI method acquired 10 parameters, SE acquired
8, while DN acquired all 15, the results demonstrate
that SE and PCI methods improve efficiency in model
acquisition, while maintaining comparable accuracy.

7.2 Machine Learning-Based Experiments

ML-based experimental setup

Although EL-based experiments provided useful em-
pirical evaluations, they were tedious and time con-
suming due to its human-based nature. The size of our
datasets was limited by the participants that we could
recruit. The true models used were limited to n = 4
to reduce the session length for participants. During
these experiments, it became clear that, the inputs
needed to evaluate the SE and PCI methods are the
acquired parameters, and it does not matter whether
they are elicited from humans or estimated from data.
Hence, ML-based experiments are also valid as long
as parameter acquisition errors are comparable. They
are advantageous because the feasibility for larger n
values and sample sizes, which allows more accurate
measure of relative merits of the methods.

ML-based experiments were conducted for 4,000
simulated true models. They were divided into four
groups with n = 4, 5, 6, and 7, respectively. Each
group consists of 1,000 true models. For each true
model Mt = (e, C, Tt, SPt), Tt was randomly selected
(e.g., for n = 7, from 78416 enumerated alternatives)
and SPt was randomly generated. Each Tt has be-
tween 1 and n−1 non-roots. Each method of DN, PCI
and SE was applied to each model in each group.

For each true model Mt, the relative frequency
F (e+ ← x+) was simulated from Pt(e|C) for each
subset X ⊆ C of active causes. We have chosen
the number η of simulated scenarios to be 100 to
make sampling errors comparable with parameter
acquisition errors in EL-based experiments. The ac-
quired parameter Pa(e+ ← x+) was then estimated
by F (e+ ← x+). A total of 2n − 1 parameters were
acquired for each Mt.

The CPT P DN
a (e|C) acquired by DN is defined

directly by the 2n − 1 acquired parameters. For the
PCI method, the input is a proper subset of the
above 2n − 1 acquired parameters: n single causals
and C(n, 2) double-causals (a total of n ∗ (n + 1)/2).
The output is the acquired model CPT P PCI

a (e|C)
(consisting of 2n− 1 parameters). For the SE method,
the input is a proper subset of n single causals and

C(n, 3) triple causals, and the acquired model CPT
is P SE

a (e|C). Table 7 summarizes the number of ac-
quired parameters by each method.

TABLE 7
Number of input parameters by DN, SE and PCI

n # probs for DN # probs for SE # probs for PCI
4 15 8 10
5 31 15 15
6 63 26 21
7 127 42 28

ML-based experimental results

Table 8 summarizes ML-based experimental results.
For the DN method, sample means and standard
deviations of dm(Pt(e|C), P DN

a (e|C)) for each group is
shown as µ̂-dm and σ̂-dm in column 2. Corresponding
results for PCI and SE are shown in columns 3 and 5.
For the PCI method, the true topology recovery rate
Rcv and the typical model learning time tt (by a 2.9
GHz laptop) are shown in column 4. Corresponding
results for SE are shown in column 6.

TABLE 8
Summary of ML-based experimental result

DN PCI SE
n µ̂-dm µ̂-dm Rcv (%) µ̂-dm Rcv (%)

σ̂-dm σ̂-dm tt (s) σ̂-dm tt (s)
4 0.0373 0.0328 98.7 0.0486 80.5

0.0101 0.0163 <0.001 0.0429 <0.001
5 0.0365 0.0316 97.7 0.0348 89.2

0.0084 0.0152 <0.001 0.0198 0.016
6 0.0356 0.0297 97.8 0.0308 89.8

0.0077 0.0141 0.015 0.0139 0.41
7 0.0360 0.0301 96.6 0.0300 89.8

0.0071 0.0145 0.1 0.0130 14.3

Since dm(Pt(e|C), P DN
a (e|C)) is equivalent to the

parameter acquisition error, results in column 2 in-
dicate the magnitudes of parameter acquisition errors
for all three methods. They are comparable to that of
EL-based experiments (Table 5).

To compare model acquisition errors of the three
methods, the Friedman test (3 columns, 1,000 rows)
was performed for each group. The test statistics for
n = 4, 5, 6, and 7 are 159.9, 256.8, 364.4, and 418.2,
respectively. Hence, the null hypothesis (no significant
difference between the three methods) is rejected for
each group at the level of significance α = 0.01.

For the post-hoc analysis, rank sums for each group
and each method are shown in Table 9. The rank sum
differences for three pairs of methods are derived in
Table 10. With an one-sided test for each of the three
pairs, the result is the following. PCI is significantly
better than DN for n = 4, 5, 6, 7 at α = 0.01. SE is
significantly better than DN for n = 4, 5, 6, 7 at α =
0.01. PCI is significantly better than SE for n = 4, 5, 6
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TABLE 9
Rank sums of model acquisition errors

n RSDN RSPCI RSSE

4 2280.0 1714.5 2005.5
5 2409.0 1741.5 1849.5
6 2489.0 1702.0 1809.0
7 2527.0 1708.5 1764.5

TABLE 10
Rank sum differences for post-hoc analysis

n RSDN − RSPCI RSDN − RSSE RSSE − RSPCI

4 565.5 274.5 291.0
5 667.5 559.5 108.0
6 787.0 680.0 107.0
7 818.5 762.5 56.0

at α = 0.01, but for n = 7, it is only better than SE at
α = 0.11. We attribute the improved performance of
SE (relative to PCI) for n = 7 to the use of 50% more
parameters than PCI (42 versus 28).

The superior performance of PCI over SE is also
reflected by its true topology recovery rate Rcv
(columns 4 and 6 in Table 8). The Rcv from PCI is
at least 6% higher than SE, for each n.

The analysis shows that PCI and SE perform better
than DN, and PCI is the best among the three. The PCI
and SE methods also used fewer number of acquired
parameters (Table 7). The number of acquired param-
eters by DN is O(2n), that by SE is O(n3), and that
by PCI is O(n2). The performance of the PCI method
makes it particularly attractive, as it uses the least
number of acquired parameters (except for n = 4) but
has the best model acquisition accuracy and topology
recovery rate.

7.3 On True Model Based Approach

Our experiments extended empirical evaluations that
were previously performed for causal models [ZD04],
[MD08] by including ML-based experiments. Previous
methods compared the elicited model CPT and the ob-
served relative frequency parameters (frequency-based),
while we compared the acquired model with the true
model (true-model-based).

To evaluate the relative merit of the true-model-
based and frequency-based evaluations, the Friedman
test (3 columns, 1,000 rows) was performed to com-
pare dm(Pt(e|C), P DN

a (e|C)), dm(Pt(e|C), P PCI
a (e|C))

(true-model-based), and dm(P DN
a (e|C), P PCI

a (e|C))
(frequency-based), with rank sums for each group
shown in Table 11.

The Friedman test statistics for n = 4, 5, 6, 7 are
much large than the critical value at α = 0.01.
Hence, the null hypothesis is rejected for each n. In
the post-hoc analysis, one-sided pairwise tests show
that, for each n, the true-model-based PCI model
acquisition error is significantly better than DN, but

TABLE 11
True-model and frequency-based rank sums for PCI

n RSDN RSPCI RSPCI−f

4 2102.0 1557.0 2341.0
5 1977.0 1392.0 2631.0
6 1857.0 1255.0 2888.0
7 1794.0 1234.0 2972.0

the frequency-based error is significantly worse than
DN. For instance, when n = 7, the difference between
RSDN and RSPCI is 560, and that between RSPCI−f

and RSDN is 1178, both exceeding the critical value
104.07 at α = 0.01.

Similar analysis was also performed for the SE
method, with the rank sums shown in Table 12. Again,

TABLE 12
True-model and frequency-based rank sums for SE

n RSDN RSSE RSSE−f

4 1926.0 1717.0 2357.0
5 1930.0 1447.0 2623.0
6 1817.0 1304.0 2879.0
7 1776.0 1250.0 2974.0

the null hypothesis is rejected for each n. Pairwise
tests in the post-hoc analysis show that the true-
model-based SE model acquisition error is signifi-
cantly better than DN, but the frequency-based error
is significantly worse than DN.

These observations suggest that the true-model-
based approach is more accurate, while the frequency-
based evaluation may lead to biased conclusions.

7.4 Comparing PCI with Chow-Liu Tree Method

To illustrate the fundamental difference between the
acquisition of NIN-AND trees and that of BN DAGs,
the PCI method was compared against the well-
known C-L method [CL68].

Given a set of discrete variables, the C-L method
learns a tree structured BN. To apply C-L in the
context of NIN-AND tree acquisition, we assume that
the set of variables is the BN family Ce = C ∪ {e},
where causes in C are marginally independent of each
other (the typical case in an NIN-AND tree model).

To compare PCI with C-L, we generate a true NIN-
AND tree model, sample it, and acquire an NIN-
AND tree and a C-L tree from the frequency data.
To apply PCI, a set of single-causals and double-
causals is to be estimated. To apply C-L, however, a
set of double-variable marginal probabilities is to be
estimated. Note that neither set can be derived from
the other set. This means that PCI and C-L must be
applied to different sets of input data, which generally
contain different levels of sampling errors. This makes
it difficult for us to make a fair comparison between
the performance of PCI and that of C-L.
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To make a fair comparison, we assume that the
frequency data are perfect, without sampling errors.
That is, input probabilities to each method are directly
defined by the true joint probability distribution (JPD)
P (e, C) (the subscript t is removed for simplicity). In
particular, the input to PCI consists of P (e ← ci) for
i = 1, ..., n, and P (e ← ci, cj) for each pair of i and
j 6= i. The input to C-L consists of P (x, y) for each
pair of x and y 6= x, where x, y ∈ Ce.

The C-L method identifies a tree skeleton (of undi-
rected links) as a maximum spanning tree, where the
weight of a link is defined as the mutual information
between the pair of variables. If we apply C-L to
the family Ce, no link between any pair of causes
is included in the tree, due to the marginal indepen-
dence (and hence zero link weight). It follows that the
skeleton must be a star, with e at the center.

Next, the skeleton is directed. The C-L requires that
each variable has a single parent except for the root.
Pearl [Pea88] extended C-L trees to polytrees, where
a variable may have multiple parents, by directing
a V structure, x → z ← y, such that x and y are
independent and the other two pairs are dependent.
If Pearl’s method is applied to the above star, e will be
the common child of all causes, whose associated nu-
merical distribution is P (e|C). As the result, we have
made no progress in reducing its space complexity.

We therefore direct links of the star by following
the original C-L method: allowing no more than one
parent per variable. The root r can be arbitrarily cho-
sen, and be associated with P (r). Each other variable
x with parent y is associated with P (x|y). Since the
JPD of the resultant BN is independent of the choice
of root, we choose e as the root. The JPD of the C-L
tree BN is P CL(e, C) = P (e)P (c1|e)...P (cn|e), whose
corresponding causal CPT is

PCL(e|C) = P (e)P (c1|e)...P (cn|e)/(P (c1)...P (cn)). (8)

To compare PCI with C-L, we compare
dm(P (e|C), P PCI(e|C)) with dm(P (e|C), P CL(e|C)).
Since applying the PCI method to the perfect data
always returns the true model, it follows that
dm(P (e|C), P PCI(e|C)) = 0. Hence, the relative
merit of PCI versus C-L is completely characterized
by dm(P (e|C), P CL(e|C)). Table 13 shows the
experimental result over 4,000 randomly simulated
true model JPDs (each consisting of an NIN-AND
tree model plus a marginal for each cause), with
1,000 true models for each n value. The result

TABLE 13
Summary of model acquisition errors by C-L method

n 4 5 6 7
µ̂-dm 0.204 0.171 0.150 0.135
σ̂-dm 0.020 0.018 0.020 0.022

indicates that the causal CPT acquired by the C-L

method has on average at least 0.13 absolute error
per conditional probability, given perfect input data.
Since the corresponding error by the PCI method is
zero, the PCI method is clearly superior. Note that
the acquired C-L BN encodes that any ci and cj,
where i 6= j, are independent given e. Since Ce is a
BN family, this is false. The NIN-AND tree acquired
by PCI makes no such false encoding.

The experiment illustrates the fundamental differ-
ence between BN DAG learning and NIN-AND tree
acquisition. Both are techniques for reducing the 2n

parameter complexity. DAG learning does so by en-
coding conditional independence. Since there is none
within a BN family, when forced to do so, C-L encodes
false conditional independence relations and results
in an inaccurate model. NIN-AND tree acquisition
does so by encoding causal interaction and causal
independence within the BN family, and therefore is
able to reduce the number of parameters from 2n to
n with an accurate model.

8 CONCLUSION

NIN-AND tree causal models are based on intuitive
notions of reinforcing and undermining interactions,
among causes. Since they are expressive while requir-
ing only a linear number of parameters, they provide
a powerful tool for modeling local distributions in
graphical models (e.g., BNs). This paper meets a
major challenge in the NIN-AND tree modeling: the
structural acquisition.

The contributions of this work include the compact
RLT representation of NIN-AND trees, a direct RLT
enumeration algorithm, the formal establishment of
the expressiveness of PCI functions, and the PCI and
SE algorithms for NIN-AND tree acquisition through
the acquisition of a small set of low order causal
probabilities. Both methods are shown to have sig-
nificantly better model acquisition accuracy than the
direct method, while requiring O(n2) (by PCI) or
O(n3) (by SE) acquired parameters. Both methods are
applicable to elicitation-based and machine learning-
based acquisitions.

We decomposed parameter acquisition errors into
sampling and RA (in elicitation) errors. RA errors may
be reduced through training and/or technical aids.
For sampling errors, we have shown that, about 100
scenarios per causal combination is sufficient for our
methods to work well.

The PCI method extracts the PCI function from
acquired single and double-causal probabilities. Al-
ternatively, the function may be directly elicited from
the expert by asking for each pair of causal interaction,
saving the acquisition of double-causal probabilities.
Using such qualitative information in BN construc-
tion has been previously studied [DG95], [RG02].
This variation, however, is not applicable to machine
learning-based model acquisition.
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Although the number of NIN-AND trees grows
super-exponentially in n (faster than n!), it is not
an insurmountable obstacle for many reasons. First,
RLTs of n roots can be enumerated offline once and
reused for acquisition of multiple models. Second,
although the number of variables in a BN is un-
bounded, because an NIN-AND tree models a single
CPT (over a single family of variables) in a BN and
BNs are intended to be sparse, n is not unbounded.
It is expected to be small and commonly no more
than 10. Third, when n becomes large, techniques
such as divorcing [JN07] can be applied to split the
family before applying NIN-AND tree modelling to
each reduced family. Finally, the PCI and SE methods,
as presented, have time complexities that are linear
on the number of NIN-AND trees, and hence are
also super-exponential. However, algorithms that only
examine a subspace of NIN-AND trees but are based
on the fundamental ideas of PCI and SE are possible.

This paper assumes an unknown true NIN-AND
tree model. Future work may relax this assumption
and explore NIN-AND tree modeling for arbitrary
local distributions. In addition, we have proposed SE
and PCI methods in the context of binary variables.
Another avenue of future research would be to extend
this method to allow for multi-valued variables. We
have measured modeling errors using the Euclidean
distance. Alternative measures, e.g., KL divergence,
may also be applied and compared. In our experi-
ments, all acquired parameters assumed roughly the
same levels of acquisition errors. It is conceivable that
such errors may grow larger in practice as the number
of active causes involved in a parameter grows. In
that case, comparisons of model acquisition errors
are expected to be more favorable for the SE and
PCI methods. This is because they need to acquire
probabilities over no more than a few active causes
(three in our experiments), while the DN method
must acquire probabilities over all active causes. More
refined experiments may verify such a conjecture.

ACKNOWLEDGMENT

Support from NSERC is acknowledged. We thank
J. Zhu, D. Stanley, and B. Nonnecke for assistance.

REFERENCES

[CBS08] R. Chang, W. Brauer, and M. Stetter. Modeling seman-
tics of inconsistent qualitative knowledge for quantita-
tive bayesian network inference. Neural Networks, 21(2-
3):182–192, 2008.

[CL68] C.K. Chow and C.N. Liu. Approximating discrete
probability distributions with dependence trees. IEEE
Trans. on Information Theory, (14):462–467, 1968.

[DG95] M.J. Druzdzel and L.C. Van Der Gaag. Elicitation of
probabilities for belief networks: Combining qualitative
and quantitative information. In Proc. 11th Conf. Un-
certainty in Artificial Intelligence, pages 141–148. Morgan
Kaufmann, 1995.

[Fel04] J. Felsenstein. Inferring Phylogenies. Sinauer Associates,
Sunderland, Mass., 2004.

[GD00] S.F. Galan and F.J. Diez. Modeling dynamic causal
interaction with Bayesian networks: temporal noisy
gates. In Proc. 2nd Inter. Workshop on Causal Networks,
pages 1–5, 2000.

[HB96] D. Heckerman and J.S. Breese. Causal independence for
probabilistic assessment and inference using Bayesian
networks. IEEE Trans. on System, Man and Cybernetics,
26(6):826–831, 1996.

[JN07] F.V. Jensen and T.D. Nielsen. Bayesian Networks and
Decision Graphs (2nd Ed.). Springer, New York, 2007.

[KST82] D. Kahneman, P. Slovic, and A. Tversky, editors. Judg-
ment under uncertainty: heuristics and biases. Cambridge
University Press, 1982.

[LG04] J.F. Lemmer and D.E. Gossink. Recursive noisy OR - a
rule for estimating complex probabilistic interactions.
IEEE Trans. on System, Man and Cybernetics, Part B,
34(6):2252–2261, 2004.

[MD08] P.P. Maaskant and M.J. Druzdzel. An independence of
causal interactions model for opposing influences. In
M. Jaeger and T.D. Nielsen, editors, Proc. 4th European
Workshop on Probabilistic Graphical Models, pages 185–
192, Hirtshals, Denmark, 2008.

[NCF12] M. Neil, X. Chen, and N. Fenton. Optimizing the
calculation of conditional probability tables in hybrid
Bayesian networks using binary factorization. IEEE
Trans. Knowledge and Data Engineering, 24(7):1306–1312,
2012.

[NFN00] M. Neil, N. Fenton, and L. Nielsen. Building large-scale
bayesian networks. Knowledge Eng. Rev., 15(3):257–284,
2000.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

[PPMH94] M. Pradhan, G. Provan, B. Middleton, and M. Henrion.
Knowledge engineering for large belief networks. In
Proc. 10th Conf. Uncertainty in Artificial Intelligence, pages
484–490, Seattle, Washington, 1994.

[RG02] S. Renooij and L.C. Van Der Gaag. From qualitative
to quantitative probabilistic networks. In Proc. 18th
Conf. Uncertainty in Artificial Intelligence, pages 422–429.
Morgan Kaufmann, 2002.

[Xia12] Y. Xiang. Non-impeding noisy-and tree causal models
over multi-valued variables. International J. Approximate
Reasoning, 53:988–1002, 2012.

[XJ07] Y. Xiang and N. Jia. Modeling causal reinforcement and
undermining for efficient CPT elicitation. IEEE Trans.
Knowledge and Data Engineering, 19(12):1708–1718, 2007.

[XLZ09] Y. Xiang, Y. Li, and J. Zhu. Towards effective elicitation
of NIN-AND tree causal models. In L. Godo and
A. Pugliese, editors, Inter. Conf. on Scalable Uncertainty
Management (SUM 2009), LNCS 5785, pages 282–296.
Springer-Verlag Berlin Heidelberg, 2009.

[XTZ+11] Y. Xiang, M. Truong, J. Zhu, D. Stanley, and B. Non-
necke. Indirect elicitation of NIN-AND trees in causal
model acquisition. In S. Benferhat and J. Grant, editors,
Inter. Conf. on Scalable Uncertainty Management (SUM
2011), LNCS 6929, pages 261–274. Springer-Verlag Berlin
Heidelberg, 2011.

[XZL09] Y. Xiang, J. Zhu, and Y. Li. Enumerating unlabeled
and root labeled trees for causal model acquisition. In
Y. Gao and N. Japkowicz, editors, Advances in Artificial
Intelligence, LNAI 5549, pages 158–170. Springer, 2009.

[ZD04] A. Zagorecki and M.J. Druzdzel. An empirical study
of probability elicitation under Noisy-OR assumption.
In Proc. 17th Inter. Florida Artificial Intelligence Research
Society Conf., pages 880–885, 2004.


